Example #1
0
def extract_classav_vstack(inpath,classes,outpath,verbose=0):
	"""Extracts particles from class-averages into a virtual stack. inpath is the path to a file with class-averages,
	outpath is the output BDB, and classes is a list/tuple of class average numbers. Returns the number of images copied"""
	
	vstack=db_open_dict(outpath)		# open output db

	outn=0
	for avn in classes:
		av=EMData(inpath,avn)
		
		try:
			imgsrc=av["class_ptcl_src"]
			imgns=av["class_ptcl_idxs"]
		except:
			raise Exception("Particle doesn't have source image info (%s,d)"%(inpath,avn))

		# If we are writing to a virtual stack
		try:
			src=db_open_dict(imgsrc)		# this is the source database file
		except:
			raise Exception("Cannot open source images as BDB (%s)"%imgsrc)
		
		for n in imgns:
			# here we make the new entry in the vstack
			d=src.get(n,nodata=1).get_attr_dict()		# get the metadata for the image
			d["data_path"]=src.get_data_path(n)			# this is how we avoid copying the image data
			vstack[outn]=d
			outn+=1

		if verbose>0 : print("Class %d: %d particles"%(avn,len(imgns)))
		
	
	if verbose>0 : print("%d total particles written to %s"%(outn,outpath))
	
	return outn
	def __init__(self, mediator):
		QtGui.QWidget.__init__(self)
		self.mediator = mediator
		self.db = db_open_dict("bdb:emboxerrctgui")
		self.qualitydb = db_open_dict("bdb:e2boxercache#quality")
		self.setWindowIcon(QtGui.QIcon(get_image_directory() +"green_boxes.png"))
		self.setWindowTitle("e2RCTboxer")
		
		# Here is where additional tools can be added
		self.manual_tool = ManualPicker(self.mediator, self.db)
		self.pair_picker_tool = PairPickerTool(self.mediator, self.db)
		
		vbox = QtGui.QVBoxLayout(self)
		
		self.tab_widget = QtGui.QTabWidget()
		self.tab_widget.addTab(self.get_main_tab(),"Main")
		self.tab_widget.addTab(self.get_processor_tab(),"Processor")
		self.tab_widget.addTab(self.get_filter_tab(),"Filter")
		vbox.addWidget(self.tab_widget)
		

		self.add_controls(vbox)			# add done button, among other things
		
		self.setLayout(vbox)
		self.add_picker_tools()
		self.updateGeometry()

		# Initialize tools
		self.tools_stacked_widget.setCurrentIndex(self.db.get("toolidx",dfl=0))
		self.current_tool_combobox.setCurrentIndex(self.db.get("toolidx",dfl=0))
Example #3
0
def extract_classav_vstack(inpath,classes,outpath,verbose=0):
	"""Extracts particles from class-averages into a virtual stack. inpath is the path to a file with class-averages,
	outpath is the output BDB, and classes is a list/tuple of class average numbers. Returns the number of images copied"""
	
	vstack=db_open_dict(outpath)		# open output db

	outn=0
	for avn in classes:
		av=EMData(inpath,avn)
		
		try:
			imgsrc=av["class_ptcl_src"]
			imgns=av["class_ptcl_idxs"]
		except:
			raise Exception,"Particle doesn't have source image info (%s,d)"%(inpath,avn)

		# If we are writing to a virtual stack
		try:
			src=db_open_dict(imgsrc)		# this is the source database file
		except:
			raise Exception,"Cannot open source images as BDB (%s)"%imgsrc
		
		for n in imgns:
			# here we make the new entry in the vstack
			d=src.get(n,nodata=1).get_attr_dict()		# get the metadata for the image
			d["data_path"]=src.get_data_path(n)			# this is how we avoid copying the image data
			vstack[outn]=d
			outn+=1

		if verbose>0 : print "Class %d: %d particles"%(avn,len(imgns))
		
	
	if verbose>0 : print "%d total particles written to %s"(outn,outpath)
	
	return outn
Example #4
0
def pspec_and_ctf_fit(options, debug=False):
    "Power spectrum and CTF fitting"
    global logid
    img_sets = []

    db_parms = db_open_dict("bdb:e2ctf.parms")

    for i, filename in enumerate(options.filenames):
        name = get_file_tag(filename)

        # compute the power spectra
        if debug: print "Processing ", filename
        apix = options.apix
        if apix <= 0: apix = EMData(filename, 0, 1)["apix_x"]
        im_1d, bg_1d, im_2d, bg_2d = powspec_with_bg(
            filename,
            radius=options.bgmask,
            edgenorm=not options.nonorm,
            oversamp=options.oversamp)
        ds = 1.0 / (apix * im_2d.get_ysize())
        if not options.nosmooth: bg_1d = smooth_bg(bg_1d, ds)

        Util.save_data(0, ds, bg_1d, "ctf.bgb4.txt")

        # Fit the CTF parameters
        if debug: print "Fit CTF"
        ctf = ctf_fit(im_1d,
                      bg_1d,
                      im_2d,
                      bg_2d,
                      options.voltage,
                      options.cs,
                      options.ac,
                      apix,
                      bgadj=not options.nosmooth,
                      autohp=options.autohp)
        db_parms[name] = [ctf.to_string(), im_1d, bg_1d, im_2d, bg_2d]

        if debug:
            Util.save_data(0, ds, im_1d, "ctf.fg.txt")
            Util.save_data(0, ds, bg_1d, "ctf.bg.txt")
            Util.save_data(0, ds, ctf.snr, "ctf.snr.txt")

        img_sets.append((filename, ctf, im_1d, bg_1d, im_2d, bg_2d))
        if logid: E2progress(logid, float(i + 1) / len(options.filenames))

    project_db = db_open_dict("bdb:project")
    project_db["global.microscope_voltage"] = options.voltage
    project_db["global.microscope_cs"] = options.cs
    project_db["global.apix"] = apix

    #db_close_dict("bdb:project")
    #db_close_dict("bdb:e2ctf.parms")

    return img_sets
Example #5
0
def write_e2ctf_output(options):
	"write wiener filtered and/or phase flipped particle data to the local database"
	global logid
	
	if options.phaseflip or options.wiener:
		db_parms=db_open_dict("bdb:e2ctf.parms")
		for i,filename in enumerate(options.filenames):
			name=base_name(filename)
			if debug: print("Processing ",filename)

			if options.phaseflip: phaseout="bdb:particles#"+name+"_ctf_flip"
			else: phaseout=None
		
			if options.wiener:
				if options.autohp: wienerout="bdb:particles#"+name+"_ctf_wiener_hp"
				else: wienerout="bdb:particles#"+name+"_ctf_wiener"
			else : wienerout=None

