# networkName = "cupNetworkSmall" # networkName = "treeNetworkSmall" layerToObserve = 1 binarize = False samplesForAverage = 1 canvasWidth = 900 canvasHeight = 600 dbc = DatabaseConnector() network = dbc.getNetwork(networkName) rbm = DeepRBM(network.model) rbm.setWeights(network.weights) root = Tk() root.geometry(str(canvasWidth) + "x" + str(canvasHeight)) canvas = Canvas(root, width=canvasWidth, height=canvasHeight) canvas.pack() references = [] for i in range(network.model[layerToObserve]): print "Sampling neuron " + str(i) myimg = Image.new("L", (network.imageWidth, network.imageHeight), "white") if samplesForAverage <= 1:
from Tkinter import * from PIL import Image, ImageTk from DatabaseConnector import DatabaseConnector from DeepRBM import DeepRBM import numpy as np networkName = "treeNetwork" dbc = DatabaseConnector() network = dbc.getNetwork(networkName) rbm = DeepRBM(network.model) rbm.setWeights(network.weights) samplesForAverage = 10 binarize = True imageWidth = network.imageWidth imageHeight = network.imageHeight input = np.random.randn(samplesForAverage, network.model[0]) flag = True refreshRate = 1 def updateImage(): global picture global flag global input global samplesForAverage
from Tkinter import * from PIL import Image, ImageTk from DatabaseConnector import DatabaseConnector from DeepRBM import DeepRBM import numpy as np networkName = "treeNetwork" dbc = DatabaseConnector(); network = dbc.getNetwork(networkName); rbm = DeepRBM(network.model) rbm.setWeights(network.weights) samplesForAverage = 10; binarize = True; imageWidth = network.imageWidth; imageHeight = network.imageHeight; input = np.random.randn(samplesForAverage, network.model[0]); flag = True; refreshRate = 1; def updateImage(): global picture global flag global input global samplesForAverage
# networkName = "cupNetwork" # networkName = "cupNetworkSmall" # networkName = "treeNetworkSmall" layerToObserve = 1 binarize = False samplesForAverage = 1 canvasWidth = 900 canvasHeight = 600 dbc = DatabaseConnector() network = dbc.getNetwork(networkName) rbm = DeepRBM(network.model) rbm.setWeights(network.weights) root = Tk() root.geometry(str(canvasWidth) + 'x' + str(canvasHeight)) canvas = Canvas(root, width=canvasWidth, height=canvasHeight) canvas.pack() references = [] for i in range(network.model[layerToObserve]): print "Sampling neuron " + str(i) myimg = Image.new("L", (network.imageWidth, network.imageHeight), "white") if (samplesForAverage <= 1):