Example #1
0
 def _load_metadata(self, MetaData):
     """Reads metadata file
     it also reads the default configuration file
     in case of duplicates, information from MetaDataFile is used
     
     Parameters
     ----------
     MetaData : dict or filename
     """
     default_settings = os.path.join(
         os.path.dirname(os.path.realpath(__file__)), 'config_MIfile.ini')
     if (type(MetaData) in [dict, collections.OrderedDict]):
         self.MetaData = cf.Config(None,
                                   defaultConfigFiles=[default_settings])
         self.MetaData.Import(MetaData, section_name='MIfile')
     else:
         self.MetaData = cf.Config(MetaData,
                                   defaultConfigFiles=[default_settings])
     self.MaxBufferSize = self.MetaData.Get('settings', 'max_buffer_size',
                                            100000000, int)
     if (self.FileName is None):
         self.FileName = self.MetaData.Get('MIfile', 'filename', None)
     self.hdrSize = self.MetaData.Get('MIfile', 'hdr_len', 0, int)
     self.gapBytes = self.MetaData.Get('MIfile', 'gap_bytes', 0, int)
     self.Shape = self.MetaData.Get('MIfile', 'shape', [0, 0, 0], int)
     self.ImgNumber = self.Shape[0]
     self.ImgHeight = self.Shape[1]
     self.ImgWidth = self.Shape[2]
     self.PxPerImg = self.ImgHeight * self.ImgWidth
     self.PixelFormat = self.MetaData.Get('MIfile', 'px_format', 'B', str)
     self.PixelDepth = _data_depth[self.PixelFormat]
     self.PixelDataType = _data_types[self.PixelFormat]
     self.FPS = self.MetaData.Get('MIfile', 'fps', 1.0, float)
     self.PixelSize = self.MetaData.Get('MIfile', 'px_size', 1.0, float)
Example #2
0
 def Export(self,
            mi_filename,
            metadata_filename,
            zRange=None,
            cropROI=None):
     """Export a chunk of MIfile to a second file
     
     Parameters
     ----------
     mi_filename : filename of the exported MIfile
     metadata_filename : filename of the exported metadata
     zRange : range of images to be exported. if None, all images will be exported
     cropROI : ROI to be exported. if None, full images will be exported
     """
     self.OpenForWriting(mi_filename)
     mi_chunk = self.Read(zRange, cropROI)
     exp_meta = self.GetMetadata().copy()
     exp_meta['hdr_len'] = 0
     exp_meta['gap_bytes'] = 0
     exp_meta['shape'] = list(mi_chunk.shape)
     if ('fps' in exp_meta):
         val_zRange = self.Validate_zRange(zRange)
         exp_meta['fps'] = float(exp_meta['fps']) * 1.0 / val_zRange[2]
     exp_config = cf.Config()
     exp_config.Import(exp_meta, section_name='MIfile')
     exp_config.Export(metadata_filename)
     self.WriteData(mi_chunk)
Example #3
0
 def LoadMetadata(self, MetaData=None, MetaDataSection=None):
     """Load metadata from dict or filename
     
