def frameMABO(dname, redo=False): d = GetDataset(dname) dirname = os.path.join( os.path.dirname(__file__), '../results/ACT-detector/', dname) eval_file = os.path.join(dirname, "frameMABO.pkl") if os.path.isfile(eval_file) and not redo: with open(eval_file, 'rb') as fid: BO = pickle.load(fid) else: vlist = d.test_vlist() BO = {l: [] for l in d.labels} # best overlap for v in vlist: gt = d.gttubes(v) h, w = d.resolution(v) # load per-frame detections vdets = {i: np.empty((0,4), dtype=np.float32) for i in range(1, 1+d.nframes(v))} # load results for each chunk for i in xrange(1, 1 + d.nframes(v) - K + 1): resname = os.path.join(dirname, d.frame_format(v,i) + '.pkl') if not os.path.isfile(resname): print("ERROR: Missing extracted tubelets " + resname) sys.exit() with open(resname, 'rb') as fid: dets, _ = pickle.load(fid) for k in xrange(K): vdets[i+k] = np.concatenate((vdets[i + k], dets[:, 2+4*k:6+4*k]), axis=0) # for each frame for i in xrange(1, 1 + d.nframes(v)): for ilabel in gt: label = d.labels[ilabel] for t in gt[ilabel]: # the gt tube does not cover frame i if not i in t[:,0]: continue gtbox = t[t[:,0] == i, 1:5] # box of gt tube at frame i if vdets[i].size == 0: # we missed it BO[label].append(0) continue ious = iou2d(vdets[i], gtbox) BO[label].append( np.max(ious) ) # save file with open(eval_file, 'wb') as fid: pickle.dump( BO, fid) # print MABO results ABO = {la: 100 * np.mean(np.array(BO[la])) for la in d.labels} # average best overlap for la in d.labels: print("{:20s} {:6.2f}".format(la, ABO[la])) print("{:20s} {:6.2f}".format("MABO", np.mean(np.array(ABO.values()))))
def load_frame_detections(d, vlist, dirname, nms): if isinstance(d, str): d = GetDataset(d) alldets = [] # list of numpy array with <video_index> <frame_index> <ilabel> <score> <x1> <y1> <x2> <y2> for iv, v in enumerate(vlist): h,w = d.resolution(v) # aggregate the results for each frame vdets = {i: np.empty((0,6), dtype=np.float32) for i in range(1, 1 + d.nframes(v))} # x1, y1, x2, y2, score, ilabel # load results for each starting frame for i in xrange(1, 1 + d.nframes(v) - K + 1): resname = os.path.join(dirname, d.frame_format(v,i) + '.pkl') if not os.path.isfile(resname): print("ERROR: Missing extracted tubelets "+resname) sys.exit() with open(resname, 'rb') as fid: dets, _ = pickle.load(fid) if dets.size == 0: continue for k in xrange(K): vdets[i+k] = np.concatenate( (vdets[i+k],dets[:,np.array([2+4*k,3+4*k,4+4*k,5+4*k,1,0])] ), axis=0) # Perform NMS in each frame for i in vdets: idx = np.empty((0,), dtype=np.int32) for ilabel in xrange(d.nlabels): a = np.where(vdets[i][:,5] == ilabel)[0] if a.size == 0: continue idx = np.concatenate((idx, a[nms2d(vdets[i][vdets[i][:, 5] == ilabel, :5], nms)]), axis=0) if idx.size == 0: continue alldets.append(np.concatenate((iv * np.ones((idx.size, 1), dtype=np.float32), i * np.ones((idx.size, 1), dtype=np.float32), vdets[i][idx, :][:, np.array([5, 4, 0, 1, 2, 3], dtype=np.int32)]), axis=1)) return np.concatenate(alldets, axis=0)
