Example #1
0
def d(s=s_current):
    x()
    for i in range(1, N):
        D[i] = const * (X[i + 1] - X[i - 1]) * (
            ((X[i] / 2) * integral_1_2(PHI_S[s_current][i] / X[i]) -
             PHI_S[s_current][i] / 4 *
             integral_minus_1_2(PHI_S[s_current][i] / X[i])))
Example #2
0
def alpha(s=s_current):
    x()
    for i in range(N - 1, -1, -1):
        if i == N - 1:
            ALPHA[i] = 1 / (1 - h(N) + h(N)**2 / 4 * const *
                            integral_minus_1_2(PHI_S[s_current][N]))
        else:
            ALPHA[i] = -A[i + 1] / (B[i + 1] + C[i + 1] * ALPHA[i + 1])
Example #3
0
def beta(s=s_current):
    x()
    for i in range(N - 1, -1, -1):
        if i == N - 1:
            BETA[i] = -h(N)**2 / 2 * const * (
                integral_1_2(PHI_S[s_current][N]) - PHI_S[s_current][i] / 2 *
                integral_minus_1_2(PHI_S[s_current][N])) * ALPHA[N - 1]
        else:
            BETA[i] = (D[i + 1] - C[i + 1] * BETA[i + 1]) / (
                B[i + 1] + C[i + 1] * ALPHA[i + 1])
Example #4
0
def progonka(s):

    s_current = 0

    while s_current < s:
        for i in range(1, N):
            B[i] = -A[i] - C[i] - const / 4 * (X[i + 1] -
                                               X[i - 1]) * integral_minus_1_2(
                                                   PHI_S[s_current][i] / X[i])

            D[i] = const * (X[i + 1] - X[i - 1]) * (
                (X[i] / 2 * integral_1_2(PHI_S[s_current][i] / X[i])) -
                PHI_S[s_current][i] / 4 *
                integral_minus_1_2(PHI_S[s_current][i] / X[i]))

        for i in range(N - 1, -1, -1):
            if i == N - 1:
                ALPHA[i] = 1 / (1 - h(N) + h(N)**2 / 4 * const *
                                integral_minus_1_2(PHI_S[s_current][N]))

                BETA[i] = -h(N)**2 / 2 * const * (
                    integral_1_2(PHI_S[s_current][N]) - PHI_S[s_current][i] /
                    2 * integral_minus_1_2(PHI_S[s_current][N])) * ALPHA[N - 1]
            else:
                ALPHA[i] = -A[i + 1] / (B[i + 1] + C[i + 1] * ALPHA[i + 1])

                BETA[i] = (D[i + 1] - C[i + 1] * BETA[i + 1]) / (
                    B[i + 1] + C[i + 1] * ALPHA[i + 1])

        # ИСКОМОЕ УРАВНЕНИЕ
        for i in range(N + 1):
            if i == 0:
                Y[i] = z / (theta(T) * r_0(rho))
            else:
                Y[i] = ALPHA[i - 1] * Y[i - 1] + BETA[i - 1]

        for i in range(N + 1):
            RESULT[s_current][i] = PHI_S[s_current][i] * theta(T)

        for i in range(N + 1):
            PHI_S[s_current + 1][i] = Y[i]

        s_current += 1
Example #5
0
def progonka(T, rho, Atom_weight, z):
    # константа а в уравнении
    const_a = 4 * (2 * theta(T))**0.5 / pi * (r_0(rho, Atom_weight))**2

    PHI_S = [[0 for i in range(N + 1)] for j in range(s + 1)]
    RESULT = [[0 for i in range(N + 1)] for j in range(s)]

    for i in range(N + 1):
        if i == 0:
            PHI_S[0][0] = z / (theta(T) * r_0(rho, Atom_weight))
        else:
            PHI_S[0][i] = z / (theta(T) * r_0(rho, Atom_weight)) * (
                1 - 3 / 2 * X[i] + 1 / 2 * (X[i])**3) - eta_0(T, rho) * X[i]

    s_current = 0

    while s_current < s:
        B = [0] + [
            -A[i] - C[i] - const_a / 4 * (X[i + 1] - X[i - 1]) *
            integral_minus_1_2(PHI_S[s_current][i] / X[i])
            for i in range(1, N)
        ]
        D = [0] + [
            const_a * (X[i + 1] - X[i - 1]) *
            ((X[i] / 2 * integral_1_2(PHI_S[s_current][i] / X[i])) -
             PHI_S[s_current][i] / 4 *
             integral_minus_1_2(PHI_S[s_current][i] / X[i]))
            for i in range(1, N)
        ]