			#if options.phaseflip: phaseout=name+"_ctf_flip.hed"
			#else: phaseout=None
		
			#if options.wiener: wienerout=name+"_ctf_wiener.hed"
			#else : wienerout=None
			
			if phaseout : print("Phase image out: ",phaseout,"\t", end=' ')
			if wienerout : print("Wiener image out: ",wienerout, end=' ')
			print("")
			ctf=EMAN2Ctf()
			ctf.from_string(db_parms[name][0])
			process_stack(filename,phaseout,wienerout,not options.nonorm,options.oversamp,ctf,invert=options.invert)
			if logid : E2progress(logid,float(i+1)/len(options.filenames))
Example #6
0
def get_gui_arg_img_sets(filenames):
    '''
	returns the img_sets list required to intialized the GUI correctly
	'''

    img_sets = []
    if db_check_dict("bdb:e2ctf.parms"):
        db_parms = db_open_dict("bdb:e2ctf.parms", ro=True)
    else:
        return img_sets
    for file in filenames:
        name = get_file_tag(file)
        if not db_parms.has_key(name):
            print "error, you must first run auto fit before running the gui - there are no parameters for", name
            return []
        img_set = db_parms[name]
        ctf = EMAN2Ctf()
        ctf.from_string(
            img_set[0])  # convert to ctf object seeing as it's a string
        img_set[0] = ctf
        actual = [file]
        actual.extend(img_set)
        img_sets.append(actual)

    return img_sets
Example #7
0
    def get_params(self):
        params = []

        params = []

        self.table_tool = EMTomoPtclReportTool(self.project_dict,
                                               self.window_title)
        table = self.table_tool.get_particle_table_with_ptcls(self.ptcls_list)

        params.append(
            ParamDef(name="blurb",
                     vartype="text",
                     desc_short="",
                     desc_long="",
                     property=None,
                     defaultunits=self.__doc__,
                     choices=None))
        params.append(table)
        self.add_filt_params(params)
        db = db_open_dict(self.form_db_name)
        pname = ParamDef(
            "name",
            vartype="string",
            desc_short="Filtered set name",
            desc_long="The processed sets will be referred to by this name",
            property=None,
            defaultunits=db.get("name", dfl="filt"),
            choices=[])
        params.append(pname)
        return params
Example #8
0
def write_e2ctf_output(options):
	"write wiener filtered and/or phase flipped particle data to the local database"
	global logid
	
	if options.phaseflip or options.wiener:
		db_parms=db_open_dict("bdb:e2ctf.parms")
		for i,filename in enumerate(options.filenames):
			name=get_file_tag(filename)
			if debug: print "Processing ",filename

			if options.phaseflip: phaseout="bdb:particles#"+name+"_ctf_flip"
			else: phaseout=None
		
			if options.wiener:
				if options.autohp: wienerout="bdb:particles#"+name+"_ctf_wiener_hp"
				else: wienerout="bdb:particles#"+name+"_ctf_wiener"
			else : wienerout=None

			#if options.phaseflip: phaseout=name+"_ctf_flip.hed"
			#else: phaseout=None
		
			#if options.wiener: wienerout=name+"_ctf_wiener.hed"
			#else : wienerout=None
			
			if phaseout : print "Phase image out: ",phaseout,"\t",
			if wienerout : print "Wiener image out: ",wienerout,
			print ""
			ctf=EMAN2Ctf()
			ctf.from_string(db_parms[name][0])
			process_stack(filename,phaseout,wienerout,not options.nonorm,options.oversamp,ctf,invert=options.invert)
			if logid : E2progress(logid,float(i+1)/len(options.filenames))
Example #9
0
    def execute(self, progress_callback):
        '''
		Called to perform class averaging 
		May boot strap the original average, iteratively refines averages, aligns final average to ref 
		'''
        from EMAN2db import db_open_dict
        progress_callback(0)

        cache_name = self.data["probe"][1]
        cache = db_open_dict(cache_name)
        probe = cache[self.data["probe"][2]]

        cache_name = self.data["target"][1]
        cache = db_open_dict(cache_name)
        target = cache[self.data["target"][2]]

        return self.align_task.align(probe, target, progress_callback)
Example #10
0
	def execute(self,progress_callback):
		'''
		Called to perform class averaging 
		May boot strap the original average, iteratively refines averages, aligns final average to ref 
		'''
		from EMAN2db import db_open_dict
		progress_callback(0)
		
		cache_name=self.data["probe"][1]
		cache=db_open_dict(cache_name)
		probe = cache[self.data["probe"][2]]
		
		cache_name=self.data["target"][1]
		cache=db_open_dict(cache_name)
		target = cache[self.data["target"][2]]
		
		return self.align_task.align(probe, target, progress_callback)
Example #11
0
def send_bdb(stdout, path):
    "Sends a BDB to stdout as a set of compressed pickled key/value pairs, terminated by a None key"
    db = db_open_dict(path)
    keys = list(db.keys())
    for k in keys:
        write_obj(stdout, k)
        write_obj(stdout, db[k])
    write_obj(stdout, None)
    db.close()
Example #12
0
def send_bdb(stdout,path):
	"Sends a BDB to stdout as a set of compressed pickled key/value pairs, terminated by a None key"
	db=db_open_dict(path)
	keys=db.keys()
	for k in keys:
		write_obj(stdout,k)
		write_obj(stdout,db[k])
	write_obj(stdout,None)
	db.close()
Example #13
0
def pspec_and_ctf_fit(options,debug=False):
	"Power spectrum and CTF fitting"
	global logid
	img_sets=[]

	db_parms=db_open_dict("bdb:e2ctf.parms")

	for i,filename in enumerate(options.filenames):
		name=get_file_tag(filename)

		# compute the power spectra
		if debug : print "Processing ",filename
		apix=options.apix
		if apix<=0 : apix=EMData(filename,0,1)["apix_x"] 
		im_1d,bg_1d,im_2d,bg_2d=powspec_with_bg(filename,radius=options.bgmask,edgenorm=not options.nonorm,oversamp=options.oversamp)
		ds=1.0/(apix*im_2d.get_ysize())
		if not options.nosmooth : bg_1d=smooth_bg(bg_1d,ds)

		Util.save_data(0,ds,bg_1d,"ctf.bgb4.txt")

		# Fit the CTF parameters
		if debug : print "Fit CTF"
		ctf=ctf_fit(im_1d,bg_1d,im_2d,bg_2d,options.voltage,options.cs,options.ac,apix,bgadj=not options.nosmooth,autohp=options.autohp)
		db_parms[name]=[ctf.to_string(),im_1d,bg_1d,im_2d,bg_2d]

		if debug:
			Util.save_data(0,ds,im_1d,"ctf.fg.txt")
			Util.save_data(0,ds,bg_1d,"ctf.bg.txt")
			Util.save_data(0,ds,ctf.snr,"ctf.snr.txt")
			
		img_sets.append((filename,ctf,im_1d,bg_1d,im_2d,bg_2d))
		if logid : E2progress(logid,float(i+1)/len(options.filenames))
		
	project_db = db_open_dict("bdb:project")
	project_db["global.microscope_voltage"] = options.voltage
	project_db["global.microscope_cs"] = options.cs
	project_db["global.apix"] = apix
	