def BuildTubes(dname, redo=False): d = GetDataset(dname) dirname = os.path.join(os.path.dirname(__file__), '../results/ACT-detector/', dname) vlist = d.test_vlist() for iv, v in enumerate(vlist): print("Processing video {:d}/{:d}: {:s}".format(iv + 1, len(vlist), v)) outfile = os.path.join(dirname, v + "_tubes.pkl") if os.path.isfile(outfile) and not redo: continue RES = {} nframes = d.nframes(v) # load detected tubelets VDets = {} for startframe in range(1, nframes + 2 - K): resname = os.path.join(dirname, d.frame_format(v, startframe) + '.pkl') if not os.path.isfile(resname): print("ERROR: Missing extracted tubelets " + resname) sys.exit() with open(resname, 'rb') as fid: _, VDets[startframe] = pickle.load(fid) for ilabel in range(d.nlabels): FINISHED_TUBES = [] CURRENT_TUBES = [] # tubes is a list of tuple (frame, lstubelets) def tubescore(tt): return np.mean(np.array([tt[i][1][-1] for i in range(len(tt))])) for frame in range(1, d.nframes(v) + 2 - K): # load boxes of the new frame and do nms while keeping Nkeep highest scored ltubelets = VDets[ frame][:, range(4 * K) + [4 * K + 1 + ilabel ]] # Nx(4K+1) with (x1 y1 x2 y2)*K ilabel-score idx = nms_tubelets(ltubelets, 0.3, top_k=10) ltubelets = ltubelets[idx, :] # just start new tubes if frame == 1: for i in range(ltubelets.shape[0]): CURRENT_TUBES.append([(1, ltubelets[i, :])]) continue # sort current tubes according to average score avgscore = [tubescore(t) for t in CURRENT_TUBES] argsort = np.argsort(-np.array(avgscore)) CURRENT_TUBES = [CURRENT_TUBES[i] for i in argsort] # loop over tubes finished = [] for it, t in enumerate(CURRENT_TUBES): # compute ious between the last box of t and ltubelets last_frame, last_tubelet = t[-1] ious = [] offset = frame - last_frame if offset < K: nov = K - offset ious = sum([ iou2d( ltubelets[:, 4 * iov:4 * iov + 4], last_tubelet[4 * (iov + offset):4 * (iov + offset + 1)]) for iov in range(nov) ]) / float(nov) else: ious = iou2d(ltubelets[:, :4], last_tubelet[4 * K - 4:4 * K]) valid = np.where(ious >= 0.2)[0] if valid.size > 0: # take the one with maximum score idx = valid[np.argmax(ltubelets[valid, -1])] CURRENT_TUBES[it].append((frame, ltubelets[idx, :])) ltubelets = np.delete(ltubelets, idx, axis=0) else: # skip if offset >= 5: finished.append(it) # finished tubes that are done for it in finished[:: -1]: # process in reverse order to delete them with the right index FINISHED_TUBES.append(CURRENT_TUBES[it][:]) del CURRENT_TUBES[it] # start new tubes for i in range(ltubelets.shape[0]): CURRENT_TUBES.append([(frame, ltubelets[i, :])]) # all tubes are not finished FINISHED_TUBES += CURRENT_TUBES # build real tubes output = [] for t in FINISHED_TUBES: score = tubescore(t) # just start new tubes if score < 0.01: continue beginframe = t[0][0] endframe = t[-1][0] + K - 1 length = endframe + 1 - beginframe # delete tubes with short duraton if length < 15: continue # build final tubes by average the tubelets out = np.zeros((length, 6), dtype=np.float32) out[:, 0] = np.arange(beginframe, endframe + 1) n_per_frame = np.zeros((length, 1), dtype=np.int32) for i in range(len(t)): frame, box = t[i] for k in range(K): out[frame - beginframe + k, 1:5] += box[4 * k:4 * k + 4] out[frame - beginframe + k, -1] += box[-1] n_per_frame[frame - beginframe + k, 0] += 1 out[:, 1:] /= n_per_frame output.append((out, score)) RES[ilabel] = output with open(outfile, 'wb') as fid: pickle.dump(RES, fid)
