Example #1
0
 def readFromRootFile(self,filename,TupleMeanStd, weighter):
 
     # this function defines how to convert the root ntuple to the training format
     # options are not yet described here
     import numpy as np
     import ROOT
     fileTimeOut(filename,120) #give eos a minute to recover
     rfile = ROOT.TFile(filename)
     tree = rfile.Get("tree")
     self.nsamples=tree.GetEntries()
     
     
     # user code, example works with the example 2D images in root format generated by make_example_data
     from DeepJetCore.preprocessing import read2DArray
     print(filename)
     feature_array = read2DArray(filename,"tree","image2d",self.nsamples,32,32)
     
     reg_truth = read2DArray(filename,"tree","sigfrac2d",self.nsamples,32,32)
     bgfrac = 1 - reg_truth
     
     truth = np.concatenate([reg_truth, bgfrac, feature_array], axis=-1)
     
     #notremoves=weighter.createNotRemoveIndices(Tuple)
     
     # this removes parts of the dataset for weighting the events
     #feature_array = feature_array[notremoves > 0]
             
     # call this in the end
     
     self.nsamples=len(feature_array)
     
     self.x=[feature_array] # list of feature numpy arrays
     self.y=[truth] # list of target numpy arrays (truth)
     self.w=[] # list of weight arrays. One for each truth target, not used
Example #2
0
    def convertFromSourceFile(self, filename, weighterobjects, istraining):
        # This is the only really mandatory function (unless writeFromSourceFile is defined).
        # It defines the conversion rule from an input source file to the lists of training
        # arrays self.x, self.y, self.w
        #  self.x is a list of input feature arrays
        #  self.y is a list of truth arrays
        #  self.w is optional and can contain a weight array
        #         (needs to have same number of entries as truth array)
        #         If no weights are needed, this can be left completely empty
        #
        # The conversion should convert finally to numpy arrays. In the future,
        # also tensorflow tensors will be supported.
        #
        # In this example, differnt ways of reading files are deliberatly mixed
        #

        print('reading ' + filename)

        import ROOT
        fileTimeOut(filename, 120)  #give eos a minute to recover
        rfile = ROOT.TFile(filename)
        tree = rfile.Get("tree")
        nsamples = tree.GetEntries()

        # user code, example works with the example 2D images in root format generated by make_example_data
        from DeepJetCore.preprocessing import read2DArray

        feature_array = read2DArray(filename, "tree", "image2d", nsamples, 32,
                                    32)

        print('feature_array', feature_array.shape)

        import uproot

        urfile = uproot.open(filename)["tree"]
        truth = np.concatenate([
            np.expand_dims(urfile.array("isA"), axis=1),
            np.expand_dims(urfile.array("isB"), axis=1),
            np.expand_dims(urfile.array("isC"), axis=1)
        ],
                               axis=1)

        truth = truth.astype(dtype='float32',
                             order='C')  #important, float32 and C-type!

        self.nsamples = len(feature_array)

        #returns a list of feature arrays, a list of truth arrays and a list of weight arrays
        return [feature_array], [truth], []
Example #3
0
 def readFromRootFile(self,filename,TupleMeanStd, weighter):
 
     # this function defines how to convert the root ntuple to the training format
     # options are not yet described here
     import numpy as np
     import ROOT
     fileTimeOut(filename,120) #give eos a minute to recover
     rfile = ROOT.TFile(filename)
     tree = rfile.Get("tree")
     self.nsamples=tree.GetEntries()
     
     
     # user code, example works with the example 2D images in root format generated by make_example_data
     from DeepJetCore.preprocessing import read2DArray,readListArray
     print(filename)
     feature_image = read2DArray(filename,"tree","image2d",self.nsamples,24,24)
     
     npy_array = self.readTreeFromRootToTuple(filename)
     scale   = np.expand_dims(npy_array['scale'],axis=1)
     xcenter = np.expand_dims(npy_array['xcenter'],axis=1)
     ycenter = np.expand_dims(npy_array['ycenter'],axis=1)
     ptype   = np.expand_dims(npy_array['type'],axis=1)
     
     print('ycenter',ycenter.shape)
     
     add_features = np.concatenate([scale,xcenter,ycenter,ptype],axis=1)
     
     
     xcoords = numpy.expand_dims( numpy.array(list(npy_array['xcoords']),dtype='float32'), axis=2)
     ycoords = numpy.expand_dims( numpy.array(list(npy_array['ycoords']),dtype='float32'), axis=2)
     xcoords = numpy.reshape(xcoords, newshape=[xcoords.shape[0],24,24,1])
     ycoords = numpy.reshape(ycoords, newshape=[xcoords.shape[0],24,24,1])
     
     print('xcoords',xcoords.shape)
     
     all_coords = numpy.concatenate([xcoords,ycoords],axis=-1)
     
     #readListArray(filename,"tree","frac_at_idxs",self.nsamples,4,1)
     
     alltruth = numpy.zeros(self.nsamples)+1. #this is real data
     
     self.x = [feature_image,all_coords,add_features] 
     self.y = [alltruth]
     self.w=[]