     Parameters
     ----------
     MetaData : string or dict.
     MetaDataSection : if self.MetaData is a dictionnary, load subsection of the configuration parameters
     """
     if (MetaData is not None):
         self.MetaData = MetaData
     assert (self.MetaData is not None), 'No Metadata to be loaded'
     self.MetaData = cf.LoadMetadata(self.MetaData, MetaDataSection)
     if 'MIfile' not in self.MetaData.GetSections():
         logging.warn(
             'No MIfile section found in MIstack metadata (available sections: '
             + str(self.MetaData.GetSections()) + ')')
     else:
         logging.debug(
             'Now loading MIstack.MetaData from Config object. Available sections: '
             + str(self.MetaData.GetSections()))
     self.MIshape = self.MetaData.Get('MIfile', 'shape', [0, 0, 0], int)
     self.hdrSize = self.MetaData.Get('MIfile', 'hdr_len', 0, int)
     self.gapBytes = self.MetaData.Get('MIfile', 'gap_bytes', 0, int)
     self.ImgsPerMIfile = self.MIshape[0]
     self.ImgHeight = self.MIshape[1]
     self.ImgWidth = self.MIshape[2]
     self.PxPerImg = self.ImgHeight * self.ImgWidth
     self.PixelFormat = self.MetaData.Get('MIfile', 'px_format', 'B', str)
     self.PixelDepth = MI._data_depth[self.PixelFormat]
     self.PixelDataType = MI._data_types[self.PixelFormat]
     self.FPS = self.MetaData.Get('MIfile', 'fps', 1.0, float)
     self.PixelSize = self.MetaData.Get('MIfile', 'px_size', 1.0, float)
Example #4
0
 def ExportConfiguration(self):
     cf.ExportDict({'imgs_metadata' : self.MIinput.GetMetadata(section='MIfile'),
                    'corrmap_metadata' : self.outMetaData,
                    'corrmap_parameters' : {'out_folder' : self.outFolder,
                                            'lags' : self.lagList,
                                            'img_range' : self.imgRange,
                                            'crop_roi' : self.cropROI
                                            },
                     'kernel' : self.Kernel.ToDict(),
                    }, os.path.join(self.outFolder, 'CorrMapsConfig.ini'))
Example #5
0
 def _load_metadata(self, meta_data):
     """Reads metadata file
     it also reads the default configuration file
     in case of duplicates, information from MetaDataFile is used
     
     Parameters
     ----------
     meta_data : dict or filename
     """
     if (type(meta_data) in [dict, collections.OrderedDict]):
         logging.debug('Now loading MIfile metadata (dict with ' +
                       str(len(meta_data)) + ' keys)')
     else:
         logging.debug('Now loading MIfile metadata (from filename: ' +
                       str(meta_data) + ')')
     default_settings = os.path.join(
         os.path.dirname(os.path.realpath(__file__)), 'config_MIfile.ini')
     self.MetaData = cf.LoadMetadata(meta_data,
                                     SectionName='MIfile',
                                     DefaultFiles=[default_settings])
     if 'MIfile' not in self.MetaData.GetSections():
         logging.warn(
             'No MIfile section found in MIfile metadata (available sections: '
             + str(self.MetaData.GetSections()) + ')')
     else:
         logging.debug(
             'Now loading MIfile.MetaData from Config object. Available sections: '
             + str(self.MetaData.GetSections()))
     self.MaxBufferSize = self.MetaData.Get('settings', 'max_buffer_size',
                                            100000000, int)
     if (self.FileName is None):
         self.FileName = self.MetaData.Get('MIfile', 'filename', None)
     self.hdrSize = self.MetaData.Get('MIfile', 'hdr_len', 0, int)
     self.gapBytes = self.MetaData.Get('MIfile', 'gap_bytes', 0, int)
     self.Shape = self.MetaData.Get('MIfile', 'shape', [0, 0, 0], int)
     self.ImgNumber = self.Shape[0]
     self.ImgHeight = self.Shape[1]
     self.ImgWidth = self.Shape[2]
     self.PxPerImg = self.ImgHeight * self.ImgWidth
     self.PixelFormat = self.MetaData.Get('MIfile', 'px_format', 'B', str)
     self.PixelDepth = _data_depth[self.PixelFormat]
     self.PixelDataType = _data_types[self.PixelFormat]
     self.FPS = self.MetaData.Get('MIfile', 'fps', 1.0, float)
     self.PixelSize = self.MetaData.Get('MIfile', 'px_size', 1.0, float)
Example #6
0
 def ExportConfiguration(self):
     cf.ExportDict(
         {
             'fw_corrmap_metadata': self.cmaps_fw.outMetaData,
             'bk_corrmap_metadata': self.cmaps_bk.outMetaData,
             'naffmap_parameters': {
                 'out_folder': self.outFolder,
                 'lag_range': self.lag_range,
                 'lags': self.lagList,
                 'img_range': self.t_range,
                 'crop_roi': self.cropROI,
                 'norm_range': self.norm_range,
                 'qz_fw': self.qz_fw,
                 'qz_bk': self.qz_bk,
                 'trans_bk_matrix': self.trans_bk_matrix,
                 'trans_bk_offset': self.trans_bk_offset
             },
             'smooth_kernel': self.smooth_kernel_specs
         }, os.path.join(self.outFolder, 'NaffMapsConfig.ini'))
Example #7
0
def LoadFromConfig(ConfigFile, outFolder=None):
    """Loads a CorrMaps object from a config file like the one exported with CorrMaps.ExportConfiguration()
    