def frameCLASSIF(dname, redo=False): d = GetDataset(dname) dirname = os.path.join(os.path.dirname(__file__), '../results/ACT-detector/', dname) eval_file = os.path.join(dirname, "frameCLASSIF.pkl") if os.path.isfile(eval_file) and not redo: with open(eval_file, 'rb') as fid: CLASSIF = pickle.load(fid) else: vlist = d.test_vlist() CORRECT = [0 for ilabel in range(d.nlabels)] TOTAL = [0 for ilabel in range(d.nlabels)] for v in vlist: nframes = d.nframes(v) # load all tubelets VDets = {} for startframe in range(1, nframes + 2 - K): resname = os.path.join(dirname, d.frame_format(v, startframe) + '.pkl') if not os.path.isfile(resname): print("ERROR: Missing extracted tubelets " + resname) sys.exit() with open(resname, 'rb') as fid: _, VDets[startframe] = pickle.load(fid) # iterate over ground-truth tubes = d.gttubes(v) for ilabel in tubes: for g in tubes[ilabel]: for i in range(g.shape[0]): frame = int(g[i, 0]) # just in case a tube is longer than the video if frame > nframes: continue gtbox = g[i, 1:5] scores = np.zeros((d.nlabels, ), dtype=np.float32) # average the score over the 6 frames for sf in range(max(1, frame - K + 1), min(nframes - K + 1, frame) + 1): overlaps = iou2d( VDets[sf][:, 4 * (frame - sf):4 * (frame - sf) + 4], gtbox) scores += np.sum(VDets[sf][overlaps >= 0.7, 4 * K + 1:], axis=0) # check classif if np.argmax(scores) == ilabel: CORRECT[ilabel] += 1 TOTAL[ilabel] += 1 CLASSIF = [ float(CORRECT[ilabel]) / float(TOTAL[ilabel]) for ilabel in range(d.nlabels) ] with open(eval_file, 'wb') as fid: pickle.dump(CLASSIF, fid) # print classif results for il, la in enumerate(d.labels): print("{:20s} {:6.2f}".format(la, 100 * CLASSIF[il])) print("{:20s} {:6.2f}".format("CLASSIF", 100 * np.mean(np.array(CLASSIF))))
def frameMABO(dname, redo=False): d = GetDataset(dname) dirname = os.path.join(os.path.dirname(__file__), '../results/ACT-detector/', dname) eval_file = os.path.join(dirname, "frameMABO.pkl") if os.path.isfile(eval_file) and not redo: with open(eval_file, 'rb') as fid: BO = pickle.load(fid) else: vlist = d.test_vlist() BO = {l: [] for l in d.labels} # best overlap for v in vlist: gt = d.gttubes(v) h, w = d.resolution(v) # load per-frame detections vdets = { i: np.empty((0, 4), dtype=np.float32) for i in range(1, 1 + d.nframes(v)) } # load results for each chunk for i in range(1, 1 + d.nframes(v) - K + 1): resname = os.path.join(dirname, d.frame_format(v, i) + '.pkl') if not os.path.isfile(resname): print("ERROR: Missing extracted tubelets " + resname) sys.exit() with open(resname, 'rb') as fid: dets, _ = pickle.load(fid) for k in range(K): vdets[i + k] = np.concatenate( (vdets[i + k], dets[:, 2 + 4 * k:6 + 4 * k]), axis=0) # for each frame for i in range(1, 1 + d.nframes(v)): for ilabel in gt: label = d.labels[ilabel] for t in gt[ilabel]: # the gt tube does not cover frame i if not i in t[:, 0]: continue gtbox = t[t[:, 0] == i, 1:5] # box of gt tube at frame i if vdets[i].size == 0: # we missed it BO[label].append(0) continue ious = iou2d(vdets[i], gtbox) BO[label].append(np.max(ious)) # save file with open(eval_file, 'wb') as fid: pickle.dump(BO, fid) # print MABO results ABO = {la: 100 * np.mean(np.array(BO[la])) for la in d.labels} # average best overlap for la in d.labels: print("{:20s} {:6.2f}".format(la, ABO[la])) print("{:20s} {:6.2f}".format("MABO", np.mean(np.array(ABO.values()))))
