def scale(data_matrix): """ returns the means and stds of each column in data_matrix """ num_rows, num_cols = shape(data_matrix) means = [mean(get_col(data_matrix, col)) for col in range(num_cols)] stds = [standard_deviation(get_col(data_matrix, col)) for col in range(num_cols)] return means, stds
def scale(data_matrix): """ returns the means and stds of each column in data_matrix """ num_rows, num_cols = shape(data_matrix) means = [mean(get_col(data_matrix, col)) for col in range(num_cols)] stds = [ standard_deviation(get_col(data_matrix, col)) for col in range(num_cols) ] return means, stds
def least_squares_fit(x, y): """ given training values for x,y computes the least squares values for beta_0 and beta_1""" beta_1 = covariance(x,y)/variance(x) beta_0 = mean(y) - beta_1 * mean(x) return beta_0, beta_1