    Parameters
    ----------
    ConfigFile : full path of the config file to read
    outFolder : folder containing correlation maps. 
                if None, the value from the config file will be used
                if not None, the value from the config file will be discarded
                
    Returns
    -------
    a CorrMaps object with an "empty" image MIfile (containing metadata but no actual image data)
    """
    config = cf.Config(ConfigFile)
    if (outFolder is None):
        outFolder = config.Get('corrmap_parameters', 'out_folder')
    kernel_specs = DSH.Kernel.Kernel(config.ToDict(section='kernel'))
    return CorrMaps(MI.MIfile(None,config.ToDict(section='imgs_metadata')),\
                            outFolder, config.Get('corrmap_parameters', 'lags', [], int),\
                            kernel_specs, config.Get('corrmap_parameters', 'img_range', None, int),\
                            config.Get('corrmap_parameters', 'crop_roi', None, int))
Example #8
0
 def LoadMetadata(self, MetaData=None, MetaDataSection=None):
     """Load metadata from dict or filename
     
     Parameters
     ----------
     MetaData : string or dict. If None, self.MetaData_init will be used, if available
     MetaDataSection : if self.MetaData is a string, load section of the configuration file
     """
     if (MetaData is not None):
         self.MetaData = MetaData
     assert (self.MetaData is not None), 'No Metadata to be loaded'
     self.MetaData = cf.LoadMetadata(self.MetaData, MetaDataSection)
     self.MIshape = self.MetaData.Get('MIfile', 'shape', [0, 0, 0], int)
     self.hdrSize = self.MetaData.Get('MIfile', 'hdr_len', 0, int)
     self.gapBytes = self.MetaData.Get('MIfile', 'gap_bytes', 0, int)
     self.ImgsPerMIfile = self.MIshape[0]
     self.ImgHeight = self.MIshape[1]
     self.ImgWidth = self.MIshape[2]
     self.PxPerImg = self.ImgHeight * self.ImgWidth
     self.PixelFormat = self.MetaData.Get('MIfile', 'px_format', 'B', str)
     self.PixelDepth = MI._data_depth[self.PixelFormat]
     self.PixelDataType = MI._data_types[self.PixelFormat]
     self.FPS = self.MetaData.Get('MIfile', 'fps', 1.0, float)
     self.PixelSize = self.MetaData.Get('MIfile', 'px_size', 1.0, float)
Example #9
0
def MergeMIfiles(MergedFileName,
                 MIfileList,
                 MergedMetadataFile=None,
                 MergeAxis=0,
                 MoveAxes=[],
                 FinalShape=None):
    """Merge multiple image files into one image file
    
    Parameters
    ----------
    MergedFileName : full path of the destination merged MIfile
    MIfileList : list of MIfile objects or of 2-element list [MIfilename, MedatData]
                 Image shape and pixel format must be the same for all MIfiles
    MergedMetadataFile : if not None, export metadata of merged file
    MergeAxis :  Stitch MIfiles along specific axis.
                 Default is 0 (z axis or time). MIfiles need to have the same shape
                 along the other axes
    MoveAxes :   list of couples of indices, of the form (ax_pos, ax_dest)
                 If not empty, after merging and before writing to output file, do a series of
                 np.moveaxis(res, ax_pos, ax_dest) moves
    FinalShape : if not None, reshape final output (eventually after moving axes) to given shape
                 Shape along the merged axis will be disregarded and automatically computed
                 (can set this to -1)
                 
    Returns
    -------
    outMIfile : merged MIfile 
    """

    if (len(MoveAxes) > 0):
        if (type(MoveAxes[0]) is int):
            MoveAxes = [MoveAxes]
    logging.info('MIfile.MergeMIfiles() procedure started. ' +
                 str(len(MIfileList)) + ' MIfiles to be merged into ' +
                 str(MergedFileName))
    strLog = 'Merging along Axis ' + str(MergeAxis)
    if len(MoveAxes) > 0:
        strLog += '; followed by np.moveaxis moves: ' + str(MoveAxes)
    if FinalShape is None:
        strLog += '. No final reshaping'
    else:
        strLog += '. Reshape output to ' + str(FinalShape)
    logging.info(strLog)