def extract_tubelets(dname, gpu=-1, redo=False): """Extract the tubelets for a given dataset args: - dname: dataset name (example: 'JHMDB') - gpu (default -1): use gpu given in argument, or use cpu if -1 - redo: wheter or not to recompute already computed files save a pickle file for each frame the file contains a tuple (dets, dets_all) - dets is a numpy array with 2+4*K columns containing the tubelets starting at this frame after per-class nms at 0.45 and thresholding the scores at 0.01 the columns are <label> <score> and then <x1> <y1> <x2> <y2> for each of the frame in the tubelet - dets_all contains the tubelets obtained after a global nms at 0.7 and thresholding the scores at 0.01 it is a numpy arrray with 4*K + L + 1 containing the coordinates of the tubelets and the scores for all labels note: this version is inefficient: it is better to estimate the per-frame features once """ d = GetDataset(dname) if gpu >= 0: caffe.set_mode_gpu() caffe.set_device(gpu) model_dir = os.path.join(os.path.dirname(__file__), '../models/ACT-detector/', dname) output_dir = os.path.join(os.path.dirname(__file__), '../results/ACT-detector/', dname) # load the RGB network rgb_proto = os.path.join(model_dir, "deploy_RGB.prototxt") rgb_model = os.path.join(model_dir, "RGB.caffemodel") net_rgb = caffe.Net(rgb_proto, caffe.TEST, weights=rgb_model) # load the FLOW5 network flo_proto = os.path.join(model_dir, "deploy_FLOW5.prototxt") flo_model = os.path.join(model_dir, "FLOW5.caffemodel") net_flo = caffe.Net(flo_proto, caffe.TEST, weights=flo_model) vlist = d.test_vlist() for iv, v in enumerate(vlist): print("Processing video {:d}/{:d}: {:s}".format(iv + 1, len(vlist), v)) h, w = d.resolution(v) # network output is normalized between 0,1 ; so we will multiply it by the following array resolution_array = np.array([w, h, w, h] * K, dtype=np.float32) # now process each frame for i in range(1, 1 + d.nframes(v) - K + 1): outfile = os.path.join(output_dir, d.frame_format(v, i) + ".pkl") # skip if already computed if os.path.isfile(outfile) and not redo: continue # read the frames for the forward kwargs_rgb = {} kwargs_flo = {} for j in range(K): im = cv2.imread(d.imfile(v, i + j)) if im is None: print("Image {:s} does not exist".format(d.imfile( v, i + j))) return imscale = cv2.resize(im, (IMGSIZE, IMGSIZE), interpolation=cv2.INTER_LINEAR) kwargs_rgb['data_stream' + str(j)] = np.transpose( imscale - MEAN, (2, 0, 1))[None, :, :, :] imf = [ cv2.imread(d.flowfile(v, min(d.nframes(v), i + j + iflow))) for iflow in range(NFLOWS) ] if np.any(imf) is None: print("Flow image {:s} does not exist".format( d.flowfile(v, i + j))) return imscalef = [ cv2.resize(im, (IMGSIZE, IMGSIZE), interpolation=cv2.INTER_LINEAR) for im in imf ] timscale = [ np.transpose(im - MEAN, (2, 0, 1))[None, :, :, :] for im in imscalef ] kwargs_flo['data_stream' + str(j) + 'flow'] = np.concatenate( timscale, axis=1) # compute rgb and flow scores # two forward passes: one for the rgb and one for the flow net_rgb.forward( end="mbox_conf_flatten", **kwargs_rgb) # forward of rgb with confidence and regression net_flo.forward( end="mbox_conf_flatten", ** kwargs_flo) # forward of flow5 with confidence and regression # compute late fusion of rgb and flow scores (keep regression from rgb) # use net_rgb for standard detections, net_flo for having all boxes scores = 0.5 * (net_rgb.blobs['mbox_conf_flatten'].data + net_flo.blobs['mbox_conf_flatten'].data) net_rgb.blobs['mbox_conf_flatten'].data[...] = scores