def ex631(): n = 2**8 rule = 110 ratio = 2 ca = CA(rule, n, ratio = ratio) #m = ratio * n / 2 #start = 1 #end = start + 100 #for i in range(start, end, 3): # ca.array[0, i] = 0 # ca.array[0, i+1] = 1 # ca.array[0, i+2] = 0 #ca.next += 1 ca.start_random() ca.loop(n-1) return ca
def ex632(): n = 2**8 rule = 110 ratio = 2 ca = CA(rule, n, ratio = ratio) #ca.start_random() m = ratio * n / 2 ca.array[0, m-1] = 1 ca.array[0, m] = 1 for i in range(20): ca.array[0, m+i] = 1 ca.start_single() ca.loop(n-1) return ca
def fractal_dim(ca_rule, t = 100, plot = True): """ plot box counting dimension and return estimated dimension""" ca = CA(ca_rule, t) ca.start_single() Ns = [1] drawer = PyplotDrawer() for i in range(t-1): ca.step() Ns.append(sum(ca.array[ca.next-1])) Ns = np.cumsum(Ns) one_over_eps = range(1, ca.n + 1) dim, _ = np.polyfit(np.log(one_over_eps), np.log(Ns), 1) if (plot): pyplot.plot(one_over_eps, Ns) scale = 'log' pyplot.xscale(scale) pyplot.yscale(scale) pyplot.title('') pyplot.xlabel('1/eps') pyplot.ylabel('N(eps)') pyplot.show() drawer.draw(ca) drawer.show() return dim