Example #1
0
    # delete_previous_intermediate_computations()
    # if not evaluate_algorithm:
    #     delete_previous_intermediate_computations()
    # else:
    #     print("ATTENTION: old intermediate computations kept, pay attention if running with all_train")

    filename = "hybrid_different_rec_for_diff_intervals_150.csv"

    dataReader = RS_Data_Loader(all_train=not evaluate_algorithm)

    URM_train = dataReader.get_URM_train()
    URM_PageRank_train = dataReader.get_page_rank_URM()
    URM_validation = dataReader.get_URM_validation()
    URM_test = dataReader.get_URM_test()
    ICM = dataReader.get_ICM()
    UCM_tfidf = dataReader.get_tfidf_artists()
    # _ = dataReader.get_tfidf_album()

    # URM_train = dataReader.get_page_rank_URM()
    #
    # ITEMB
    # CB, ITEM
    # CF, USER
    # CF, P3ALPHA, RP3BETA, PURE
    # SVD
    recommender_list1 = [
        # Random,
        # TopPop,
        ItemKNNCBFRecommender,
        UserKNNCBRecommender,
Example #2
0
def run():
    evaluate_algorithm = False
    delete_old_computations = False
    slim_after_hybrid = False

    # delete_previous_intermediate_computations()
    # if not evaluate_algorithm:
    #     delete_previous_intermediate_computations()
    # else:
    #     print("ATTENTION: old intermediate computations kept, pay attention if running with all_train")
    # delete_previous_intermediate_computations()
    filename = "hybrid_ICB_ICF_UCF_SLIM_ELASTIC_local_08052.csv"

    dataReader = RS_Data_Loader(all_train=not evaluate_algorithm)

    URM_train = dataReader.get_URM_train()
    URM_PageRank_train = dataReader.get_page_rank_URM()
    URM_validation = dataReader.get_URM_validation()
    URM_test = dataReader.get_URM_test()
    ICM = dataReader.get_ICM()
    UCM_tfidf = dataReader.get_tfidf_artists()
    # _ = dataReader.get_tfidf_album()

    recommender_list1 = [
        # Random,
        # TopPop,
        ItemKNNCBFRecommender,
        # UserKNNCBRecommender,
        ItemKNNCFRecommender,
        UserKNNCFRecommender,
        # P3alphaRecommender,
        # RP3betaRecommender,
        # MatrixFactorization_BPR_Cython,
        # MatrixFactorization_FunkSVD_Cython,
        SLIM_BPR_Cython,
        # ItemKNNCFRecommenderFAKESLIM,
        # PureSVDRecommender,
        SLIMElasticNetRecommender
    ]

    # ITEM CB, ITEM CF, USER CF, RP3BETA, PURE SVD
    recommender_list2 = [
        # Random,
        # TopPop,
        ItemKNNCBFRecommender,
        # UserKNNCBRecommender,
        # ItemKNNCFPageRankRecommender,
        ItemKNNCFRecommender,
        UserKNNCFRecommender,
        # P3alphaRecommender,
        # RP3betaRecommender,
        # MatrixFactorization_BPR_Cython,
        # MatrixFactorization_FunkSVD_Cython,
        SLIM_BPR_Cython,
        SLIMElasticNetRecommender
        # PureSVDRecommender
    ]

    from Base.Evaluation.Evaluator import SequentialEvaluator

    evaluator = SequentialEvaluator(URM_test, URM_train, exclude_seen=True)

    output_root_path = "result_experiments/"

    # If directory does not exist, create
    if not os.path.exists(output_root_path):
        os.makedirs(output_root_path)

    logFile = open(output_root_path + "result_all_algorithms.txt", "a")

    try:
        recommender_class = HybridRecommender
        print("Algorithm: {}".format(recommender_class))

        '''
        Our optimal run
        '''
        recommender_list = recommender_list1  # + recommender_list2  # + recommender_list3

        onPop = False

        # On pop it used to choose if have dynamic weights for
        recommender = recommender_class(URM_train, ICM, recommender_list, URM_PageRank_train=URM_PageRank_train,
                                        dynamic=False, UCM_train=UCM_tfidf,
                                        URM_validation=URM_validation, onPop=onPop)

        lambda_i = 0.1
        lambda_j = 0.05
        old_similrity_matrix = None
        num_factors = 395
        l1_ratio = 1e-06