    # Load all MIfiles and generate output metadata
    mi_in_list = []
    out_meta = {
        'hdr_len': 0,
        'shape': [0, 0, 0],
        'px_format': None,
        'fps': 0.0,
        'px_size': 0.0
    }
    for midx in range(len(MIfileList)):
        if (type(MIfileList[midx]) is list):
            add_mi = MIfile(MIfileList[midx][0], MIfileList[midx][1])
            logging.debug(
                'MergeMIfiles(): adding new MIfile object with filename ' +
                str(MIfileList[midx][0]))
        else:
            add_mi = MIfileList[midx]
            logging.debug('MergeMIfiles(): adding existing MIfile object (' +
                          str(MIfileList[midx].FileName) + ')')
        mi_in_list.append(add_mi)
        cur_format = add_mi.DataFormat()
        cur_MIshape = add_mi.GetShape()
        if (MergeAxis < 0):
            MergeAxis += len(cur_MIshape)
        out_meta['shape'][MergeAxis] += cur_MIshape[MergeAxis]
        if (midx == 0):
            for ax in range(len(cur_MIshape)):
                if ax != MergeAxis:
                    out_meta['shape'][ax] = cur_MIshape[ax]
            out_meta['px_format'] = cur_format
            out_meta['fps'] = add_mi.GetFPS()
            out_meta['px_size'] = add_mi.GetPixelSize()
        else:
            for ax in range(len(cur_MIshape)):
                if (ax != MergeAxis
                        and out_meta['shape'][ax] != cur_MIshape[ax]):
                    raise IOError('Cannot merge MIfiles of shapes ' + str(out_meta['shape']) +\
                                  ' and ' + str(cur_MIshape) + ' along axis ' + str(MergeAxis) +\
                                  ' (sizes on axis ' + str(ax) + ' do not match)')
            assert out_meta[
                'px_format'] == cur_format, 'MIfiles should all have the same pixel format'
        logging.debug('Current shape is ' + str(cur_MIshape) +
                      '. Output shape updated to ' + str(out_meta['shape']))

    if (FinalShape is not None):
        re_shape = list(FinalShape.copy())
        re_shape[MergeAxis] = int(
            np.prod(out_meta['shape']) /
            (re_shape[MergeAxis - 1] * re_shape[MergeAxis - 2]))
        #for move in MoveAxes:
        #    re_shape = sf.MoveListElement(re_shape, move[0], move[1])
        assert np.prod(re_shape)==np.prod(out_meta['shape']), 'An error occurred trying to reshape MIfile of shape ' + str(out_meta['shape']) +\
                             ' into shape ' + str(re_shape) + ': pixel number is not conserved (' + str(np.prod(re_shape)) +\
                             '!=' + str(np.prod(out_meta['shape'])) + ')!'
        out_meta['shape'] = list(re_shape)
        logging.debug('Output shape should be ' + str(re_shape))

    if (MergedMetadataFile is not None):
        conf = cf.Config()
        conf.Import(out_meta, section_name='MIfile')
        conf.Export(MergedMetadataFile)

    outMIfile = MIfile(MergedFileName, out_meta)
    if (MergeAxis == 0 and len(MoveAxes) == 0):
        for cur_mifile in mi_in_list:
            outMIfile.WriteData(cur_mifile.Read(closeAfter=True),
                                closeAfter=False)
            logging.debug('MIfile ' + str(cur_mifile.FileName) +
                          ' read and directly transfered to output MIfile')
        outMIfile.Close()
    else:
        write_data = mi_in_list[0].Read(closeAfter=True)
        logging.debug('Writing buffer initialized with first MIfile (' +
                      str(mi_in_list[0].FileName) + '). Shape is ' +
                      str(write_data.shape))
        for midx in range(1, len(mi_in_list)):
            cur_buf = mi_in_list[midx].Read(closeAfter=True)
            write_data = np.append(write_data, cur_buf, axis=MergeAxis)
            logging.debug('MIfile #' + str(midx) + ' (' + str(mi_in_list[midx].FileName) + ') with shape ' + str(cur_buf.shape) +\
                          ' appended to writing buffer along axis ' + str(MergeAxis) + '. Current shape is ' + str(write_data.shape))
        for move in MoveAxes:
            write_data = np.moveaxis(write_data, move[0], move[1])
            logging.debug('Axis ' + str(move[0]) + ' moved to position ' +
                          str(move[1]) + '. Current shape is ' +
                          str(write_data.shape))
        outMIfile.WriteData(write_data, closeAfter=True)
        logging.debug('Final buffer with shape ' + str(write_data.shape) +
                      ' written to output MIfile ' + str(outMIfile.FileName))

