from Data.DataManager import DataManager
from ScriptToolkit import ScriptToolkit
from Preprocessing.DataReader import DataReader
from Preprocessing import ProcessorFactory
from Model.ConditionalRandomField import CRF

if __name__ == '__main__':
    # create data manager
    DM = DataManager()
    DM.change_pwd()
    DM.source_data_file = 'CorpusLabelData_MergedFilter.txt'
    DM.remove(DM.log_wrong_sentences)
    DM.remove(DM.log_best_dataset)
    DM.remove(DM.log_worst_dataset)

    # create toolkits
    ST = ScriptToolkit(DM)
    features = ScriptToolkit.get_demo_features()

    # create datums
    DR = DataReader(source_data_file=DM.source_data_file)
    DR.standard_read()

    # analysis
    sent_accuracys = []
    cycle_times = 1
    max_accuracy, min_accuracy = 0.0, 1.0
    max_data, min_data = None, None

    for i in range(cycle_times):
        # data preprocessing
from Data.DataManager import DataManager
from ScriptToolkit import ScriptToolkit
from Preprocessing.DataReader import DataReader
from Preprocessing import ProcessorFactory
from Model.ConditionalRandomField import CRF

if __name__ == '__main__':
    # create data manager
    DM = DataManager()
    DM.change_pwd()
    DM.source_data_file = 'CorpusLabelData_SalesModule.txt'
    DM.remove(DM.log_wrong_sentences)

    # create datums
    DR = DataReader(source_data_file=DM.source_data_file)
    DR.standard_read()

    # create toolkits
    ST = ScriptToolkit(DM)
    features = ScriptToolkit.get_demo_features()

    # analysis
    sent_accuracys, train_times, test_times = [], [], []
    cycle_times = 30
    for i in range(cycle_times):
        # data preprocessing
        crf_processor = ProcessorFactory.CRFProcessorFactory().produce(
            source_data_file=DM.source_data_file,
            train_file=DM.train_file,
            test_file=DM.test_file)
        crf_processor.get_train_data(DR.Datums)
import os
from Data.DataManager import DataManager
from Preprocessing import ProcessorFactory
from Model.ConditionalRandomField import CRF
from Scripts.ScriptToolkit import ScriptToolkit
from Preprocessing.DataReader import DataReader

if __name__ == '__main__':
    # create data manager
    DM = DataManager()
    DM.change_pwd()
    DM.source_data_file = 'CorpusLabelData_SalesModule.txt'
    DM.remove(DM.features_train)
    DM.remove(DM.features_test)

    # create datums
    DR = DataReader(source_data_file=DM.source_data_file)
    DR.standard_read()

    # create toolkits
    ST = ScriptToolkit(DM)
    features = ScriptToolkit.get_demo_features()

    # feature setting
    features['printFeatures'] = '1'
    feature_sets = [features]
    # feature_sets = ScriptToolkit.get_custom_features('custom_features.txt')

    train_times = []
    sent_accuracys = []
    for features in feature_sets: