Example #1
0
def train_encoder():
    import os
    cLoader = CifarLoader(CIFAR_DIR=os.path.join("../", "cifar-10-batches-py",
                                                 ""),
                          validation_partition=1.0)
    train_set = cLoader.get_training_dataset()
    train_set.labels = train_set.data
    train_set.labels = train_set.labels.transpose(0, 3, 1, 2)
    train_opts = trn.TrainingOptions()
    train_opts.optimizer_type = trn.OptimizerType.Adam
    train_opts.learning_rate = 0.001
    train_opts.learning_rate_update_by_step = False  # Update schedular at epochs
    train_opts.learning_rate_drop_factor = 0.5
    train_opts.learning_rate_drop_type = trn.SchedulerType.StepLr
    train_opts.learning_rate_drop_step_count = 2
    train_opts.batch_size = 64
    train_opts.weight_decay = 1e-5
    train_opts.n_epochs = 6
    train_opts.use_gpu = True
    train_opts.save_model = True
    train_opts.saved_model_name = "models/encoders/cifar_encoder"
    train_opts.regularization_method = None

    net = CifarEncoder(100)
    loss_fnc = nn.MSELoss()
    optimizer = torch.optim.Adam(net.parameters(), weight_decay=1e-5)
    num_epochs = 8
    batch_size = 100
    num_iters = int(train_set.get_element_count() / batch_size)
    for e in range(num_epochs):
        train_set.shuffle_data()
        for iter in range(num_iters):
            batch_data, batch_labels = train_set.get_batch(batch_size)
            out = net.forward(batch_data)
            loss = loss_fnc(out, batch_data)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if iter % 200 == 0:
                print('epoch [{}/{}], iter [{}/{}], loss:{:.4f}'.format(
                    e + 1, num_epochs, iter + 1, num_iters, loss.item()))
    torch.save(net.state_dict(), "cifar_encoder")
Example #2
0
def train_teacher(train_set, val_set, teacher, train_opts, teacher_model_path):
    # train_opts = trn.TrainingOptions()
    # train_opts.optimizer_type = trn.OptimizerType.Adam
    # train_opts.learning_rate = 0.01
    # train_opts.learning_rate_update_by_step = False  # Update schedular at epochs
    # train_opts.learning_rate_drop_factor = 0.5
    # train_opts.learning_rate_drop_type = trn.SchedulerType.StepLr
    # train_opts.learning_rate_drop_step_count = 2
    # train_opts.batch_size = 64
    # train_opts.weight_decay = 1e-5
    # train_opts.n_epochs = 8
    # train_opts.use_gpu = True
    # train_opts.save_model = True
    # train_opts.saved_model_name = teacher_model_path

    teacher.to("cuda:0")
    trainer = trn.Trainer(teacher, train_opts)
    trainer.train(torch.nn.CrossEntropyLoss(),
                  train_set,
                  val_set,
                  is_classification=True)
    return teacher
Example #3
0
def train_student_encoded(train_set, val_set, teacher, params):
    EXP_NO = params.exp_no
    EXP_ID = params.exp_id
    STUDENT_TEMP = params.student_temp
    TEACHER_TEMP = params.teacher_temp
    ALPHA = params.alpha
    N_RULES = params.n_rules

    ROOT = "./models/{}".format(EXP_ID)
    if not os.path.exists(ROOT):
        os.mkdir(ROOT)
    ROOT = "./models/{}/{}".format(EXP_ID, EXP_NO)
    if not os.path.exists(ROOT):
        os.mkdir(ROOT)

    # Save Params
    with open(ROOT + "/params", "w") as f:
        json.dump(vars(args), f)
    STUDENT_MODEL_PATH = ROOT + "/student"

    train_opts = trn.TrainingOptions()
    train_opts.optimizer_type = trn.OptimizerType.Adam
    train_opts.learning_rate = 0.01
    train_opts.learning_rate_drop_type = trn.SchedulerType.StepLr
    train_opts.learning_rate_update_by_step = False  # Update at every epoch
    train_opts.learning_rate_drop_factor = 0.5  # Halve the learning rate
    train_opts.learning_rate_drop_step_count = params.learn_drop_epochs
    train_opts.batch_size = 128
    train_opts.n_epochs = params.n_epochs
    train_opts.use_gpu = True
    train_opts.custom_validation_func = validate_distillation
    train_opts.save_model = False
    train_opts.verbose_freq = 100
    train_opts.weight_decay = 1e-8
    train_opts.shuffle_data = True
    train_opts.regularization_method = None
    # Define loss
    dist_loss = DistillationLoss(STUDENT_TEMP, TEACHER_TEMP, ALPHA)