    return outMIfile
Example #10
0
         else:
             g_params[param_kw] = sys.argv[argidx]
             param_kw = None
 if (len(inp_fnames)<=0):
     inp_fnames = [os.path.join(os.path.dirname(os.path.abspath(__file__)), 'serial_corrmap_config.ini')]
 
 if ('-silent' not in cmd_list):
     print('\n\nBATCH CORRELATION MAP CALCULATOR\nWorking on {0} input files'.format(len(inp_fnames)))
 
 # Loop through all configuration files
 for cur_inp in inp_fnames:
     if ('-silent' not in cmd_list):
         print('Current input file: ' + str(cur_inp))
         
     # Read global section
     conf = Config.Config(cur_inp)
     num_proc = conf.Get('global', 'n_proc', 1, int)
     px_per_chunk = conf.Get('global', 'px_per_proc', 1, int)
     kernel_specs = conf.Get('global', 'kernel_specs')
     lag_list = conf.Get('global', 'lag_list', [], int)
     froot = conf.Get('global', 'root', '')
     
     if ('-skip_cmap' not in cmd_list) or ('-skip_vmap' not in cmd_list) or ('-skip_vmap_assemble' not in cmd_list) or ('-skip_displ' not in cmd_list) or ('-skip_grad' not in cmd_list):
         
         # Loop through all 'input_N' sections of the configuration file
         for cur_sec in conf.GetSections():
             if (cur_sec[:len('input_')]=='input_'):
                 
                 # Read current input section
                 mi_fname = os.path.join(froot, conf.Get(cur_sec, 'mi_file'))
                 if ('-silent' not in cmd_list):
Example #11
0
def LoadFromConfig(ConfigFile, input_sect='input', outFolder=None):
    """Loads a SALS object from a config file like the one exported with VelMaps.ExportConfig()
    
    Parameters
    ----------
    ConfigFile : full path of the config file to read
    outFolder : folder containing velocity and correlation maps. 
                if None, the value from the config file will be used
                if not None, the value from the config file will be discarded
                