net_flo.blobs['mbox_conf_flatten'].data[...] = scores net_flo.blobs['mbox_loc'].data[ ...] = net_rgb.blobs['mbox_loc'].data # two forward passes, only for the last layer # dets is the detections after per-class NMS and thresholding (stardard) # dets_all contains all the scores and regressions for all tubelets dets = net_rgb.forward( start='detection_out')['detection_out'][0, 0, :, 1:] dets_all = net_flo.forward( start='detection_out_full')['detection_out_full'][0, 0, :, 1:] # parse detections with per-class NMS if dets.shape[0] == 1 and np.all(dets == -1): dets = np.empty((0, dets.shape[1]), dtype=np.float32) dets[:, 2:] *= resolution_array # network output was normalized in [0..1] dets[:, 0] -= 1 # label 0 was background, come back to label in [0..nlabels-1] dets[:, 2::2] = np.maximum(0, np.minimum(w, dets[:, 2::2])) dets[:, 3::2] = np.maximum(0, np.minimum(h, dets[:, 3::2])) # parse detections with global NMS at 0.7 (top 300) # coordinates were normalized in [0..1] dets_all[:, 0:4 * K] *= resolution_array dets_all[:, 0:4 * K:2] = np.maximum( 0, np.minimum(w, dets_all[:, 0:4 * K:2])) dets_all[:, 1:4 * K:2] = np.maximum( 0, np.minimum(h, dets_all[:, 1:4 * K:2])) idx = nms_tubelets( np.concatenate( (dets_all[:, :4 * K], np.max(dets_all[:, 4 * K + 1:], axis=1)[:, None]), axis=1), 0.7, 300) dets_all = dets_all[idx, :] # save file if not os.path.isdir(os.path.dirname(outfile)): os.system('mkdir -p ' + os.path.dirname(outfile)) with open(outfile, 'wb') as fid: pickle.dump((dets, dets_all), fid)
def load_frame_detections(d, vlist, dirname, nms): if isinstance(d, str): d = GetDataset(d) alldets = [ ] # list of numpy array with <video_index> <frame_index> <ilabel> <score> <x1> <y1> <x2> <y2> for iv, v in enumerate(vlist): h, w = d.resolution(v) # aggregate the results for each frame vdets = { i: np.empty((0, 6), dtype=np.float32) for i in range(1, 1 + d.nframes(v)) } # x1, y1, x2, y2, score, ilabel # load results for each starting frame for i in range(1, 1 + d.nframes(v) - K + 1): resname = os.path.join(dirname, d.frame_format(v, i) + '.pkl') if not os.path.isfile(resname): print("ERROR: Missing extracted tubelets " + resname) sys.exit() with open(resname, 'rb') as fid: dets, _ = pickle.load(fid) if dets.size == 0: continue for k in range(K): vdets[i + k] = np.concatenate( (vdets[i + k], dets[:, np.array([ 2 + 4 * k, 3 + 4 * k, 4 + 4 * k, 5 + 4 * k, 1, 0 ])]), axis=0) # Perform NMS in each frame for i in vdets: idx = np.empty((0, ), dtype=np.int32) for ilabel in range(d.nlabels): a = np.where(vdets[i][:, 5] == ilabel)[0] if a.size == 0: continue idx = np.concatenate((idx, a[nms2d( vdets[i][vdets[i][:, 5] == ilabel, :5], nms)]), axis=0) if idx.size == 0: continue alldets.append( np.concatenate( (iv * np.ones( (idx.size, 1), dtype=np.float32), i * np.ones( (idx.size, 1), dtype=np.float32), vdets[i][idx, :] [:, np.array([5, 4, 0, 1, 2, 3], dtype=np.int32)]), axis=1)) return np.concatenate(alldets, axis=0)
