Example #1
0
               aggregate_by_aa=True,
               aa_column_beta=0,
               count_column=1,
               v_beta_column=2,
               j_beta_column=3)

AUC = []
Class = []
Method = []
folds = 100
seeds = np.array(range(folds))
for i in range(folds):
    np.random.seed(seeds[i])
    DTCRS.Get_Train_Valid_Test()
    DTCRS.Train(graph_seed=graph_seed)
    DTCRS.AUC_Curve(plot=False)
    AUC.extend(DTCRS.AUC_DF['AUC'].tolist())
    Class.extend(DTCRS.AUC_DF['Class'].tolist())
    Method.extend(['Sup-Seq-VDJ'] * len(DTCRS.AUC_DF))

df_s = pd.DataFrame()
df_s['Class'] = Class
df_s['AUC'] = AUC
df_s['Method'] = Method
df_s['Type'] = 'Supervised'

df_comp = pd.concat((df_u, df_s), axis=0)

dir_results = 'Sup_V_Unsup_Results'
if not os.path.exists(dir_results):
    os.makedirs(dir_results)
Example #2
0
"""Figure 2B"""
"""This script is used to create the ROC curves for assessing the ability
of supervised sequence classifier to correctly predict the antigen-specificity of 
the 9 murine antigens in the manuscript.."""

from DeepTCR.DeepTCR import DeepTCR_SS

#Run Supervised Sequence Classifier
DTCRS = DeepTCR_SS('Sequence_C')
DTCRS.Get_Data(directory='../../Data/Murine_Antigens',
               Load_Prev_Data=False,
               aggregate_by_aa=True,
               aa_column_beta=0,
               count_column=1,
               v_beta_column=2,
               j_beta_column=3)
DTCRS.Monte_Carlo_CrossVal(folds=10)
DTCRS.AUC_Curve()
Example #3
0
from DeepTCR.DeepTCR import DeepTCR_SS, DeepTCR_WF

#Train Sequence Classifier
DTCR_SS = DeepTCR_SS('Rudqvist')
DTCR_SS.Get_Data(directory='../../Data/Rudqvist',
                 Load_Prev_Data=False,
                 aggregate_by_aa=True,
                 aa_column_beta=1,
                 count_column=2,
                 v_beta_column=7,
                 d_beta_column=14,
                 j_beta_column=21)

DTCR_SS.Monte_Carlo_CrossVal(folds=100, test_size=0.25)
DTCR_SS.AUC_Curve()

#Train Repertoire Classifier without on-graph clustering
DTCR_WF = DeepTCR_WF('Rudqvist')
DTCR_WF.Get_Data(directory='../../Data/Rudqvist',
                 Load_Prev_Data=False,
                 aggregate_by_aa=True,
                 aa_column_beta=1,
                 count_column=2,
                 v_beta_column=7,
                 d_beta_column=14,
                 j_beta_column=21)

DTCR_WF.Monte_Carlo_CrossVal(folds=100, LOO=4, epochs_min=50)
DTCR_WF.AUC_Curve()

#Train Repertoire Classifier with on-graph clustering
Example #4
0
of supervised sequence classifier to correctly predict the antigen-specificity of 
the 9 murine antigens in the manuscript.."""

from DeepTCR.DeepTCR import DeepTCR_SS
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc('font', family='Arial')

#Run Supervised Sequence Classifier
DTCRS = DeepTCR_SS('Sequence_C', device=2)

DTCRS.Get_Data(directory='../../../Data/Murine_Antigens',
               Load_Prev_Data=False,
               aggregate_by_aa=True,
               aa_column_beta=0,
               count_column=1,
               v_beta_column=2,
               j_beta_column=3)

folds = 10
seeds = np.array(range(folds))
graph_seed = 0
DTCRS.Monte_Carlo_CrossVal(folds=folds, seeds=seeds, graph_seed=graph_seed)
DTCRS.AUC_Curve(xlabel_size=24,
                ylabel_size=24,
                xtick_size=18,
                ytick_size=18,
                legend_font_size=14,
                frameon=False,
                diag_line=False)
folds = 100
LOO = 4
epochs_min = 100

#Train Sequence Classifier
DTCR_SS = DeepTCR_SS('Rudqvist_SS')
DTCR_SS.Get_Data(directory='../../Data/Rudqvist',
                 Load_Prev_Data=False,
                 aa_column_beta=1,
                 count_column=2,
                 v_beta_column=7,
                 d_beta_column=14,
                 j_beta_column=21)

DTCR_SS.Monte_Carlo_CrossVal(folds=folds, test_size=0.25)
DTCR_SS.AUC_Curve(filename='AUC.eps')

#Train Repertoire Classifier without on-graph clustering
DTCR_WF = DeepTCR_WF('Rudqvist_WF')
DTCR_WF.Get_Data(directory='../../Data/Rudqvist',
                 Load_Prev_Data=False,
                 aa_column_beta=1,
                 count_column=2,
                 v_beta_column=7,
                 d_beta_column=14,
                 j_beta_column=21)

DTCR_WF.Monte_Carlo_CrossVal(folds=folds, LOO=LOO, epochs_min=epochs_min)
DTCR_WF.AUC_Curve(filename='Rep_AUC.eps')

#Train Repertoire Classifier with on-graph clustering