Example #1
0
    def testFacepointsWithSeq():
        print("hi")
        import numpy
        import sys
        sys.path.append("./utils")
        from read_write import read_npy
        import configparser
        cf = configparser.ConfigParser()
        cf.read("./config.ini")
        from distanceBetweenFacePoints import facePoints68_DistBetweenPoints
        from distanceBetweenFacePoints import facePoints68_DistToNNextPoints
        from distanceBetweenSeq import distanceBetweenSeq
        from DistanceFunction import DistanceSeqFunction
        dataSet = read_npy(cf.get("datasets", "npyAllDataTest"))
        # seqA = dataSet[0][1]
        # seqB = dataSet[2][0]

        distFunc = DistanceFunction(facePoints68_DistToNNextPoints,
                                    "normalizedL1")
        distSeqFunc = DistanceSeqFunction(distFunc, "normalizedL1",
                                          distanceBetweenSeq)
        #print(seqB[1][0][2][1])
        print("hi")
        pred = predictions(dataSet[0], dataSet[1], distSeqFunc)
        print(len([i for i in pred if i[0] == i[1]]))
        print("accuracy: ", len([i for i in pred if i[0] == i[1]]) / len(pred))
def _supercounts(graph, template_event_set, subcount_table):
    ''' Given
        graph              - a reconciliation graph
        template_event_set - a reconciliation in event-set form
        subcount_table     - a mapping from nodes in the graph to subcounts
    Computes the stratified symmetric supercounts of every node in the graph
    with respect to the template. Relies on pre-computed subcounts
    '''
    table = {}
    for n in graph.preorder():
        if n.isRoot():
            table[n] = DistanceFunction.kronicker(0)
        elif n.isMap():
            def process_parent(event_parent):
                shift_amount = 1 if event_parent not in template_event_set else -1
                parent_super = table[event_parent]
                otherChild = event_parent.otherChild(n)
                convolved = parent_super.convolve(subcount_table[otherChild]) \
                                if otherChild \
                                else parent_super
                return convolved.shift(shift_amount)
            sup_count = reduce(lambda x, y: x.sum(y), map(process_parent, n.parents))
            table[n] = sup_count
        else:
            shift_amount = 1 if n not in template_event_set else -1
            # Event nodes inherit their single parent's super-count.
            # Shallow copy is same because we don't mutatate Fn's
            table[n] = table[n.parents[0]]
    return table
def _supercounts(graph, template_event_set, subcount_table):
    ''' Given
        graph              - a reconciliation graph
        template_event_set - a reconciliation in event-set form
        subcount_table     - a mapping from nodes in the graph to subcounts
    Computes the stratified symmetric supercounts of every node in the graph
    with respect to the template. Relies on pre-computed subcounts
    '''
    table = {}
    for n in graph.preorder():
        if n.isRoot():
            table[n] = DistanceFunction.kronicker(0)
        elif n.isMap():

            def process_parent(event_parent):
                shift_amount = 1 if event_parent not in template_event_set else -1
                parent_super = table[event_parent]
                otherChild = event_parent.otherChild(n)
                convolved = parent_super.convolve(subcount_table[otherChild]) \
                                if otherChild \
                                else parent_super
                return convolved.shift(shift_amount)

            sup_count = reduce(lambda x, y: x.sum(y),
                               map(process_parent, n.parents))
            table[n] = sup_count
        else:
            shift_amount = 1 if n not in template_event_set else -1
            # Event nodes inherit their single parent's super-count.
            # Shallow copy is same because we don't mutatate Fn's
            table[n] = table[n.parents[0]]
    return table
Example #4
0
def predictions(trData, testData, distFunc: DistanceFunction):
    '''
    args:
        useSeq: whether we treat the sequence as a single datapoint or not 
    '''
    closestIndices = []
    for testDp in testData:
        print("new test dp")
        closestIndex = -1
        currDistance = float("inf")
        for i, trDp in enumerate(trData):
            tempDistance = distFunc.calculateDistance(testDp, trDp)
            if (tempDistance < currDistance) and (trData[i][1] != testDp[1]):
                closestIndex = i
                currDistance = tempDistance
        #print([testDp[0],trData[closestIndex][0]])
        closestIndices.append([testDp[0],
                               trData[closestIndex][0]])  #get the name
    return closestIndices
def _subcounts(graph, template_event_set):
    ''' Given
        graph              - a reconciliation graph
        template_event_set - a reconciliation in event-set form
    Computes the stratified symmetric subcounts of every node in the graph
    with respect to the template
    '''
    table = {}
    for n in graph.postorder():
        if n.isLeaf():
            table[n] = DistanceFunction.kronicker(-1)
        elif n.isMap():
            table[n] = reduce(lambda x, y: x.sum(y), \
                                       [table[c] for c in n.children])
        else:
            shift_amount = 1 if n not in template_event_set else -1
            table[n] = reduce(lambda x, y: x.convolve(y), \
                                       [table[c] for c in n.children])
            table[n] = table[n].shift(shift_amount)
    return table
def _subcounts(graph, template_event_set):
    ''' Given
        graph              - a reconciliation graph
        template_event_set - a reconciliation in event-set form
    Computes the stratified symmetric subcounts of every node in the graph
    with respect to the template
    '''
    table = {}
    for n in graph.postorder():
        if n.isLeaf():
            table[n] = DistanceFunction.kronicker(-1)
        elif n.isMap():
            table[n] = reduce(lambda x, y: x.sum(y), \
                                       [table[c] for c in n.children])
        else:
            shift_amount = 1 if n not in template_event_set else -1
            table[n] = reduce(lambda x, y: x.convolve(y), \
                                       [table[c] for c in n.children])
            table[n] = table[n].shift(shift_amount)
    return table