	#db_close_dict("bdb:project")
	#db_close_dict("bdb:e2ctf.parms")
	
	return img_sets
	def add_filt_params(self,params):
		'''
		'''
		db = db_open_dict(self.form_db_name)
		az = ParamDef(name="az",vartype="float",desc_short="Az rotation",desc_long="Rotate your model about the z axis",property=None,defaultunits=db.get("az",0.0),choices=None)
		alt = ParamDef(name="alt",vartype="float",desc_short="Alt rotation",desc_long="Rotate your model about the x axis",property=None,defaultunits=db.get("alt",0.0),choices=None)
		phi = ParamDef(name="phi",vartype="float",desc_short="Phi rotation",desc_long="Rotate your model about the z' axis",property=None,defaultunits=db.get("phi",0.0),choices=None)
		ppostproc =  ParamDef("filter",vartype="string",desc_short="Filter",desc_long="A post processor applied to the reconstructed model",property=None,defaultunits=db.get("filter",dfl="None"),choices=self.get_postprocess_filt_options())
		ppostprocargs =  ParamDef(name="filterargs",vartype="string",desc_short="params",desc_long="Parameters for the post processor see \"e2help.py processors\"",property=None,defaultunits=db.get("filterargs",dfl=""),choices=[])	
		
		params.append([ppostproc,ppostprocargs])
		params.append([az,alt,phi])
Example #15
0
	def add_filt_params(self,params):
		'''
		'''
		db = db_open_dict(self.form_db_name)
		az = ParamDef(name="az",vartype="float",desc_short="Az rotation",desc_long="Rotate your model about the z axis",property=None,defaultunits=db.get("az",0.0),choices=None)
		alt = ParamDef(name="alt",vartype="float",desc_short="Alt rotation",desc_long="Rotate your model about the x axis",property=None,defaultunits=db.get("alt",0.0),choices=None)
		phi = ParamDef(name="phi",vartype="float",desc_short="Phi rotation",desc_long="Rotate your model about the z' axis",property=None,defaultunits=db.get("phi",0.0),choices=None)
		ppostproc =  ParamDef("filter",vartype="string",desc_short="Filter",desc_long="A post processor applied to the reconstructed model",property=None,defaultunits=db.get("filter",dfl="None"),choices=self.get_postprocess_filt_options())
		ppostprocargs =  ParamDef(name="filterargs",vartype="string",desc_short="params",desc_long="Parameters for the post processor see \"e2help.py processors\"",property=None,defaultunits=db.get("filterargs",dfl=""),choices=[])	
		
		params.append([ppostproc,ppostprocargs])
		params.append([az,alt,phi])
Example #16
0
    def save_to_workflow_db(self, output_name):
        '''
		Used by the workflow to automatically add the names of averages to a list
		that is displayed in a form
		'''
        if self.options.dbls:
            pdb = db_open_dict("bdb:project")
            tmp_data = pdb.get(self.options.dbls, dfl={})
            s = {}
            s["Original Data"] = output_name
            tmp_data[output_name] = s
            # global.spr_ref_free_class_aves
            pdb[self.options.dbls] = tmp_data
Example #17
0
def recv_bdb(stdin,path):
	"Receives a BDB from stdin as a set of None terminated compressed pickled key/value pairs"
	try :os.makedirs(path[4:].split("#")[0])
	except: pass
#	sys.stderr.write("open %s\n"%path)
	db=db_open_dict(path)
	db.realopen()
	db.bdb.truncate()			# empty the existing database
	while (1):
		k=read_obj(stdin)
		if k==None or (isinstance(k,str) and len(k)==0) : break
		db[k]=read_obj(stdin)
	db.close()
Example #18
0
def recv_bdb(stdin,path):
	"Receives a BDB from stdin as a set of None terminated compressed pickled key/value pairs"
	try :os.makedirs(path[4:].split("#")[0])
	except: pass
#	sys.stderr.write("open %s\n"%path)
	db=db_open_dict(path)
	db.realopen()
	db.bdb.truncate()			# empty the existing database
	while (1):
		k=read_obj(stdin)
		if k==None or (isinstance(k,str) and len(k)==0) : break
		db[k]=read_obj(stdin)
	db.close()
Example #19
0
	def save_to_workflow_db(self,output_name):
		'''
		Used by the workflow to automatically add the names of averages to a list
		that is displayed in a form
		'''
		if self.options.dbls:
			pdb = db_open_dict("bdb:project")
			tmp_data = pdb.get(self.options.dbls, dfl={})
			s = {}
			s["Original Data"] = output_name
			tmp_data[output_name]= s
			# global.spr_ref_free_class_aves
			pdb[self.options.dbls] = tmp_data
Example #20
0
def db_compute_fsc(a, b, apix, pathname, dbname):
	fsc = a.calc_fourier_shell_correlation(b)
	third = len(fsc)/3
	xaxis = fsc[0:third]
	plot = fsc[third:2*third]
	error = fsc[2*third:]
		
	convergence_db_name = "bdb:"+pathname+"#convergence.results"
	db = db_open_dict(convergence_db_name)
	
	tmpaxis = [x/apix for x in xaxis]
	db[dbname] = [tmpaxis[1:],plot[1:]]
	#db["error_"+s+"_fsc"] = [xaxis,error] #we're not plotting the errors
	db_close_dict(convergence_db_name)
	def get_params(self):
		params = []
		db = db_open_dict(self.form_db_name)
		
		p,n = self.get_tomo_boxer_basic_table() # note n is unused, it's a refactoring residual		
		params.append(ParamDef(name="blurb",vartype="text",desc_short="Interactive use of e2spt_boxer",desc_long="",property=None,defaultunits=self.__doc__,choices=None))
		params.append(p)
		pylong = ParamDef(name="yshort",vartype="boolean",desc_short="yshort",desc_long="Use Z axis as normal",property=None,defaultunits=db.get("yshort",dfl=True),choices=None)
		pinmem = ParamDef(name="inmemory",vartype="boolean",desc_short="inmemory",desc_long="Load the tomo into memory",property=None,defaultunits=db.get("inmemory",dfl=True),choices=None)
		papix = ParamDef(name="apix",vartype="float",desc_short=u"\u212B per pixel", desc_long="Angstroms per pixel",property=None,defaultunits=db.get("apix",dfl=1.0),choices=None )
		params.append([pylong, pinmem, papix])
#		db = db_open_dict(self.form_db_name)
#		params.append(ParamDef(name="interface_boxsize",vartype="int",desc_short="Box size",desc_long="An integer value",property=None,defaultunits=db.get("interface_boxsize",dfl=128),choices=[]))
#		#db_close_dict(self.form_db_name)
		return params
	def get_params(self):
		params = []
		