    encoder = CifarEncoder(n_dims=params.n_inputs)
    encoder.load_state_dict(torch.load("Networks/cifar_encoder"))
    student = StudentEncoder(n_memberships=N_RULES,
                             n_inputs=params.n_inputs,
                             n_outputs=10,
                             learnable_memberships=params.learn_ants,
                             encoder=encoder,
                             fuzzy_type=params.fuzzy_type,
                             use_sigma_scale=params.use_sigma_scale,
                             use_height_scale=params.use_height_scale)
    # Initialize student
    print("Initializing Student")
    train_set.shuffle_data()
    init_data, init_labels = train_set.get_batch(60000, 0, "cpu")
    student.initialize(init_data)
    # student.load_state_dict(torch.load(STUDENT_MODEL_PATH))
    print("Done Initializing Student")
    # student.fuzzy_layer.draw(5)
    # plt.plot(student.feature_extraction(init_data)[:,1:2], np.zeros(init_data.shape[0]), 'o')
    # plt.show()
    device = "cuda:" + args.gpu_no
    student.to(device)
    # Define distillation network
    dist_net = DistillNet(student, teacher)
    trainer = trn.Trainer(dist_net, train_opts)
    results = trainer.train(dist_loss,
                            train_set,
                            val_set,
                            is_classification=True)
    torch.save(student.state_dict(), STUDENT_MODEL_PATH)
    trn.save_train_info(results, STUDENT_MODEL_PATH + "_train_info")

    return student
Example #4
0
    # Load dataset
    if args.dataset == 4:  # Quick Draw
        TEACHER_PATH = "./models/teacher/QuickDraw/teacher_quick_draw"
        metadata = [['airplanes.npy', 0], ['apple.npy', 1], ['bread.npy', 2],
                    ['dog.npy', 3], ['guitar.npy', 4], ['lion.npy', 5],
                    ['star.npy', 6], ['zebra.npy', 7], ['anvil.npy', 8],
                    ['car.npy', 9]]
        qdLoader = QuickDrawLoader(metadata=metadata,
                                   data_root='./data/QuickDraw',
                                   max_data=10000)
        train_set = qdLoader.get_training_dataset()
        val_set = qdLoader.get_validation_dataset()
        test_set = qdLoader.get_test_dataset()

        # Teacher Options for QuickDraw
        teacher_train_opts = trn.TrainingOptions()
        teacher_train_opts.optimizer_type = trn.OptimizerType.Adam
        teacher_train_opts.learning_rate = 0.01
        teacher_train_opts.learning_rate_update_by_step = False  # Update schedular at epochs
        teacher_train_opts.learning_rate_drop_factor = 0.5
        teacher_train_opts.learning_rate_drop_type = trn.SchedulerType.StepLr
        teacher_train_opts.learning_rate_drop_step_count = 2
        teacher_train_opts.batch_size = 64
        teacher_train_opts.weight_decay = 1e-5
        teacher_train_opts.n_epochs = 8
        teacher_train_opts.use_gpu = True
        teacher_train_opts.save_model = True
        teacher_train_opts.saved_model_name = TEACHER_PATH

    elif args.dataset == 3:
        TEACHER_PATH = "./models/teacher/Cifar/teacher_cifar_resnet"
Example #5
0
                                       n_points=1000,
                                       batch_size=-1)
test_dataset = SequentialDataset(test_reg, test_labels, n_points=1)
test_dataset.batch_index = 0

net = IdentificationNet(1, 1, 3)
net.to("cuda:0")
net.reset()


def loss_fnc(pred, batch_labels):
    return torch.mean(torch.square(pred - batch_labels))


if TRAIN:
    trn_opts = trn.TrainingOptions()
    if NON_LINEAR:
        trn_opts.batch_size = 5000
        trn_opts.learning_rate = 0.001
        trn_opts.learning_rate_drop_type = trn.SchedulerType.StepLr
        trn_opts.learning_rate_drop_factor = 1
        trn_opts.learning_rate_drop_step_count = 100
        trn_opts.n_epochs = 5000
        trn_opts.l2_reg_constant = 1E-2
        trn_opts.saved_model_name = MODEL_NAME
        trn_opts.save_model = True
        trn_opts.optimizer_type = trn.OptimizerType.Adam
        trn_opts.verbose_freq = 500
    else:

        #These optiosn work best for linear case
Example #6
0
    val_set = cLoader.get_validation_dataset()
    test_set = cLoader.get_test_dataset()
else:
    mLoader = MNISTLoader("./data")
    train_set = mLoader.get_training_dataset()
    val_set = mLoader.get_validation_dataset()
    test_set = mLoader.get_test_dataset()

# Define networks
student = Student(n_memberships=15, n_inputs=64, n_outputs=10)
teacher = TeacherLite(10)

# Load teacher
#teacher.load_state_dict(torch.load(TEACHER_MODEL_PATH))
if TRAIN_TEACHER:
    train_opts = trn.TrainingOptions()
    train_opts.optimizer_type = trn.OptimizerType.Adam
    train_opts.learning_rate = 0.001
    train_opts.batch_size = 64
    train_opts.n_epochs = 2
    train_opts.use_gpu = True
    train_opts.save_model = True
    train_opts.saved_model_name = TEACHER_MODEL_PATH

    trainer = trn.Trainer(teacher, train_opts)
    trainer.train(torch.nn.CrossEntropyLoss(),
                  train_set,
                  val_set,
                  is_classification=True)
else:
    teacher.load_state_dict(torch.load(TEACHER_MODEL_PATH))