def show_plot_by_company(company): """ Diplays time series plot containing the tweets about given company. """ plotter = DataPlotter() graph = plotter.get_graph(company=company) return render_template("plot.html", graph=graph)
def show_plot_by_area(area): """ Displays time series plot containing the tweets of given area. """ plotter = DataPlotter() if area.lower() == "global": graph = plotter.get_graph() else: graph = plotter.get_graph(area=area) return render_template("plot.html", graph=graph)
def plot_overall_rating(): # reviews = extractor.pre_process_reviews() reviews = ETLUtils.load_json_file('/Users/fpena/tmp/filtered_reviews.json') data_frame = DataFrame(reviews) print(data_frame) DataPlotter.plot_data(data_frame, 'overall_rating', plot_type='bar', title='Overall Rating') # DataPlotter.plot_data(data_frame, 'cleanliness_rating', plot_type='bar', title='Cleanliness Rating') # DataPlotter.plot_data(data_frame, 'location_rating', plot_type='bar', title='Location Rating') # DataPlotter.plot_data(data_frame, 'rooms_rating', plot_type='bar', title='Rooms Rating') # DataPlotter.plot_data(data_frame, 'service_rating', plot_type='bar', title='Service Rating') # DataPlotter.plot_data(data_frame, 'value_rating', plot_type='bar', title='Value Rating') plt.show()
def __init__(self, app, serial): super(Window, self).__init__() self.setWindowTitle('Tic Disorder Detection') self.main_layout = QVBoxLayout() self.window = QtGui.QWidget(self) self.button_layout = QVBoxLayout() self.window.setLayout(self.button_layout) self.gesture_layout = QHBoxLayout() self.gesture_container = QtGui.QWidget(self) self.gesture_container.setLayout(self.gesture_layout) self.data_plotters = [DataPlotter() for _ in range(4)] for plotter in self.data_plotters: self.gesture_layout.addWidget(plotter) self.serial_plot = SerialPlot(app, 127, serial) self.main_layout.addWidget(self.serial_plot) self.main_layout.addWidget(self.window) self.main_layout.addWidget(self.gesture_container) self.setLayout(self.main_layout) self.show()
def main(): parser = argparse.ArgumentParser() parser.add_argument('-s', '--select', action='store_true') parser.add_argument('-t', '--test', action='store_true') parser.add_argument('-c', '--count', action='store_true') parser.add_argument('-m', '--merge', '--combine', action='store_true') parser.add_argument('-e', '--extract', action='store_true') parser.add_argument('-d', '--debuginput', action='store_true') parser.add_argument('-r', '--review', action='store_true') parser.add_argument('--replace-debug', action='store_true') parser.add_argument('-p', '--plot-data', action='store_true') parser.add_argument('--base-data', action='store_true') parser.add_argument('--features', default='original') parser.add_argument('-f', '--homology-filter', action='store_true') parser.add_argument('-y', '--classify', action='store_true') parser.add_argument('--grid-search', action='store_true') parser.add_argument('--plot', action='store_true') parser.add_argument('--fit', action='store_true') parser.add_argument('--count-total-number-of-genes', action='store_true') args = parser.parse_args() if args.select: if args.test: selector = Selector("config/Test/selection_config.json") else: selector = Selector("config/selection_config.json") selector.select() selector.selected_to_folder() if args.count: if args.test: counter = Counter("config/Test/counter_config.json") else: counter = Counter("config/counter_config.json") counter.count_all_viruses() if args.merge: if args.test: combiner = Combiner("config/Test/combiner_config.json") else: combiner = Combiner("config/combiner_config.json") combiner.combine_all_viruses() if args.debuginput: debug_input_collector = DebugInfoCollector("config/debug_info_collector_config.json") if args.replace_debug: debug_input_collector.collect(True) else: debug_input_collector.collect() if args.review: import Review Review.run() if args.plot_data: data_plotter = DataPlotter("config/data_plotter_config.json") data_plotter.plot() if args.base_data: base_data = BaseData("config/base_data_config.json") base_data.create_data() if args.homology_filter: homology_filter = HomologyFilter('config/homology_filter.json') homology_filter.filter() if args.extract: feature_extractor = FeatureExtraction("config/feature_extraction_config.json") feature_extractor.extract(args.features) if args.count_total_number_of_genes: combiner = Combiner("config/combiner_config.json") combiner.print_number_of_genes() if args.classify: if args.grid_search: MLgrid = [ { "booster": ["gblinear"], # "lambda": [0, 0.0001, 0.001], "lambda": [0], # "updater": ["shotgun", "coord_descent"], "updater": ["coord_descent", "shotgun"], # "feature_selector": ["cyclic", "shuffle", "random", "greedy", "thrifty"] "feature_selector": ["shuffle"] } # { # "booster": ["gbtree"], # # "max_depth": range(3, 10, 2), # # "min_child_weight": range(1, 6, 2) # } ] _1vsAgrid = [ { "estimator__booster": ["gblinear"], "estimator__lambda": [0.1], "estimator__updater": ["coord_descent"], "estimator__feature_selector": ["shuffle"] }, # { # "estimator__booster": ["gbtree"], # "estimator__max_depth": range(3, 10, 2), # "estimator__min_child_weight": range(1, 6, 2) # } ] RRgrid = [ { "estimator__booster": ["gblinear"], "estimator__lambda": [0.1], "estimator__updater": ["coord_descent"], "estimator__feature_selector": ["shuffle"] }, # { # "estimator__booster": ["gbtree"] # # "estimator__max_depth": range(3, 10, 2), # # "estimator__min_child_weight": range(1, 6, 2) # } ] classification = Classification('config/classification_config.json', args.features) classification.grid_search('ML', 'XGBoost', MLgrid, 200, 'no-pca') else: if args.fit: classification = Classification('config/classification_config.json', args.features) classification.fit_all() if args.plot: cp = ClassificationPlotter('config/classification_config.json', args.features) cp.plot_all()