        # Variabili secondo intervallo
        alphaRP3_2 = 0.9223827655310622
        betaRP3_2 = 0.2213306613226453
        num_factors_2 = 391

        recommender.fit(**
                        {
                            "topK": [10, 33, 160, 761, 490],
                            "shrink": [8, 26, 2, -1, -1],
                            "pop": [280],
                            "weights": [0.33804686720093335, 1.3092081994688194, 0.642288869881126, 0.18883962446529368,
                                        1.9317211019160747],
                            "final_weights": [1, 1],
                            "force_compute_sim": False,  # not evaluate_algorithm,
                            "feature_weighting_index": 0,
                            "epochs": 150,
                            'lambda_i': [0.0], 'lambda_j': [1.0153577332223556e-08], 'SLIM_lr': [0.1],
                            'alphaP3': [0.4121720883248633],
                            'alphaRP3': [0.8582865731462926],
                            'betaRP': [0.2814208416833668],
                            'l1_ratio': 3.020408163265306e-06,
                            'alpha': 0.0014681984611695231,
                            'tfidf': [True],
                            "weights_to_dweights": -1,
                            "filter_top_pop_len": 0})

        print("TEST")

        print("Starting Evaluations...")
        # to indicate if plotting for lenght or for pop

        results_run, results_run_string, target_recommendations = evaluator.evaluateRecommender(recommender,
                                                                                                plot_stats=False,
                                                                                                onPop=onPop)

        print("Algorithm: {}, results: \n{}".format([rec.RECOMMENDER_NAME for rec in recommender.recommender_list],
                                                    results_run_string))
        logFile.write("Algorithm: {}, results: \n{} time: {}".format(
            [rec.RECOMMENDER_NAME for rec in recommender.recommender_list], results_run_string, time.time()))
        logFile.flush()

        if not evaluate_algorithm:
            target_playlist = dataReader.get_target_playlist()
            md.assign_recomendations_to_correct_playlist(target_playlist, target_recommendations)
            md.make_CSV_file(target_playlist, filename)
            print('File {} created!'.format(filename))


    except Exception as e:
        traceback.print_exc()
        logFile.write("Algorithm: {} - Exception: {}\n".format(recommender_class, str(e)))
        logFile.flush()
def run():
    evaluate_algorithm = True
    delete_old_computations = False
    slim_after_hybrid = False

    # delete_previous_intermediate_computations()
    # if not evaluate_algorithm:
    #     delete_previous_intermediate_computations()
    # else:
    #     print("ATTENTION: old intermediate computations kept, pay attention if running with all_train")
    # delete_previous_intermediate_computations()
    filename = "hybrid_ICB_ICF_UCF_IALS_SLIM_ELASTIC_local_081962.csv"

    dataReader = RS_Data_Loader(all_train=not evaluate_algorithm)

    URM_train = dataReader.get_URM_train()
    URM_PageRank_train = dataReader.get_page_rank_URM()
    URM_validation = dataReader.get_URM_validation()
    URM_test = dataReader.get_URM_test()
    ICM = dataReader.get_ICM()
    UCM_tfidf = dataReader.get_tfidf_artists()
    # _ = dataReader.get_tfidf_album()

    recommender_list1 = [
        # Random,
        # TopPop,
        ItemKNNCBFRecommender,
        # UserKNNCBRecommender,
        ItemKNNCFRecommender,
        UserKNNCFRecommender,
        # P3alphaRecommender,
        # RP3betaRecommender,
        # MatrixFactorization_BPR_Cython,
        # MatrixFactorization_FunkSVD_Cython,
        IALS_numpy,
        SLIM_BPR_Cython,
        # ItemKNNCFRecommenderFAKESLIM,
        # PureSVDRecommender,
        SLIMElasticNetRecommender
    ]

    from Base.Evaluation.Evaluator import SequentialEvaluator

    evaluator = SequentialEvaluator(URM_test, URM_train, exclude_seen=True)

    output_root_path = "result_experiments/"