		params = []
		
		self.table_tool = EMTomoPtclReportTool(self.project_dict,self.window_title)
		table = self.table_tool.get_particle_table_with_ptcls(self.ptcls_list)
		
		params.append(ParamDef(name="blurb",vartype="text",desc_short="",desc_long="",property=None,defaultunits=self.__doc__,choices=None))
		params.append(table)
		self.add_filt_params(params)
		db = db_open_dict(self.form_db_name)
		pname =  ParamDef("name",vartype="string",desc_short="Filtered set name",desc_long="The processed sets will be referred to by this name",property=None,defaultunits=db.get("name",dfl="filt"),choices=[])
		params.append(pname)
		return params
Example #23
0
	def get_params(self):
		params = []
		db = db_open_dict(self.form_db_name)
		
		p,n = self.get_tomo_boxer_basic_table() # note n is unused, it's a refactoring residual		
		params.append(ParamDef(name="blurb",vartype="text",desc_short="Interactive use of e2spt_boxer",desc_long="",property=None,defaultunits=self.__doc__,choices=None))
		params.append(p)
		pylong = ParamDef(name="yshort",vartype="boolean",desc_short="yshort",desc_long="Use Z axis as normal",property=None,defaultunits=db.get("yshort",dfl=True),choices=None)
		pinmem = ParamDef(name="inmemory",vartype="boolean",desc_short="inmemory",desc_long="Load the tomo into memory",property=None,defaultunits=db.get("inmemory",dfl=True),choices=None)
		papix = ParamDef(name="apix",vartype="float",desc_short=u"\u212B per pixel", desc_long="Angstroms per pixel",property=None,defaultunits=db.get("apix",dfl=1.0),choices=None )
		params.append([pylong, pinmem, papix])
#		db = db_open_dict(self.form_db_name)
#		params.append(ParamDef(name="interface_boxsize",vartype="int",desc_short="Box size",desc_long="An integer value",property=None,defaultunits=db.get("interface_boxsize",dfl=128),choices=[]))
#		#db_close_dict(self.form_db_name)
		return params
Example #24
0
    def get_params(self):
        ptcl_opts = EMPartSetOptions(tpr_ptcls_dict)
        self.particles_map, self.particles_name_map, choices, self.name_map = ptcl_opts.get_particle_options(
        )

        #if as_string:
        #params.append(ParamDef(name="particle_set_choice",vartype="string",desc_long="Choose the particle data set you wish to use to generate a starting data for e2refine2d",desc_short=title,property=None,defaultunits=db.get("particle_set_choice",dfl=""),choices=choices))
        db = db_open_dict(self.form_db_name)
        params = []
        params.append(
            ParamDef(name="blurb",
                     vartype="text",
                     desc_short="",
                     desc_long="",
                     property=None,
                     defaultunits=self.__doc__,
                     choices=None))
        if len(choices) > 0:
            if len(choices) == 1:
                vartype = "choice"
            else:
                vartype = "string"

            params.append(
                ParamDef(
                    name="tomo_filt_choice",
                    vartype=vartype,
                    desc_long="Choose from the filtered tomogram particles",
                    desc_short="Choose data",
                    property=None,
                    defaultunits=db.get("tomo_filt_choice", dfl=""),
                    choices=choices))
        else:
            params.append(
                ParamDef(
                    name="blurb2",
                    vartype="text",
                    desc_short="",
                    desc_long="",
                    property=None,
                    defaultunits=
                    "There are no particles in the project. Go back to earlier stages and box/import particles",
                    choices=None))
        return params
	def get_params(self):
		ptcl_opts = EMPartSetOptions(tpr_ptcls_dict)
		self.particles_map, self.particles_name_map, choices, self.name_map = ptcl_opts.get_particle_options()
		
		#if as_string:
		#params.append(ParamDef(name="particle_set_choice",vartype="string",desc_long="Choose the particle data set you wish to use to generate a starting data for e2refine2d",desc_short=title,property=None,defaultunits=db.get("particle_set_choice",dfl=""),choices=choices))
		db = db_open_dict(self.form_db_name)
		params = []
		params.append(ParamDef(name="blurb",vartype="text",desc_short="",desc_long="",property=None,defaultunits=self.__doc__,choices=None))
		if len(choices) > 0:
			if len(choices) == 1:
				vartype = "choice"
			else:
				vartype = "string"
				
			params.append(ParamDef(name="tomo_filt_choice",vartype=vartype,desc_long="Choose from the filtered tomogram particles",desc_short="Choose data",property=None,defaultunits=db.get("tomo_filt_choice",dfl=""),choices=choices))				
		else:
			params.append(ParamDef(name="blurb2",vartype="text",desc_short="",desc_long="",property=None,defaultunits="There are no particles in the project. Go back to earlier stages and box/import particles",choices=None))
		return params
Example #26
0
	def on_recall_params(self):
		if len(self.setlist.selectedItems()) == 0: return
			
		val = self.curset
		name = str(self.setlist.item(val).text())
		data = [name]
		name = get_file_tag(name)
		
		db_parms=db_open_dict("bdb:e2ctf.parms")
		if not db_parms.has_key(name):
			print "error, ctf parameters do not exist for:",name
#			
		
		data.extend(db_parms[name])
		ctf=EMAN2Ctf()
		ctf.from_string(data[1])
		data[1] = ctf
		
		self.data[val] = data
		self.newSet(self.curset)
Example #27
0
    def on_recall_params(self):
        if len(self.setlist.selectedItems()) == 0: return

        val = self.curset
        name = str(self.setlist.item(val).text())
        data = [name]
        name = get_file_tag(name)

        db_parms = db_open_dict("bdb:e2ctf.parms")
        if not db_parms.has_key(name):
            print "error, ctf parameters do not exist for:", name
#

        data.extend(db_parms[name])
        ctf = EMAN2Ctf()
        ctf.from_string(data[1])
        data[1] = ctf

        self.data[val] = data
        self.newSet(self.curset)
Example #28
0
	def on_save_params(self):
		
		if len(self.setlist.selectedItems()) == 0: return
			
		val = self.curset
		name = str(self.setlist.item(val).text())
		name = get_file_tag(name)
		
#		if not db_check_dict(name):
#			print "error, the db doesn't exist:",name
#			
		db_parms=db_open_dict("bdb:e2ctf.parms")
		ctf = self.data[val][1].to_string()
		output = []
		for i,val in enumerate(self.data[val]):
			# ignore i == 0 it's just the filename
			if i > 1:
				output.append(val)
			elif i == 1:
				output.append(ctf)

		db_parms[name] = output
Example #29
0
    def on_save_params(self):

        if len(self.setlist.selectedItems()) == 0: return

        val = self.curset
        name = str(self.setlist.item(val).text())
        name = get_file_tag(name)

