def test_saddle(self): lie = LieAlgebra(1) diag = Diagonalizer(lie) q = lie.q p = lie.p orig = q(0)*p(0) eq_type = 's' comp = Complexifier(lie, eq_type) r2c = comp.calc_sub_complex_into_real() c2r = comp.calc_sub_real_into_complex() comp = orig.substitute(r2c) real = comp.substitute(c2r) diff = orig-real for m, c in diff.powers_and_coefficients(): self.assert_(abs(c)<1.0e-15)
def test_saddle(self): lie = LieAlgebra(1) diag = Diagonalizer(lie) q = lie.q p = lie.p orig = q(0) * p(0) eq_type = 's' comp = Complexifier(lie, eq_type) r2c = comp.calc_sub_complex_into_real() c2r = comp.calc_sub_real_into_complex() comp = orig.substitute(r2c) real = comp.substitute(c2r) diff = orig - real for m, c in diff.powers_and_coefficients(): self.assert_(abs(c) < 1.0e-15)
def test_centre_saddle(self): lie = LieAlgebra(2) diag = Diagonalizer(lie) q = lie.q p = lie.p cent = (0.5*q(0)**2)+(0.5*p(0)**2) sadd = (1.0*q(1))*(1.0*p(1)) orig = cent + sadd self.assertEquals(len(orig), 3) eq_type = 'cs' comp = Complexifier(lie, eq_type) r2c = comp.calc_sub_complex_into_real() c2r = comp.calc_sub_real_into_complex() comp = orig.substitute(r2c) self.assertEquals(len(comp), 2) real = comp.substitute(c2r) diff = orig-real for m, c in diff.powers_and_coefficients(): self.assert_(abs(c)<1.0e-15)
def test_centre_saddle(self): lie = LieAlgebra(2) diag = Diagonalizer(lie) q = lie.q p = lie.p cent = (0.5 * q(0)**2) + (0.5 * p(0)**2) sadd = (1.0 * q(1)) * (1.0 * p(1)) orig = cent + sadd self.assertEquals(len(orig), 3) eq_type = 'cs' comp = Complexifier(lie, eq_type) r2c = comp.calc_sub_complex_into_real() c2r = comp.calc_sub_real_into_complex() comp = orig.substitute(r2c) self.assertEquals(len(comp), 2) real = comp.substitute(c2r) diff = orig - real for m, c in diff.powers_and_coefficients(): self.assert_(abs(c) < 1.0e-15)
def test_centre(self): lie = LieAlgebra(1) diag = Diagonalizer(lie) q = lie.q p = lie.p orig = (0.5*q(0)**2)+(0.5*p(0)**2) self.assertEquals(len(orig), 2) eq_type = 'c' comp = Complexifier(lie, eq_type) r2c = comp.calc_sub_complex_into_real() c2r = comp.calc_sub_real_into_complex() comp = orig.substitute(r2c) self.assertEquals(len(comp), 1) for m, c in comp.powers_and_coefficients(): self.assert_(c.real == 0.0) self.assert_(m[0] == 1) self.assert_(m[1] == 1) real = comp.substitute(c2r) diff = orig-real for m, c in diff.powers_and_coefficients(): self.assert_(abs(c)<1.0e-15)
def test_centre(self): lie = LieAlgebra(1) diag = Diagonalizer(lie) q = lie.q p = lie.p orig = (0.5 * q(0)**2) + (0.5 * p(0)**2) self.assertEquals(len(orig), 2) eq_type = 'c' comp = Complexifier(lie, eq_type) r2c = comp.calc_sub_complex_into_real() c2r = comp.calc_sub_real_into_complex() comp = orig.substitute(r2c) self.assertEquals(len(comp), 1) for m, c in comp.powers_and_coefficients(): self.assert_(c.real == 0.0) self.assert_(m[0] == 1) self.assert_(m[1] == 1) real = comp.substitute(c2r) diff = orig - real for m, c in diff.powers_and_coefficients(): self.assert_(abs(c) < 1.0e-15)