        ALPHA = [0] * (N + 1)
        BETA = [0] * (N + 1)
        for i in range(N - 1, -1, -1):
            if i == N - 1:
                ALPHA[i] = 1 / (1 - h_N + h_N**2 / 4 * const_a *
                                integral_minus_1_2(PHI_S[s_current][N]))
                BETA[i] = -h_N**2 / 2 * const_a * (
                    integral_1_2(PHI_S[s_current][N]) - PHI_S[s_current][i] /
                    2 * integral_minus_1_2(PHI_S[s_current][N])) * ALPHA[N - 1]
            else:
                ALPHA[i] = -A[i + 1] / (B[i + 1] + C[i + 1] * ALPHA[i + 1])
                BETA[i] = (D[i + 1] - C[i + 1] * BETA[i + 1]) / (
                    B[i + 1] + C[i + 1] * ALPHA[i + 1])

        # ИСКОМОЕ УРАВНЕНИЕ
        Y = [0] * (N + 1)
        for i in range(N + 1):
            if i == 0:
                Y[i] = z / (theta(T) * r_0(rho, Atom_weight))
            else:
                Y[i] = ALPHA[i - 1] * Y[i - 1] + BETA[i - 1]

        for i in range(N + 1):
            RESULT[s_current][i] = PHI_S[s_current][i] * theta(T)

        for i in range(N + 1):
            PHI_S[s_current + 1][i] = Y[i]

        s_current += 1
    PHI = [RESULT[8][i] / theta(T) for i in range(N + 1)]

    ##СТРОИМ ГРАФИК
    #fig = plt.figure()
    #for i in range(s):
    #    graph1 = plt.plot(X, PHI)
    #plt.title("T = 0 keV")
    #plt.grid(True)
    #
    #plt.xlabel('x')
    #plt.ylabel('y(s)')
    #plt.savefig('progonka1')
    #plt.show()

    return PHI
Example #6
0
def delta_mu(T, rho):
    HI = hi(T, rho)
    PHI = progonka(T, rho)
    return (2 * theta(T))**(1 / 2) / (6 * math.pi) * (
        1 / 2 * integral_minus_1_2(PHI[N]) + HI[N])
def progonka_2N(T, rho):
    # константа а в уравнении
    const_a = 4 * (2 * theta(T))**0.5 / pi * (r_0(rho))**2

    PHI_S = [[0 for i in range(N + 1)] for j in range(s + 1)]
    RESULT = [[0 for i in range(N + 1)] for j in range(s)]

    for i in range(N + 1):
        if i == 0:
            PHI_S[0][0] = z / (theta(T) * r_0(rho))
        else:
            PHI_S[0][i] = z / (theta(T) *
                               r_0(rho)) * (1 - 3 / 2 * U[i] + 1 / 2 *
                                            (U[i])**3) - eta_0(T, rho) * U[i]

    s_current = 0

    while s_current < s:
        B = [0] + [
            -4 * U[i] * (1 + const_a * h_N**2 * U[i]**2 *
                         integral_minus_1_2(PHI_S[s_current][i] / U[i]**2))
            for i in range(1, N)
        ]
        D = [0] + [
            4 * const_a * h_N**2 * U[i]**3 *
            (2 * U[i]**2 * integral_1_2(PHI_S[s_current][i] / U[i]**2) -
             PHI_S[s_current][i] *
             integral_minus_1_2(PHI_S[s_current][i] / U[i]**2))
            for i in range(1, N)
        ]

        ALPHA = [0] * (N + 1)
        BETA = [0] * (N + 1)
        for i in range(N - 1, -1, -1):
            if i == N - 1:
                ALPHA[i] = 1 / (
                    1 - 2 * h_N + h_N**2 *
                    (1 + const_a * integral_minus_1_2(PHI_S[s_current][N])))
                BETA[i] = -h_N**2 * const_a * (
                    2 * integral_1_2(PHI_S[s_current][N]) - PHI_S[s_current][i]
                    * integral_minus_1_2(PHI_S[s_current][N])) * ALPHA[N - 1]
            else:
                ALPHA[i] = -A[i + 1] / (B[i + 1] + C[i + 1] * ALPHA[i + 1])
                BETA[i] = (D[i + 1] - C[i + 1] * BETA[i + 1]) / (
                    B[i + 1] + C[i + 1] * ALPHA[i + 1])

        # ИСКОМОЕ УРАВНЕНИЕ
        Y = [0] * (N + 1)
        for i in range(N + 1):
            if i == 0:
                Y[i] = z / (theta(T) * r_0(rho))
            else:
                Y[i] = ALPHA[i - 1] * Y[i - 1] + BETA[i - 1]

        for i in range(N + 1):
            RESULT[s_current][i] = PHI_S[s_current][i] * theta(T)

        for i in range(N + 1):
            PHI_S[s_current + 1][i] = Y[i]

        s_current += 1
    PHI = [RESULT[8][i] / theta(T) for i in range(N + 1)]

    return PHI
Example #8
0
def b(s=s_current):
    x()
    for i in range(1, N):
        B[i] = -A[i] - C[i] - const / 4 * (X[i + 1] -
                                           X[i - 1]) * integral_minus_1_2(
                                               PHI_S[s_current][i] / X[i])