        #		if not db_check_dict(name):
        #			print "error, the db doesn't exist:",name
        #
        db_parms = db_open_dict("bdb:e2ctf.parms")
        ctf = self.data[val][1].to_string()
        output = []
        for i, val in enumerate(self.data[val]):
            # ignore i == 0 it's just the filename
            if i > 1:
                output.append(val)
            elif i == 1:
                output.append(ctf)

        db_parms[name] = output
Example #30
0
def get_gui_arg_img_sets(filenames):
	'''
	returns the img_sets list required to intialized the GUI correctly
	'''
	
	img_sets = []
	if db_check_dict("bdb:e2ctf.parms"):
		db_parms=db_open_dict("bdb:e2ctf.parms",ro=True)
	else: return img_sets
	for file in filenames:
		name = get_file_tag(file)
		if not db_parms.has_key(name):
			print "error, you must first run auto fit before running the gui - there are no parameters for",name
			return []
		img_set = db_parms[name]
		ctf=EMAN2Ctf()
		ctf.from_string(img_set[0]) # convert to ctf object seeing as it's a string
		img_set[0] = ctf
		actual = [file]
		actual.extend(img_set)
		img_sets.append(actual)
		
	return img_sets
Example #31
0
	def get_params(self):
		table_params = []
		params = []
		db = db_open_dict(self.form_db_name)
		
		p,n = self.get_tomo_hunter_basic_table() # note n is unused, it's a refactoring residual		
		params.append(ParamDef(name="blurb",vartype="text",desc_short="Interactive use of tomohunter",desc_long="",property=None,defaultunits=self.__doc__,choices=None))
		params.append(p)
		psavesteps = ParamDef(name="savesteps",vartype="boolean",desc_short="Savesteps",desc_long="Save the steps",property=None,defaultunits=db.get("savesteps",dfl=True),choices=None)
		psaveali = ParamDef(name="saveali",vartype="boolean",desc_short="Saveali",desc_long="Save the alignments",property=None,defaultunits=db.get("saveali",dfl=True),choices=None)
		params.append([psavesteps, psaveali])
		piter = ParamDef(name="number of iterations",vartype="int",desc_short="Number of iterations", desc_long="Number of iterations",property=None,defaultunits=db.get("number of iterations",dfl=5),choices=None )
		pncoarse = ParamDef(name="coarse number",vartype="int",desc_short="Coarse Number", desc_long="Coarse number",property=None,defaultunits=db.get("coarse number",dfl=6),choices=None )
		params.append([piter, pncoarse])
		pshrink = ParamDef(name="Percentage to shrink",vartype="int",desc_short="Shrink", desc_long="Percentage to shrink",property=None,defaultunits=db.get("Percentage to shrink",dfl=2),choices=None )
		pshrinkrefine = ParamDef(name="Percentage to shrink, refinement",vartype="int",desc_short="Shrink refine", desc_long="Percentage to shrink for refinement",property=None,defaultunits=db.get("Percentage to shrink, refinement",dfl=2),choices=None )
		params.append([pshrink, pshrinkrefine])
		
		proc_data = dump_processors_list()
		masks = {}
		for key in list(proc_data.keys()):
			if len(key) >= 5 and key[:5] == "mask.":
				masks[key] = proc_data[key]
		masks["None"] = ["Choose this to stop masking from occurring"]
		pmask = ParamDef("mask",vartype="string",desc_short="Mask",desc_long="The mask to apply to the subtomos",property=None,defaultunits=db.get("mask",dfl="None"),choices=masks)
		pmaskparams = ParamDef("maskparams",vartype="string",desc_short="Params",desc_long="Parameters for the mask",property=None,defaultunits=db.get("maskparams",dfl=""))
		params.append([pmask, pmaskparams])
		
		filters = {}
		for key in list(proc_data.keys()):
			if len(key) >= 7 and key[:7] == "filter.":
				filters[key] = proc_data[key]
		filters["None"] = ["Choose this to stop filtering from occurring"]
		pfilter = ParamDef("filter",vartype="string",desc_short="Filter",desc_long="The Filter to apply to the subtomos",property=None,defaultunits=db.get("filter",dfl="None"),choices=filters)
		pfilterparams = ParamDef("filterparams",vartype="string",desc_short="Params",desc_long="Parameters for the filter",property=None,defaultunits=db.get("filterparams",dfl=""))
		params.append([pfilter, pfilterparams])

		ali_data = dump_aligners_list()
		caligners = {}
		for key in list(ali_data.keys()):
			if len(key) >= 19 and key[:19] == "rotate_translate_3d":
				caligners[key] = ali_data[key]
		pali = ParamDef("aligner3D",vartype="string",desc_short="Aligner3D",desc_long="The 3D course aligner",property=None,defaultunits=db.get("aligner3D",dfl="rotate_translate_3d"),choices=caligners)
		paliparams = ParamDef("ali3dparams",vartype="string",desc_short="Params",desc_long="Parameters for the 3D aligner",property=None,defaultunits=db.get("ali3dparams",dfl="search=10:delta=15:dphi=15:verbose=1"))
		params.append([pali, paliparams])
		
		craligners = {}
		for key in list(ali_data.keys()):
			if len(key) >= 9 and key[:9] == "refine_3d":
				craligners[key] = ali_data[key]
		prali = ParamDef("raligner3D",vartype="string",desc_short="RAligner3D",desc_long="The 3D refine aligner",property=None,defaultunits=db.get("raligner3D",dfl="refine_3d_grid"),choices=craligners)
		praliparams = ParamDef("rali3dparams",vartype="string",desc_short="Params",desc_long="Parameters for the 3D refine aligner",property=None,defaultunits=db.get("rali3dparams",dfl="verbose=1"))
		params.append([prali, praliparams])
		
		ppostfilter = ParamDef("postfilter",vartype="string",desc_short="PostFilter",desc_long="The Filter to apply to the average",property=None,defaultunits=db.get("postfilter",dfl="None"),choices=filters)
		ppostfilterparams = ParamDef("postfilterparams",vartype="string",desc_short="Params",desc_long="Parameters for the postfilter",property=None,defaultunits=db.get("postfilterparams",dfl=""))
		params.append([ppostfilter, ppostfilterparams])
		
		pparallel = ParamDef("parallel",vartype="string",desc_short="Parallel",desc_long="Parallelization parameters",property=None,defaultunits=db.get("parallel",dfl=""))
		params.append(pparallel)
			