def BuildTubes(dname, redo=False): d = GetDataset(dname) dirname = os.path.join( os.path.dirname(__file__), '../results/ACT-detector/', dname) vlist = d.test_vlist() for iv, v in enumerate(vlist): print("Processing video {:d}/{:d}: {:s}".format(iv + 1, len(vlist), v)) outfile = os.path.join(dirname, v + "_tubes.pkl") if os.path.isfile(outfile) and not redo: continue RES = {} nframes = d.nframes(v) # load detected tubelets VDets = {} for startframe in xrange(1, nframes + 2 - K): resname = os.path.join(dirname, d.frame_format(v, startframe) + '.pkl') if not os.path.isfile(resname): print("ERROR: Missing extracted tubelets " + resname) sys.exit() with open(resname, 'rb') as fid: _, VDets[startframe] = pickle.load(fid) for ilabel in xrange(d.nlabels): FINISHED_TUBES = [] CURRENT_TUBES = [] # tubes is a list of tuple (frame, lstubelets) def tubescore(tt): return np.mean(np.array([tt[i][1][-1] for i in xrange(len(tt))])) for frame in xrange(1, d.nframes(v) + 2 - K): # load boxes of the new frame and do nms while keeping Nkeep highest scored ltubelets = VDets[frame][:,range(4*K) + [4*K + 1 + ilabel]] # Nx(4K+1) with (x1 y1 x2 y2)*K ilabel-score idx = nms_tubelets(ltubelets, 0.3, top_k=10) ltubelets = ltubelets[idx,:] # just start new tubes if frame == 1: for i in xrange(ltubelets.shape[0]): CURRENT_TUBES.append( [(1,ltubelets[i,:])] ) continue # sort current tubes according to average score avgscore = [tubescore(t) for t in CURRENT_TUBES ] argsort = np.argsort(-np.array(avgscore)) CURRENT_TUBES = [CURRENT_TUBES[i] for i in argsort] # loop over tubes finished = [] for it, t in enumerate(CURRENT_TUBES): # compute ious between the last box of t and ltubelets last_frame, last_tubelet = t[-1] ious = [] offset = frame - last_frame if offset < K: nov = K - offset ious = sum([iou2d(ltubelets[:, 4*iov:4*iov+4], last_tubelet[4*(iov+offset):4*(iov+offset+1)]) for iov in xrange(nov)])/float(nov) else: ious = iou2d(ltubelets[:, :4], last_tubelet[4*K-4:4*K]) valid = np.where(ious >= 0.2)[0] if valid.size>0: # take the one with maximum score idx = valid[ np.argmax(ltubelets[valid, -1])] CURRENT_TUBES[it].append((frame, ltubelets[idx,:])) ltubelets = np.delete(ltubelets, idx, axis=0) else: # skip if offset>=5: finished.append(it) # finished tubes that are done for it in finished[::-1]: # process in reverse order to delete them with the right index FINISHED_TUBES.append( CURRENT_TUBES[it][:]) del CURRENT_TUBES[it] # start new tubes for i in xrange(ltubelets.shape[0]): CURRENT_TUBES.append([(frame,ltubelets[i,:])]) # all tubes are not finished FINISHED_TUBES += CURRENT_TUBES # build real tubes output = [] for t in FINISHED_TUBES: score = tubescore(t) # just start new tubes if score< 0.01: continue beginframe = t[0][0] endframe = t[-1][0]+K-1 length = endframe+1-beginframe # delete tubes with short duraton if length < 15: continue # build final tubes by average the tubelets out = np.zeros((length, 6), dtype=np.float32) out[:, 0] = np.arange(beginframe,endframe+1) n_per_frame = np.zeros((length, 1), dtype=np.int32) for i in xrange(len(t)): frame, box = t[i] for k in xrange(K): out[frame-beginframe+k, 1:5] += box[4*k:4*k+4] out[frame-beginframe+k, -1] += box[-1] n_per_frame[frame-beginframe+k ,0] += 1 out[:,1:] /= n_per_frame output.append((out, score)) RES[ilabel] = output with open(outfile, 'wb') as fid: pickle.dump(RES, fid)