    Returns
    -------
    a SALS object, eventually with an "empty" image MIfile (containing metadata but no actual image data)
    """
    config = cf.Config(ConfigFile)
    froot = config.Get('global', 'root', '', str)
    miin_fname = config.Get(input_sect, 'mi_file', None, str)
    miin_meta_fname = config.Get(input_sect, 'meta_file', None, str)
    input_stack = False
    if (miin_fname is not None):
        # if miin_fname is a string, let's use a single MIfile as input.
        # otherwise, it can be a list: in that case, let's use a MIstack as input
        if (isinstance(miin_fname, str)):
            miin_fname = os.path.join(froot, miin_fname)
        else:
            input_stack = True
            for i in range(len(miin_fname)):
                miin_fname[i] = os.path.join(froot, miin_fname[i])
    if (miin_meta_fname is not None):
        miin_meta_fname = os.path.join(froot, miin_meta_fname)
    elif input_stack:
        logging.error(
            'SALS.LoadFromConfig ERROR: medatada filename must be specified when loading a MIstack'
        )
        return None
    if input_stack:
        MIin = MIs.MIstack(miin_fname,
                           miin_meta_fname,
                           Load=True,
                           StackType='t')
    else:
        MIin = MI.MIfile(miin_fname, miin_meta_fname)
    ctrPos = config.Get('SALS_parameters', 'center_pos', None, float)
    if (ctrPos is None):
        logging.error(
            'SALS.LoadFromConfig ERROR: no SALS_parameters.center_pos parameter found in config file '
            + str(ConfigFile))
        return None
    else:
        r_max = ppf.MaxRadius(MIin.ImageShape(), ctrPos)
        radRange = sf.ValidateRange(config.Get('SALS_parameters', 'r_range',
                                               None, float),
                                    r_max,
                                    MinVal=1,
                                    replaceNone=True)
        angRange = sf.ValidateRange(config.Get('SALS_parameters', 'a_range',
                                               None, float),
                                    2 * np.pi,
                                    replaceNone=True)
        rSlices = np.geomspace(radRange[0],
                               radRange[1],
                               int(radRange[2]) + 1,
                               endpoint=True)
        aSlices = np.linspace(angRange[0],
                              angRange[1],
                              int(angRange[2]) + 1,
                              endpoint=True)
        if (outFolder is None):
            outFolder = config.Get(input_sect, 'out_folder', None, str)
            if (outFolder is not None):
                outFolder = os.path.join(config.Get('global', 'root', '', str),
                                         outFolder)
        mask = config.Get('SALS_parameters', 'px_mask', None, str)
        mask = MI.ReadBinary(
            sf.PathJoinOrNone(froot,
                              config.Get(input_sect, 'px_mask', mask, str)),
            MIin.ImageShape(), MIin.DataFormat(), 0)
        dark = MI.ReadBinary(
            sf.PathJoinOrNone(froot,
                              config.Get(input_sect, 'dark_bkg', None, str)),
            MIin.ImageShape(), MIin.DataFormat(), 0)
        opt = MI.ReadBinary(
            sf.PathJoinOrNone(froot,
                              config.Get(input_sect, 'opt_bkg', None, str)),
            MIin.ImageShape(), MIin.DataFormat(), 0)
        PD_data = sf.PathJoinOrNone(
            froot, config.Get(input_sect, 'pd_file', None, str))
        if (PD_data is not None):
            PD_data = np.loadtxt(PD_data, dtype=float)
        img_times = config.Get(input_sect, 'img_times', None, str)
        if img_times is not None:
            # if miin_fname is a string, let's use a single text file as input.
            # otherwise, it can be a list: in that case, let's open each text file and append all results
            if (isinstance(img_times, str)):
                img_times = np.loadtxt(os.path.join(froot, img_times),
                                       dtype=float,
                                       usecols=config.Get(
                                           'format', 'img_times_colidx', 0,
                                           int),
                                       skiprows=1)
            else:
                tmp_times = np.empty(shape=(0, ), dtype=float)
                for cur_f in img_times:
                    tmp_times = np.append(
                        tmp_times,
                        np.loadtxt(os.path.join(froot, cur_f),
                                   dtype=float,
                                   usecols=config.Get('format',
                                                      'img_times_colidx', 0,
                                                      int),
                                   skiprows=1))
                img_times = tmp_times
        exp_times = sf.PathJoinOrNone(
            froot, config.Get(input_sect, 'exp_times', None, str))
        if (exp_times is not None):
            exp_times = np.unique(
                np.loadtxt(exp_times,
                           dtype=float,
                           usecols=config.Get('format', 'exp_times_colidx', 0,
                                              int)))
        dlsLags = config.Get('SALS_parameters', 'dls_lags', None, int)
        tavgT = config.Get('SALS_parameters', 'timeavg_T', None, int)
        return SALS(MIin, outFolder, ctrPos, [rSlices, aSlices], mask,
                    [dark, opt, PD_data], exp_times, dlsLags, img_times, tavgT)
Example #12
0
    def Compute(self):

        sf.CheckCreateFolder(self.outFolder)

        logging.info(
            'NonAffMaps.Compute() started! Result will be saved in folder ' +
            str(self.outFolder))

        # Search for correlation map MIfiles, skip autocorrelation maps

        fw_mistack = self.cmaps_fw.GetCorrMaps(openMIfiles=True)
        bk_mistack = self.cmaps_bk.GetCorrMaps(openMIfiles=True)
        common_lags = list(
            set(fw_mistack.IdxList).intersection(bk_mistack.IdxList))
        if self.lag_range is None:
            if 0 in common_lags: common_lags.remove(0)
        else:
            if self.lag_range[1] < 0:
                self.lag_range[1] = np.max(common_lags) + 1
            common_lags = [
                lag for lag in common_lags
                if (lag != 0 and lag >= self.lag_range[0]
                    and lag <= self.lag_range[1])
            ]

        self.lagList = common_lags

        # Export configuration
        self.ExportConfiguration()

        if self.trans_bk_matrix is not None:
            tr_matrix = np.reshape(np.asarray(self.trans_bk_matrix), (2, 2))
            logging.debug(
                'Backscattered correlation maps will be transformed using matrix '
                + str(tr_matrix) + ' and offset ' + str(self.trans_bk_offset))