		#pylong = ParamDef(name="yshort",vartype="boolean",desc_short="yshort",desc_long="Use Z axis as normal",property=None,defaultunits=1,choices=None)
		#pinmem = ParamDef(name="inmemory",vartype="boolean",desc_short="inmemory",desc_long="Load the tomo into memory",property=None,defaultunits=1,choices=None)
		#papix = ParamDef(name="apix",vartype="float",desc_short=u"\u212B per pixel", desc_long="Angstroms per pixel",property=None,defaultunits=1.0,choices=None )
		#params.append([pylong, pinmem, papix])
		#params.append(papix)
		table_params.append(["Main",params])
		
		advanced_params = []
		r,rn = self.get_tomo_hunter_ref_table() # note rn is unused, it's a refactoring residual
		advanced_params.append(ParamDef(name="blurb",vartype="text",desc_short="Interactive use tomo refs",desc_long="",property=None,defaultunits="Use this for selecting references. If no reference is chosen, then reference free alignment will be executed",choices=None))
		advanced_params.append(r)
		
		table_params.append(["References",advanced_params])
#		db = db_open_dict(self.form_db_name)
#		params.append(ParamDef(name="interface_boxsize",vartype="int",desc_short="Box size",desc_long="An integer value",property=None,defaultunits=db.get("interface_boxsize",dfl=128),choices=[]))
#		#db_close_dict(self.form_db_name)
		return table_params
Example #32
0
from math import *
from os import *

import EMAN2fsc
from EMAN2db import db_open_dict
from EMAN2 import *

if len(sys.argv) > 1: dirs = sys.argv[1:]
else: dirs = [i for i in os.listdir(".") if "refine_" == i[:7] and len(i) == 9]

# iterates over all refine directories
for d in dirs:

    print("Updating ", d)

    db2 = db_open_dict("bdb:%s#register" % d, True)
    try:
        initm = db2["cmd_dict"]["model"]
        print(" Initial model ", initm)
    except:
        print("No initial model recorded")
        initm = None

    db = db_open_dict("bdb:%s#convergence.results" % d)

    if d[-5:] == "_even":
        # For e2refine_evenodd results
        db2 = db_open_dict("bdb:%s#convergence.results" % d[:-5])
        tdflist = [
            i for i in db_list_dicts("bdb:%s" % d) if "threed_filt" in i
        ]
Example #33
0
def shiftali_MPI(stack, maskfile=None, maxit=100, CTF=False, snr=1.0, Fourvar=False, search_rng=-1, oneDx=False, search_rng_y=-1):  
	from applications import MPI_start_end
	from utilities    import model_circle, model_blank, get_image, peak_search, get_im
	from utilities    import reduce_EMData_to_root, bcast_EMData_to_all, send_attr_dict, file_type, bcast_number_to_all, bcast_list_to_all
	from statistics   import varf2d_MPI
	from fundamentals import fft, ccf, rot_shift3D, rot_shift2D
	from utilities    import get_params2D, set_params2D
	from utilities    import print_msg, print_begin_msg, print_end_msg
	import os
	import sys
	from mpi 	  	  import mpi_init, mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD
	from mpi 	  	  import mpi_reduce, mpi_bcast, mpi_barrier, mpi_gatherv
	from mpi 	  	  import MPI_SUM, MPI_FLOAT, MPI_INT
	from EMAN2	  	  import Processor
	from time         import time	
	
	number_of_proc = mpi_comm_size(MPI_COMM_WORLD)
	myid = mpi_comm_rank(MPI_COMM_WORLD)
	main_node = 0
		
	ftp = file_type(stack)

	if myid == main_node:
		print_begin_msg("shiftali_MPI")

	max_iter=int(maxit)

	if myid == main_node:
		if ftp == "bdb":
			from EMAN2db import db_open_dict
			dummy = db_open_dict(stack, True)
		nima = EMUtil.get_image_count(stack)
	else:
		nima = 0
	nima = bcast_number_to_all(nima, source_node = main_node)
	list_of_particles = range(nima)
	
	image_start, image_end = MPI_start_end(nima, number_of_proc, myid)
	list_of_particles = list_of_particles[image_start: image_end]

	# read nx and ctf_app (if CTF) and broadcast to all nodes
	if myid == main_node:
		ima = EMData()
		ima.read_image(stack, list_of_particles[0], True)
		nx = ima.get_xsize()
		ny = ima.get_ysize()
		if CTF:	ctf_app = ima.get_attr_default('ctf_applied', 2)
		del ima
	else:
		nx = 0
		ny = 0
		if CTF:	ctf_app = 0
	nx = bcast_number_to_all(nx, source_node = main_node)
	ny = bcast_number_to_all(ny, source_node = main_node)
	if CTF:
		ctf_app = bcast_number_to_all(ctf_app, source_node = main_node)
		if ctf_app > 0:	ERROR("data cannot be ctf-applied", "shiftali_MPI", 1, myid)

	if maskfile == None:
		mrad = min(nx, ny)
		mask = model_circle(mrad//2-2, nx, ny)
	else:
		mask = get_im(maskfile)

	if CTF:
		from filter import filt_ctf
		from morphology   import ctf_img
		ctf_abs_sum = EMData(nx, ny, 1, False)
		ctf_2_sum = EMData(nx, ny, 1, False)
	else:
		ctf_2_sum = None

	from global_def import CACHE_DISABLE
	if CACHE_DISABLE:
		data = EMData.read_images(stack, list_of_particles)
	else:
		for i in xrange(number_of_proc):
			if myid == i:
				data = EMData.read_images(stack, list_of_particles)
			if ftp == "bdb": mpi_barrier(MPI_COMM_WORLD)


	for im in xrange(len(data)):
		data[im].set_attr('ID', list_of_particles[im])
		st = Util.infomask(data[im], mask, False)
		data[im] -= st[0]
		if CTF:
			ctf_params = data[im].get_attr("ctf")
			ctfimg = ctf_img(nx, ctf_params, ny=ny)
			Util.add_img2(ctf_2_sum, ctfimg)
			Util.add_img_abs(ctf_abs_sum, ctfimg)

	if CTF:
		reduce_EMData_to_root(ctf_2_sum, myid, main_node)
		reduce_EMData_to_root(ctf_abs_sum, myid, main_node)
	else:  ctf_2_sum = None
	if CTF:
		if myid != main_node:
			del ctf_2_sum
			del ctf_abs_sum
		else:
			temp = EMData(nx, ny, 1, False)
			for i in xrange(0,nx,2):
				for j in xrange(ny):
					temp.set_value_at(i,j,snr)
			Util.add_img(ctf_2_sum, temp)
			del temp

	total_iter = 0

	# apply initial xform.align2d parameters stored in header
	init_params = []
	for im in xrange(len(data)):
		t = data[im].get_attr('xform.align2d')
		init_params.append(t)
		p = t.get_params("2d")
		data[im] = rot_shift2D(data[im], p['alpha'], sx=p['tx'], sy=p['ty'], mirror=p['mirror'], scale=p['scale'])