def frameCLASSIF(dname, redo=False): d = GetDataset(dname) dirname = os.path.join(os.path.dirname(__file__), '../results/ACT-detector/', dname) eval_file = os.path.join(dirname, "frameCLASSIF.pkl") if os.path.isfile(eval_file) and not redo: with open(eval_file, 'rb') as fid: CLASSIF = pickle.load(fid) else: vlist = d.test_vlist() #print(vlist) CORRECT = [0 for ilabel in xrange(d.nlabels)] TOTAL = [0 for ilabel in xrange(d.nlabels)] for v in vlist: nframes = d.nframes(v) # load all tubelets VDets = {} for startframe in xrange(1, nframes + 2 - K): resname = os.path.join(dirname, d.frame_format(v, startframe) + '.pkl') if not os.path.isfile(resname): print("ERROR: Missing extracted tubelets " + resname) sys.exit() with open(resname, 'rb') as fid: _, VDets[startframe] = pickle.load(fid) # iterate over ground-truth tubes = d.gttubes(v) for ilabel in tubes: for g in tubes[ilabel]: for i in xrange(g.shape[0]): frame = int(g[i, 0]) # just in case a tube is longer than the video if frame > nframes: continue gtbox = g[i, 1:5] scores = np.zeros((d.nlabels,), dtype=np.float32) # average the score over the 6 frames for sf in xrange(max(1, frame - K + 1), min(nframes - K + 1, frame) + 1): overlaps = iou2d(VDets[sf][:, 4*(frame-sf):4*(frame-sf)+4], gtbox) scores += np.sum(VDets[sf][overlaps >= 0.7, 4*K + 1:],axis=0) # check classif if np.argmax(scores) == ilabel: CORRECT[ilabel] += 1 TOTAL[ilabel] += 1 print(TOTAL) print(CORRECT) CLASSIF = [float(CORRECT[ilabel]) / float(TOTAL[ilabel]) for ilabel in xrange(d.nlabels) if TOTAL[ilabel] != 0 ] with open(eval_file, 'wb') as fid: pickle.dump(CLASSIF, fid) # print classif results for il, la in enumerate(d.labels): print("{:20s} {:6.2f}".format(la, 100*CLASSIF[il])) print("{:20s} {:6.2f}".format("CLASSIF", 100*np.mean(np.array(CLASSIF))))
def extract_tubelets(dname, gpu=-1, redo=False): """Extract the tubelets for a given dataset args: - dname: dataset name (example: 'JHMDB') - gpu (default -1): use gpu given in argument, or use cpu if -1 - redo: wheter or not to recompute already computed files save a pickle file for each frame the file contains a tuple (dets, dets_all) - dets is a numpy array with 2+4*K columns containing the tubelets starting at this frame after per-class nms at 0.45 and thresholding the scores at 0.01 the columns are <label> <score> and then <x1> <y1> <x2> <y2> for each of the frame in the tubelet - dets_all contains the tubelets obtained after a global nms at 0.7 and thresholding the scores at 0.01 it is a numpy arrray with 4*K + L + 1 containing the coordinates of the tubelets and the scores for all labels note: this version is inefficient: it is better to estimate the per-frame features once """ d = GetDataset(dname) if gpu >= 0: caffe.set_mode_gpu() caffe.set_device(gpu) model_dir = os.path.join(os.path.dirname(__file__), '../models/ACT-detector/', dname) output_dir = os.path.join(os.path.dirname(__file__), '../results/ACT-detector/', dname) # load the RGB network rgb_proto = os.path.join(model_dir, "deploy_RGB.prototxt") rgb_model = os.path.join(model_dir, "../generated_AVA_iter_118662.caffemodel") net_rgb = caffe.Net(rgb_proto, caffe.TEST, weights=rgb_model) # load the FLOW5 network flo_proto = os.path.join(model_dir, "deploy_FLOW5.prototxt") flo_model = os.path.join(model_dir, "../generated_AVA_iter_59463.caffemodel") net_flo = caffe.Net(flo_proto, caffe.TEST, weights=flo_model) vlist = d.test_vlist() for iv, v in enumerate(vlist): print("Processing video {:d}/{:d}: {:s}".format( iv+1, len(vlist), v)) h, w = d.resolution(v) # network output is normalized between 0,1 ; so we will multiply it by the following