Example #1
0
    def run(self, record):
        text_a, text_b = record[0], record[1]
        example = self.processor._create_single_example(text_a, text_b)
        feature = convert_single_example(example, 32, self.tokenizer)

        input_ids = torch.tensor(feature.input_ids,
                                 dtype=torch.long).unsqueeze(0)
        segment_ids = torch.tensor(feature.segment_ids,
                                   dtype=torch.long).unsqueeze(0)
        input_mask = torch.tensor(feature.input_mask,
                                  dtype=torch.long).unsqueeze(0)

        # ort_inputs = {
        #     'input_ids': self.to_numpy(input_ids),
        #     'segment_ids': self.to_numpy(segment_ids),
        #     'input_mask': self.to_numpy(input_mask)
        # }
        # print(input_ids)
        # print(segment_ids)
        # print(input_mask)
        ort_inputs = {
            'input_ids': self.to_numpy(input_ids),
            'segment_ids': self.to_numpy(segment_ids),
            'input_mask': self.to_numpy(input_mask)
        }
        print(self.session)
        ort_outputs = self.session.run(None, ort_inputs)
        # print(ort_outputs)
        ort_logits = torch.from_numpy(ort_outputs[0])
        print(ort_logits)  # tensor([[4.7433, -4.5335]])
        # ort_logits_1 = torch.from_numpy(ort_outputs_1[0]) # 二维向量
        prob = ort_logits.sigmoid()[:, 1].tolist()[0]  #[0.123]
        # print(ort_logits)
        return prob
Example #2
0
    def run(self, record):
        '''
        预测小类标签
        '''
        text_a, text_b = record[0], record[1]
        example = self.processor._create_single_example(text_a, text_b)
        feature = convert_single_example(example, self.max_seq_length,
                                         self.tokenizer)

        input_ids = torch.tensor(feature.input_ids,
                                 dtype=torch.long).unsqueeze(0).to(
                                     self.config.device)
        segment_ids = torch.tensor(feature.segment_ids,
                                   dtype=torch.long).unsqueeze(0).to(
                                       self.config.device)
        input_mask = torch.tensor(feature.input_mask,
                                  dtype=torch.long).unsqueeze(0).to(
                                      self.config.device)
        # print(input_ids)
        # print(segment_ids)
        # print(input_mask)

        logits = self.model(input_ids, segment_ids, input_mask).detach()
        # print(logits)
        prob = logits.sigmoid()[:, 1].tolist()  #[0.123]
        # prob = torch.sigmoid(logits)

        # return prob[0].cpu().tolist()[0]
        return prob[0]
Example #3
0
def infer(bert, nezha, query_A, query_B):

    text_a, text_b = query_A, query_B
    example = processor._create_single_example(text_a, text_b)
    feature = convert_single_example(example, max_seq_len, tokenizer)

    input_ids = torch.tensor(feature.input_ids, dtype=torch.long).unsqueeze(0)
    segment_ids = torch.tensor(feature.segment_ids,
                               dtype=torch.long).unsqueeze(0)
    input_mask = torch.tensor(feature.input_mask,
                              dtype=torch.long).unsqueeze(0)

    ort_inputs = {
        'input_ids': to_numpy(input_ids),
        'segment_ids': to_numpy(segment_ids),
        'input_mask': to_numpy(input_mask)
    }
    ort_outputs_bert = bert.run(None, ort_inputs)
    ort_outputs_nezha = nezha.run(None, ort_inputs)
    ort_logits_bert = torch.from_numpy(ort_outputs_bert[0])
    ort_logits_nezha = torch.from_numpy(ort_outputs_nezha[0])

    res = torch.mean(torch.stack([ort_logits_bert, ort_logits_nezha]), 0)
    prob = res.sigmoid()[:, 1].tolist()[0]

    return prob
Example #4
0
def infer(model, query_A, query_B):

    text_a, text_b = query_A, query_B
    example = processor._create_single_example(text_a, text_b)
    feature = convert_single_example(example, max_seq_len, tokenizer)

    input_ids = torch.tensor(feature.input_ids,
                             dtype=torch.long).unsqueeze(0).to(config.device)
    input_mask = torch.tensor(feature.input_mask,
                              dtype=torch.long).unsqueeze(0).to(config.device)
    segment_ids = torch.tensor(feature.segment_ids,
                               dtype=torch.long).unsqueeze(0).to(config.device)

    logits = model(input_ids, segment_ids, input_mask).detach()
    prob = logits.sigmoid()[:, 1].tolist()  #[0.123]

    return prob[0]
def infer(model, query_A, query_B):

    text_a, text_b = query_A, query_B
    example = processor._create_single_example(text_a, text_b)
    feature = convert_single_example(example, max_seq_len, tokenizer)

    input_ids = torch.tensor(feature.input_ids, dtype=torch.long).unsqueeze(0)
    segment_ids = torch.tensor(feature.segment_ids, dtype=torch.long).unsqueeze(0)
    input_mask = torch.tensor(feature.input_mask, dtype=torch.long).unsqueeze(0)

    ort_inputs = {
        'input_ids': to_numpy(input_ids),
        'segment_ids': to_numpy(segment_ids),
        'input_mask': to_numpy(input_mask)
    }
    ort_outputs = model.run(None, ort_inputs)
    ort_logits = torch.from_numpy(ort_outputs[0])
    prob = ort_logits.sigmoid()[:, 1].tolist()[0] #[0.123]
    return prob
Example #6
0
    def run(self, record):
        text_a, text_b = record[0], record[1]
        example = self.processor._create_single_example(text_a, text_b)
        feature = convert_single_example(example, self.max_seq_length,
                                         self.tokenizer)

        input_ids = torch.tensor(feature.input_ids,
                                 dtype=torch.long).unsqueeze(0)
        input_mask = torch.tensor(feature.input_mask,
                                  dtype=torch.long).unsqueeze(0)
        segment_ids = torch.tensor(feature.segment_ids,
                                   dtype=torch.long).unsqueeze(0)

        ort_inputs = {
            'input_ids': input_ids,
            'input_mask': input_mask,
            'segment_ids': segment_ids
        }
        ort_outputs = self.session.run(None, ort_inputs)
        print(ort_outputs)
        print(type(ort_outputs))