Example #1
0
def main():
    directory = "..\\Data\\Training\\2categories\\treshold_4\\"
    # Lernkurve:
    eval_trainlogfile(directory + "trainphase.log", plot=True)

    # DatenSammeln
    data, label = generate_classification()
    val_data = data[:623]
    val_lbl = label[:623]

    # NetzLaden
    netname = "categorical_crossentropy_hidden-softmax_output-softmax_above"
    net, offset = load_last_net(netname, _dir=directory)
    assert net is not None

    eval_validation_set(val_data, val_lbl, net)
    plt.show()
def main():
    # Lernkurve:
    eval_trainlogfile(
        "..\\Data\\Training\\activationHidden-tanh_activationOutput-softmax\\trainphase.log",
        plot=True)

    # DatenSammeln
    data, label = generate_classification()
    val_data = data[:623]
    val_lbl = label[:623]

    # NetzLaden
    netname = "categorical_crossentropy_hidden-tanh_output-softmax_above"
    net, offset = load_last_net(
        netname,
        _dir=
        "..\\Data\\Training\\activationHidden-tanh_activationOutput-softmax")
    assert net is not None

    eval_validation_set(val_data, val_lbl, net)
    plt.show()
                 "sum: " + str(int(np.sum(suml[:, :, i]))),
                 color="white")
        plt.imshow(suml[:, :, i], vmax=vmax, vmin=0)
        plt.figure("Baseline " + str(i * 5 + 5) + " min")
        plt.text(46,
                 63,
                 "sum: " + str(int(np.sum(sumb[:, :, i]))),
                 color="white")
        plt.imshow(sumb[:, :, i], vmax=vmax, vmin=0)

    return


if __name__ == '__main__':
    #Lernkurve:
    eval_trainlogfile("./trainphase_MSE.log", plot=True)

    #DatenSammeln
    s1, s2 = generate_Data_5_7(
        "..\\Data\\samplebundles\\{}_5in_7out_64x64_without_border",
        only_2004=True)

    all_data = None
    for bundle in s1:
        data, label = bundle.get_all_data_label(channels_Last=True,
                                                flatten_output=True)
        if all_data is None:
            all_data = data
            all_label = label
        else:
            all_data = np.concatenate((all_data, data), axis=0)
Example #4
0
import Data.evaluate_Network_on_realData as eN

eN.eval_trainlogfile(logfilepath="./trainphase.log", plot=True)