array resolution_array = np.array([w,h,w,h]*K, dtype=np.float32) # now process each frame for i in xrange(1, 1 + d.nframes(v) - K + 1): outfile = os.path.join(output_dir, d.frame_format(v,i) + ".pkl") # skip if already computed if os.path.isfile(outfile) and not redo: continue # read the frames for the forward kwargs_rgb = {} kwargs_flo = {} for j in xrange(K): cap = cv2.VideoCapture(d.vidfile(v,0)) #print(frame) #print(int(cap.get(7))) cap.set(1,i + j - 1) im = cap.read()[1] cap.release() #im = cv2.imread(d.imfile(v, i + j)) if im is None: print "Image {:s} does not exist".format(d.imfile(v, i+j)) return imscale = cv2.resize(im, (IMGSIZE, IMGSIZE), interpolation=cv2.INTER_LINEAR) kwargs_rgb['data_stream' + str(j)] = np.transpose(imscale-MEAN, (2, 0, 1))[None, :, :, :] imf = [cv2.imread(d.flowfile(v.split(".")[0], min(d.nframes(v), i + j + iflow))) for iflow in xrange(NFLOWS)] if np.any(imf) is None: print "Flow image {:s} does not exist".format(d.flowfile(v, i+j)) return imscalef = [cv2.resize(im, (IMGSIZE, IMGSIZE), interpolation=cv2.INTER_LINEAR) for im in imf] timscale = [np.transpose(im-MEAN, (2, 0, 1))[None, :, :, :] for im in imscalef] kwargs_flo['data_stream' + str(j) + 'flow'] = np.concatenate(timscale, axis=1) # compute rgb and flow scores # two forward passes: one for the rgb and one for the flow net_rgb.forward(end="mbox_conf_flatten", **kwargs_rgb) # forward of rgb with confidence and regression net_flo.forward(end="mbox_conf_flatten", **kwargs_flo) # forward of flow5 with confidence and regression # compute late fusion of rgb and flow scores (keep regression from rgb) # use net_rgb for standard detections, net_flo for having all boxes scores = 0.5 * (net_rgb.blobs['mbox_conf_flatten'].data + net_flo.blobs['mbox_conf_flatten'].data) net_rgb.blobs['mbox_conf_flatten'].data[...] = scores net_flo.blobs['mbox_conf_flatten'].data[...] = scores net_flo.blobs['mbox_loc'].data[...] = net_rgb.blobs['mbox_loc'].data # two forward passes, only for the last layer # dets is the detections after per-class NMS and thresholding (stardard) # dets_all contains all the scores and regressions for all tubelets dets = net_rgb.forward(start='detection_out')['detection_out'][0, 0, :, 1:] dets_all = net_flo.forward(start='detection_out_full')['detection_out_full'][0, 0, :, 1:] # parse detections with per-class NMS if dets.shape[0] == 1 and np.all(dets == -1): dets = np.empty((0, dets.shape[1]), dtype=np.float32) dets[:, 2:] *= resolution_array # network output was normalized in [0..1] dets[:, 0] -= 1 # label 0 was background, come back to label in [0..nlabels-1] dets[:, 2::2] = np.maximum(0, np.minimum(w, dets[:, 2::2])) dets[:, 3::2] = np.maximum(0, np.minimum(h, dets[:, 3::2])) # parse detections with global NMS at 0.7 (top 300) # coordinates were normalized in [0..1] dets_all[:, 0:4*K] *= resolution_array dets_all[:, 0:4*K:2] = np.maximum(0, np.minimum(w, dets_all[:, 0:4*K:2])) dets_all[:, 1:4*K:2] = np.maximum(0, np.minimum(h, dets_all[:, 1:4*K:2])) idx = nms_tubelets(np.concatenate((dets_all[:, :4*K], np.max(dets_all[:, 4*K+1:], axis=1)[:, None]), axis=1), 0.7, 300) dets_all = dets_all[idx, :] # save file if not os.path.isdir(os.path.dirname(outfile)): os.system('mkdir -p ' + os.path.dirname(outfile)) with open(outfile, 'wb') as fid: pickle.dump((dets, dets_all), fid)