        # For each couple of correlation maps (with equal lagtime)
        for lidx in range(len(self.lagList)):

            logging.info('Now working on lagtime ' + str(lidx) + '/' +
                         str(len(self.lagList)) + ' (d' +
                         str(self.lagList[lidx]) + ')')

            fw_lidx = fw_mistack.IdxList.index(self.lagList[lidx])
            bk_lidx = bk_mistack.IdxList.index(self.lagList[lidx])

            # eventually compute normalization factors
            if self.norm_range is not None:
                fw_norm_factor = np.mean(fw_mistack.MIfiles[fw_lidx].Read(
                    zRange=self.norm_range[:2],
                    cropROI=self.norm_range[2:],
                    closeAfter=False))
                if self.trans_bk_matrix is None and self.trans_bk_offset is None:
                    bk_norm_factor = np.mean(bk_mistack.MIfiles[bk_lidx].Read(
                        zRange=self.norm_range[:2],
                        cropROI=self.norm_range[2:],
                        closeAfter=False))
                else:
                    bk_norm_data = bk_mistack.MIfiles[bk_lidx].Read(
                        zRange=self.norm_range[:2],
                        cropROI=None,
                        closeAfter=False)
                    if len(bk_norm_data.shape) > 2:
                        bk_norm_data = np.mean(bk_norm_data, axis=0)
                    logging.debug('shape before transformation: ' +
                                  str(bk_norm_data.shape))
                    bk_norm_data = sp.ndimage.affine_transform(bk_norm_data, tr_matrix, offset=self.trans_bk_offset,\
                                                      output_shape=bk_norm_data.shape, order=1, mode='constant', cval=1.0)
                    norm_cropROI = MI.ValidateROI(self.norm_range[2:],
                                                  bk_norm_data.shape,
                                                  replaceNone=True)
                    logging.debug('shape after transformation: ' +
                                  str(bk_norm_data.shape) +
                                  ' will be cropped with ROI ' +
                                  str(norm_cropROI))
                    bk_norm_factor = np.mean(bk_norm_data[norm_cropROI[1]:norm_cropROI[1]+norm_cropROI[3],\
                                                          norm_cropROI[0]:norm_cropROI[0]+norm_cropROI[2]])
                    bk_norm_data = None
            else:
                fw_norm_factor, bk_norm_factor = 1, 1

            logging.info('Normalization factors: ' + str(fw_norm_factor) +
                         ' (front) and ' + str(bk_norm_factor) + ' (back)')

            # load, normalize and eventually smooth correlation maps.
            fw_data = np.true_divide(
                fw_mistack.MIfiles[fw_lidx].Read(zRange=self.t_range,
                                                 cropROI=self.cropROI,
                                                 closeAfter=True),
                fw_norm_factor)
            bk_data = np.true_divide(
                bk_mistack.MIfiles[bk_lidx].Read(zRange=self.t_range,
                                                 cropROI=self.cropROI,
                                                 closeAfter=True),
                bk_norm_factor)

            if self.smooth_kernel_specs is not None:
                Kernel3D = self.LoadKernel(self.smooth_kernel_specs)
                logging.debug('Smoothing with kernel with shape ' +
                              str(Kernel3D.shape))
                fw_data = signal.convolve(fw_data, Kernel3D, mode='same')
                bk_data = signal.convolve(bk_data, Kernel3D, mode='same')

            # transform backscattered images
            if self.trans_bk_matrix is not None:
                tr_matrix3D = np.asarray(
                    [[1, 0, 0], [0, tr_matrix[0, 0], tr_matrix[0, 1]],
                     [0, tr_matrix[1, 0], tr_matrix[1, 1]]])
                tr_offset3D = np.asarray(
                    [0, self.trans_bk_offset[0], self.trans_bk_offset[1]])
                bk_data = sp.ndimage.affine_transform(bk_data, tr_matrix3D, offset=tr_offset3D,\
                                                      output_shape=fw_data.shape, order=1, mode='constant', cval=1.0)

