from DLTools.Permutator import * import sys, argparse from numpy import arange import os from multiprocessing import cpu_count from DLTools.Utils import gpu_count # Save location saveFolder = "/home/mazhang/DLKit/CaloDNN/NeuralNets/Cache/Dense_GammaPi0_50Epochs/" if not os.path.exists(os.path.dirname(saveFolder)): os.makedirs(os.path.dirname(saveFolder)) # Number of threads max_threads = 12 n_gpu = gpu_count() if n_gpu > 0: n_threads = int(min(round(cpu_count() / n_gpu), max_threads)) else: n_threads = max(1, cpu_count() - 2) print "Found", cpu_count(), "CPUs and", gpu_count( ), "GPUs. Using", n_threads, "threads. max_threads =", max_threads # Particle types Particles = ["Gamma", "Pi0"] # ECAL shapes (add dimensions for conv net) ECALShape = None, 25, 25, 25 HCALShape = None, 5, 5, 60 # Input for mixing generator
import random import getopt from DLTools.Permutator import * import sys, argparse from numpy import arange import os from multiprocessing import cpu_count from DLTools.Utils import gpu_count max_threads = 12 n_threads = int(min(round(cpu_count() / gpu_count()), max_threads)) print "Found", cpu_count(), "CPUs and", gpu_count( ), "GPUs. Using", n_threads, "threads. max_threads =", max_threads #Particles=["ChPi","Gamma","Pi0","Ele"] Particles = ["Pi0", "Gamma"] # Input for Mixing Generator FileSearch = "/data/LCD/V2/MLDataset/*/*.h5" # Generation Model Config = { "MaxEvents": int(1.e5), "NTestSamples": 10000, "NClasses": len(Particles), "Epochs": 100, "BatchSize": 1024, # Configures the parallel data generator that read the input. # These have been optimized by hand. Your system may have