	# fourier transform all images, and apply ctf if CTF
	for im in xrange(len(data)):
		if CTF:
			ctf_params = data[im].get_attr("ctf")
			data[im] = filt_ctf(fft(data[im]), ctf_params)
		else:
			data[im] = fft(data[im])

	sx_sum=0
	sy_sum=0
	sx_sum_total=0
	sy_sum_total=0
	shift_x = [0.0]*len(data)
	shift_y = [0.0]*len(data)
	ishift_x = [0.0]*len(data)
	ishift_y = [0.0]*len(data)

	for Iter in xrange(max_iter):
		if myid == main_node:
			start_time = time()
			print_msg("Iteration #%4d\n"%(total_iter))
		total_iter += 1
		avg = EMData(nx, ny, 1, False)
		for im in data:  Util.add_img(avg, im)

		reduce_EMData_to_root(avg, myid, main_node)

		if myid == main_node:
			if CTF:
				tavg = Util.divn_filter(avg, ctf_2_sum)
			else:	 tavg = Util.mult_scalar(avg, 1.0/float(nima))
		else:
			tavg = EMData(nx, ny, 1, False)                               

		if Fourvar:
			bcast_EMData_to_all(tavg, myid, main_node)
			vav, rvar = varf2d_MPI(myid, data, tavg, mask, "a", CTF)

		if myid == main_node:
			if Fourvar:
				tavg    = fft(Util.divn_img(fft(tavg), vav))
				vav_r	= Util.pack_complex_to_real(vav)

			# normalize and mask tavg in real space
			tavg = fft(tavg)
			stat = Util.infomask( tavg, mask, False ) 
			tavg -= stat[0]
			Util.mul_img(tavg, mask)
			# For testing purposes: shift tavg to some random place and see if the centering is still correct
			#tavg = rot_shift3D(tavg,sx=3,sy=-4)
			tavg = fft(tavg)

		if Fourvar:  del vav
		bcast_EMData_to_all(tavg, myid, main_node)

		sx_sum=0 
		sy_sum=0 
		if search_rng > 0: nwx = 2*search_rng+1
		else:              nwx = nx
		
		if search_rng_y > 0: nwy = 2*search_rng_y+1
		else:                nwy = ny

		not_zero = 0
		for im in xrange(len(data)):
			if oneDx:
				ctx = Util.window(ccf(data[im],tavg),nwx,1)
				p1  = peak_search(ctx)
				p1_x = -int(p1[0][3])
				ishift_x[im] = p1_x
				sx_sum += p1_x
			else:
				p1 = peak_search(Util.window(ccf(data[im],tavg), nwx,nwy))
				p1_x = -int(p1[0][4])
				p1_y = -int(p1[0][5])
				ishift_x[im] = p1_x
				ishift_y[im] = p1_y
				sx_sum += p1_x
				sy_sum += p1_y

			if not_zero == 0:
				if (not(ishift_x[im] == 0.0)) or (not(ishift_y[im] == 0.0)):
					not_zero = 1

		sx_sum = mpi_reduce(sx_sum, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD)  

		if not oneDx:
			sy_sum = mpi_reduce(sy_sum, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD)

		if myid == main_node:
			sx_sum_total = int(sx_sum[0])
			if not oneDx:
				sy_sum_total = int(sy_sum[0])
		else:
			sx_sum_total = 0	
			sy_sum_total = 0

		sx_sum_total = bcast_number_to_all(sx_sum_total, source_node = main_node)

		if not oneDx:
			sy_sum_total = bcast_number_to_all(sy_sum_total, source_node = main_node)

		sx_ave = round(float(sx_sum_total)/nima)
		sy_ave = round(float(sy_sum_total)/nima)
		for im in xrange(len(data)): 
			p1_x = ishift_x[im] - sx_ave
			p1_y = ishift_y[im] - sy_ave
			params2 = {"filter_type" : Processor.fourier_filter_types.SHIFT, "x_shift" : p1_x, "y_shift" : p1_y, "z_shift" : 0.0}
			data[im] = Processor.EMFourierFilter(data[im], params2)
			shift_x[im] += p1_x
			shift_y[im] += p1_y
		# stop if all shifts are zero
		not_zero = mpi_reduce(not_zero, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD)  
		if myid == main_node:
			not_zero_all = int(not_zero[0])
		else:
			not_zero_all = 0
		not_zero_all = bcast_number_to_all(not_zero_all, source_node = main_node)

		if myid == main_node:
			print_msg("Time of iteration = %12.2f\n"%(time()-start_time))
			start_time = time()

		if not_zero_all == 0:  break

	#for im in xrange(len(data)): data[im] = fft(data[im])  This should not be required as only header information is used
	# combine shifts found with the original parameters
	for im in xrange(len(data)):		
		t0 = init_params[im]
		t1 = Transform()
		t1.set_params({"type":"2D","alpha":0,"scale":t0.get_scale(),"mirror":0,"tx":shift_x[im],"ty":shift_y[im]})
		# combine t0 and t1
		tt = t1*t0
		data[im].set_attr("xform.align2d", tt)  

	# write out headers and STOP, under MPI writing has to be done sequentially
	mpi_barrier(MPI_COMM_WORLD)
	par_str = ["xform.align2d", "ID"]
	if myid == main_node:
		from utilities import file_type
		if(file_type(stack) == "bdb"):
			from utilities import recv_attr_dict_bdb
			recv_attr_dict_bdb(main_node, stack, data, par_str, image_start, image_end, number_of_proc)
		else:
			from utilities import recv_attr_dict
			recv_attr_dict(main_node, stack, data, par_str, image_start, image_end, number_of_proc)
		
	else:           send_attr_dict(main_node, data, par_str, image_start, image_end)
	if myid == main_node: print_end_msg("shiftali_MPI")				
Example #34
0
def main():

	def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror):
		if mirror:
			m = 1
			alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 540.0-psi, 0, 0, 1.0)
		else:
			m = 0
			alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 360.0-psi, 0, 0, 1.0)
		return  alpha, sx, sy, m
	
	progname = os.path.basename(sys.argv[0])
	usage = progname + " prj_stack  --ave2D= --var2D=  --ave3D= --var3D= --img_per_grp= --fl=0.2 --aa=0.1  --sym=symmetry --CTF"
	parser = OptionParser(usage, version=SPARXVERSION)