            # sigma2 = ln(forward-scattering corr / backscattering corr) * 6 / (qz_bk^2 - qz_fw^2)
            sigma2 = np.log(np.true_divide(
                fw_data, bk_data)) * 6.0 / (self.qz_bk**2 - self.qz_fw**2)

            # For the first lagtime, generate and export metadata
            if (lidx == 0):
                out_meta = fw_mistack.MIfiles[fw_lidx].GetMetadata().copy()
                out_meta['hdr_len'] = 0
                out_meta['gap_bytes'] = 0
                out_meta['shape'] = list(sigma2.shape)
                if ('fps' in out_meta):
                    val_tRange = fw_mistack.MIfiles[fw_lidx].Validate_zRange(
                        self.t_range)
                    out_meta['fps'] = float(
                        out_meta['fps']) * 1.0 / val_tRange[2]
                exp_config = cf.Config()
                exp_config.Import(out_meta, section_name='MIfile')
                metadata_fname = os.path.join(self.outFolder,
                                              'NAffMap_metadata.ini')
                exp_config.Export(metadata_fname)
                logging.info('Metadata exported to file ' +
                             str(metadata_fname))

            # export data
            cur_fname = 'NaffMap_d' + str(self.lagList[lidx]).zfill(4) + '.dat'
            MI.MIfile(os.path.join(self.outFolder, cur_fname),
                      metadata_fname).WriteData(sigma2)

            logging.info('Result saved to file ' + str(cur_fname))

            fw_mistack.MIfiles[fw_lidx].Close()
            bk_mistack.MIfiles[bk_lidx].Close()
Example #13
0
    def GetCorrMaps(self,
                    openMIfiles=True,
                    getAutocorr=True,
                    check_lagtimes=False):
        """Searches for MIfile correlation maps
        
        Parameters
        ----------
        openMIfiles: if true, it opens all MIfiles for reading.
        getAutocorr: if True, returns d0 in the list of correlation maps
                    otherwise, returns None instead of the autocorrelation map
        check_lagtimes: if true, checks that the lagtimes extracted from the filenames match with self.lagList
        
        Returns
        -------
        corr_config: configuration file for correlation maps
        corr_mifiles: list of correlation maps, one per time delay
        lag_list: list of lagtimes
        """

        if not self._corrmaps_loaded:

            assert os.path.isdir(
                self.outFolder), 'Correlation map folder ' + str(
                    self.outFolder) + ' not found.'
            config_fname = os.path.join(self.outFolder, 'CorrMapsConfig.ini')
            assert os.path.isfile(config_fname), 'Configuration file ' + str(
                config_fname) + ' not found'
            self.conf_cmaps = cf.Config(config_fname)

            all_cmap_fnames = sf.FindFileNames(self.outFolder,
                                               Prefix='CorrMap_d',
                                               Ext='.dat',
                                               Sort='ASC',
                                               AppendFolder=True)
            self.cmap_mifiles = []
            self.all_lagtimes = []
            for i in range(len(all_cmap_fnames)):
                cur_lag = sf.LastIntInStr(all_cmap_fnames[i])
                self.all_lagtimes.append(cur_lag)
                self.cmap_mifiles.append(
                    MI.MIfile(
                        all_cmap_fnames[i],
                        self.conf_cmaps.ToDict(section='corrmap_metadata')))
                self.cmap_mifiles[-1].OpenForReading()

            # Check lagtimes for consistency
            if (check_lagtimes):
                print(
                    'These are all lagtimes. They should be already sorted and not contain 0:'
                )
                print(self.all_lagtimes)
                for cur_lag in self.lagList:
                    if (cur_lag not in self.all_lagtimes):
                        print(
                            'WARNING: no correlation map found for lagtime ' +
                            str(cur_lag))

            self._corrmaps_loaded = True

        if (self.all_lagtimes[0] == 0 and getAutocorr == False):
            return self.conf_cmaps, [
                None
            ] + self.cmap_mifiles[1:], self.all_lagtimes
        else:
            return self.conf_cmaps, self.cmap_mifiles, self.all_lagtimes