    # If directory does not exist, create
    if not os.path.exists(output_root_path):
        os.makedirs(output_root_path)

    logFile = open(output_root_path + "result_all_algorithms.txt", "a")

    try:
        recommender_class = HybridRecommender
        print("Algorithm: {}".format(recommender_class))
        '''
        Our optimal run
        '''
        recommender_list = recommender_list1  # + recommender_list2  # + recommender_list3

        onPop = False

        # On pop it used to choose if have dynamic weights for
        recommender = recommender_class(URM_train,
                                        ICM,
                                        recommender_list,
                                        URM_PageRank_train=URM_PageRank_train,
                                        dynamic=False,
                                        UCM_train=UCM_tfidf,
                                        URM_validation=URM_validation,
                                        onPop=onPop)

        recommender.fit(
            **{
                "topK": [10, 181, 82, -1, 761, 490],
                "shrink": [8, 0, 3, -1, -1, -1],
                "pop": [280],
                "weights": [
                    0.47412263345597117, 1.3864620551711606,
                    0.6224999770898935, 1.5498327677561246, 0.1993692779443738,
                    2.113324096784624
                ],
                "final_weights": [1, 1],
                "force_compute_sim":
                False,  # not evaluate_algorithm,
                "feature_weighting_index":
                0,
                "epochs":
                150,
                'lambda_i': [0.0],
                'lambda_j': [1.0153577332223556e-08],
                'SLIM_lr': [0.1],
                'alphaP3': [0.4121720883248633],
                'alphaRP3': [0.8582865731462926],
                'betaRP': [0.2814208416833668],
                'l1_ratio':
                3.020408163265306e-06,
                'alpha':
                0.0014681984611695231,
                'tfidf': [True],
                "weights_to_dweights":
                -1,
                "IALS_num_factors":
                290,
                "IALS_reg":
                0.001,
                "IALS_iters":
                6,
                "IALS_scaling":
                'log',
                "IALS_alpha":
                40,
                "filter_top_pop_len":
                0
            })

        print("TEST")

        print("Starting Evaluations...")
        # to indicate if plotting for lenght or for pop

        results_run, results_run_string, target_recommendations = evaluator.evaluateRecommender(
            recommender, plot_stats=False, onPop=onPop)

        print("Algorithm: {}, results: \n{}".format(
            [rec.RECOMMENDER_NAME for rec in recommender.recommender_list],
            results_run_string))
        logFile.write("Algorithm: {}, results: \n{} time: {}".format(
            [rec.RECOMMENDER_NAME for rec in recommender.recommender_list],
            results_run_string, time.time()))
        logFile.flush()

        if not evaluate_algorithm:
            target_playlist = dataReader.get_target_playlist()
            md.assign_recomendations_to_correct_playlist(
                target_playlist, target_recommendations)
            md.make_CSV_file(target_playlist, filename)
            print('File {} created!'.format(filename))

    except Exception as e:
        traceback.print_exc()
        logFile.write("Algorithm: {} - Exception: {}\n".format(
            recommender_class, str(e)))
        logFile.flush()
def run():
    evaluate_algorithm = True
    delete_old_computations = False
    slim_after_hybrid = False

    # delete_previous_intermediate_computations()
    # if not evaluate_algorithm:
    #     delete_previous_intermediate_computations()
    # else:
    #     print("ATTENTION: old intermediate computations kept, pay attention if running with all_train")
    # delete_previous_intermediate_computations()
    filename = "hybrid_ICB_ICF_UCF_SLIM_ELASTIC_local_08052.csv"

    dataReader = RS_Data_Loader(all_train=not evaluate_algorithm)

    URM_train = dataReader.get_URM_train()
    URM_PageRank_train = dataReader.get_page_rank_URM()
    URM_validation = dataReader.get_URM_validation()
    URM_test = dataReader.get_URM_test()
    ICM = dataReader.get_ICM()
    UCM_tfidf = dataReader.get_tfidf_artists()
    # _ = dataReader.get_tfidf_album()

    recommender_list1 = [
        # Random,
        # TopPop,
        ItemKNNCBFRecommender,
        # UserKNNCBRecommender,
        ItemKNNCFRecommender,
        UserKNNCFRecommender,
        # P3alphaRecommender,
        # RP3betaRecommender,
        # MatrixFactorization_BPR_Cython,
        # MatrixFactorization_FunkSVD_Cython,
        SLIM_BPR_Cython,
        # ItemKNNCFRecommenderFAKESLIM,
        # PureSVDRecommender,
        SLIMElasticNetRecommender
    ]

    # ITEM CB, ITEM CF, USER CF, RP3BETA, PURE SVD
    recommender_list2 = [
        # Random,
        # TopPop,
        ItemKNNCBFRecommender,
        # UserKNNCBRecommender,
        ItemKNNCFRecommender,
        UserKNNCFRecommender,
        # P3alphaRecommender,
        # RP3betaRecommender,
        # MatrixFactorization_BPR_Cython,
        # MatrixFactorization_FunkSVD_Cython,
        SLIM_BPR_Cython,
        # ItemKNNCFRecommenderFAKESLIM,
        # PureSVDRecommender,
        SLIMElasticNetRecommender
    ]

    from Base.Evaluation.Evaluator import SequentialEvaluator

    evaluator = SequentialEvaluator(URM_test, URM_train, exclude_seen=True)

    output_root_path = "result_experiments/"

    # If directory does not exist, create
    if not os.path.exists(output_root_path):
        os.makedirs(output_root_path)

    logFile = open(output_root_path + "result_all_algorithms.txt", "a")

    try:
        recommender_class = HybridRecommender
        print("Algorithm: {}".format(recommender_class))

        '''
        Our optimal run
        '''
        recommender_list = recommender_list1 + recommender_list2  # + recommender_list3

        d_weights = [
            [0.5469789514168496, 1.5598358421050373, 1.1505851198615593, 0.2540023047558251, 0.9403502151872645] + [
                0] * len(recommender_list2),
            [0] * len(recommender_list1) + [0.5205017325111618, 1.6831295912149837, 1.6560707664775454,
                                            0.3144197724407203, 1.9912784665282535]
        ]

        onPop = False

        # On pop it used to choose if have dynamic weights for
        recommender = recommender_class(URM_train, ICM, recommender_list, URM_PageRank_train=URM_PageRank_train,
                                        dynamic=True, UCM_train=UCM_tfidf, d_weights=d_weights,
                                        URM_validation=URM_validation, onPop=onPop)

        recommender.fit(**
                        {
                            "topK": [10, 33, 160, 761, 490] + [10, 33, 160, 761, 490],
                            "shrink": [8, 26, 2, -1, -1] + [8, 26, 2, -1, -1],
                            "pop": [30],
                            "weights": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
                            "final_weights": [1, 1],
                            "force_compute_sim": False,  # not evaluate_algorithm,
                            "feature_weighting_index": [0, 0],
                            "epochs": 150,
                            'lambda_i': [0.0, 0.0], 'lambda_j': [1.0153577332223556e-08, 1.0153577332223556e-08],
                            'SLIM_lr': [0.1, 0.1],
                            'alphaP3': [0.4121720883248633],
                            'alphaRP3': [0.8582865731462926],
                            'betaRP': [0.2814208416833668],
                            'l1_ratio': [3.020408163265306e-06, 3.020408163265306e-06],
                            'alpha': [0.0014681984611695231, 0.0014681984611695231],
                            'tfidf': [True, True],
                            "weights_to_dweights": -1,
                            "filter_top_pop_len": 0})

        print("TEST")

        print("Starting Evaluations...")
        # to indicate if plotting for lenght or for pop

        results_run, results_run_string, target_recommendations = evaluator.evaluateRecommender(recommender,
                                                                                                plot_stats=True,
                                                                                                onPop=onPop)

        print("Algorithm: {}, results: \n{}".format([rec.RECOMMENDER_NAME for rec in recommender.recommender_list],
                                                    results_run_string))
        logFile.write("Algorithm: {}, results: \n{} time: {} \n".format(
            [rec.RECOMMENDER_NAME for rec in recommender.recommender_list], results_run_string, time.time()))
        logFile.flush()

        if not evaluate_algorithm:
            target_playlist = dataReader.get_target_playlist()
            md.assign_recomendations_to_correct_playlist(target_playlist, target_recommendations)
            md.make_CSV_file(target_playlist, filename)
            print('File {} created!'.format(filename))


    except Exception as e:
        traceback.print_exc()
        logFile.write("Algorithm: {} - Exception: {}\n".format(recommender_class, str(e)))
        logFile.flush()