	parser.add_option("--ave2D",		type="string"	   ,	default=False,				help="write to the disk a stack of 2D averages")
	parser.add_option("--var2D",		type="string"	   ,	default=False,				help="write to the disk a stack of 2D variances")
	parser.add_option("--ave3D",		type="string"	   ,	default=False,				help="write to the disk reconstructed 3D average")
	parser.add_option("--var3D",		type="string"	   ,	default=False,				help="compute 3D variability (time consuming!)")
	parser.add_option("--img_per_grp",	type="int"         ,	default=10   ,				help="number of neighbouring projections")
	parser.add_option("--no_norm",		action="store_true",	default=False,				help="do not use normalization")
	parser.add_option("--radiusvar", 	type="int"         ,	default=-1   ,				help="radius for 3D var" )
	parser.add_option("--npad",			type="int"         ,	default=2    ,				help="number of time to pad the original images")
	parser.add_option("--sym" , 		type="string"      ,	default="c1" ,				help="symmetry")
	parser.add_option("--fl",			type="float"       ,	default=0.0  ,				help="stop-band frequency (Default - no filtration)")
	parser.add_option("--aa",			type="float"       ,	default=0.0  ,				help="fall off of the filter (Default - no filtration)")
	parser.add_option("--CTF",			action="store_true",	default=False,				help="use CFT correction")
	parser.add_option("--VERBOSE",		action="store_true",	default=False,				help="Long output for debugging")
	#parser.add_option("--MPI" , 		action="store_true",	default=False,				help="use MPI version")
	#parser.add_option("--radiuspca", 	type="int"         ,	default=-1   ,				help="radius for PCA" )
	#parser.add_option("--iter", 		type="int"         ,	default=40   ,				help="maximum number of iterations (stop criterion of reconstruction process)" )
	#parser.add_option("--abs", 			type="float"       ,	default=0.0  ,				help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" )
	#parser.add_option("--squ", 			type="float"       ,	default=0.0  ,				help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" )
	parser.add_option("--VAR" , 		action="store_true",	default=False,				help="stack on input consists of 2D variances (Default False)")
	parser.add_option("--decimate",     type="float",           default=1.0,                 help="image decimate rate, a number large than 1. default is 1")
	parser.add_option("--window",       type="int",             default=0,                   help="reduce images to a small image size without changing pixel_size. Default value is zero.")
	#parser.add_option("--SND",			action="store_true",	default=False,				help="compute squared normalized differences (Default False)")
	parser.add_option("--nvec",			type="int"         ,	default=0    ,				help="number of eigenvectors, default = 0 meaning no PCA calculated")
	parser.add_option("--symmetrize",	action="store_true",	default=False,				help="Prepare input stack for handling symmetry (Default False)")
	
	(options,args) = parser.parse_args()
	#####
	from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, mpi_recv, MPI_COMM_WORLD, MPI_TAG_UB
	from mpi import mpi_barrier, mpi_reduce, mpi_bcast, mpi_send, MPI_FLOAT, MPI_SUM, MPI_INT, MPI_MAX
	from applications import MPI_start_end
	from reconstruction import recons3d_em, recons3d_em_MPI
	from reconstruction	import recons3d_4nn_MPI, recons3d_4nn_ctf_MPI
	from utilities import print_begin_msg, print_end_msg, print_msg
	from utilities import read_text_row, get_image, get_im
	from utilities import bcast_EMData_to_all, bcast_number_to_all
	from utilities import get_symt

	#  This is code for handling symmetries by the above program.  To be incorporated. PAP 01/27/2015

	from EMAN2db import db_open_dict
	
	if options.symmetrize :
		try:
			sys.argv = mpi_init(len(sys.argv), sys.argv)
			try:	
				number_of_proc = mpi_comm_size(MPI_COMM_WORLD)
				if( number_of_proc > 1 ):
					ERROR("Cannot use more than one CPU for symmetry prepration","sx3dvariability",1)
			except:
				pass
		except:
			pass

		#  Input
		#instack = "Clean_NORM_CTF_start_wparams.hdf"
		#instack = "bdb:data"
		instack = args[0]
		sym = options.sym
		if( sym == "c1" ):
			ERROR("Thre is no need to symmetrize stack for C1 symmetry","sx3dvariability",1)

		if(instack[:4] !="bdb:"):
			stack = "bdb:data"
			delete_bdb(stack)
			cmdexecute("sxcpy.py  "+instack+"  "+stack)
		else:
			stack = instack

		qt = EMUtil.get_all_attributes(stack,'xform.projection')

		na = len(qt)
		ts = get_symt(sym)
		ks = len(ts)
		angsa = [None]*na
		for k in xrange(ks):
			delete_bdb("bdb:Q%1d"%k)
			cmdexecute("e2bdb.py  "+stack+"  --makevstack=bdb:Q%1d"%k)
			DB = db_open_dict("bdb:Q%1d"%k)
			for i in xrange(na):
				ut = qt[i]*ts[k]
				DB.set_attr(i, "xform.projection", ut)
				#bt = ut.get_params("spider")
				#angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]]
			#write_text_row(angsa, 'ptsma%1d.txt'%k)
			#cmdexecute("e2bdb.py  "+stack+"  --makevstack=bdb:Q%1d"%k)
			#cmdexecute("sxheader.py  bdb:Q%1d  --params=xform.projection  --import=ptsma%1d.txt"%(k,k))
			DB.close()
		delete_bdb("bdb:sdata")
		cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q")
		#cmdexecute("ls  EMAN2DB/sdata*")
		a = get_im("bdb:sdata")
		a.set_attr("variabilitysymmetry",sym)
		a.write_image("bdb:sdata")


	else:

		sys.argv = mpi_init(len(sys.argv), sys.argv)
		myid     = mpi_comm_rank(MPI_COMM_WORLD)
		number_of_proc = mpi_comm_size(MPI_COMM_WORLD)
		main_node = 0

		if len(args) == 1:
			stack = args[0]
		else:
			print( "usage: " + usage)
			print( "Please run '" + progname + " -h' for detailed options")
			return 1

		t0 = time()
	
		# obsolete flags
		options.MPI = True
		options.nvec = 0
		options.radiuspca = -1
		options.iter = 40
		options.abs = 0.0
		options.squ = 0.0

		if options.fl > 0.0 and options.aa == 0.0:
			ERROR("Fall off has to be given for the low-pass filter", "sx3dvariability", 1, myid)
		if options.VAR and options.SND:
			ERROR("Only one of var and SND can be set!", "sx3dvariability", myid)
			exit()
		if options.VAR and (options.ave2D or options.ave3D or options.var2D): 
			ERROR("When VAR is set, the program cannot output ave2D, ave3D or var2D", "sx3dvariability", 1, myid)
			exit()
		#if options.SND and (options.ave2D or options.ave3D):
		#	ERROR("When SND is set, the program cannot output ave2D or ave3D", "sx3dvariability", 1, myid)
		#	exit()
		if options.nvec > 0 :
			ERROR("PCA option not implemented", "sx3dvariability", 1, myid)
			exit()
		if options.nvec > 0 and options.ave3D == None:
			ERROR("When doing PCA analysis, one must set ave3D", "sx3dvariability", myid=myid)
			exit()
		import string
		options.sym = options.sym.lower()
		 
		if global_def.CACHE_DISABLE:
			from utilities import disable_bdb_cache
			disable_bdb_cache()
		global_def.BATCH = True

		if myid == main_node:
			print_begin_msg("sx3dvariability")
			print_msg("%-70s:  %s\n"%("Input stack", stack))
	
		img_per_grp = options.img_per_grp
		nvec = options.nvec
		radiuspca = options.radiuspca

		symbaselen = 0
		if myid == main_node:
			nima = EMUtil.get_image_count(stack)
			img  = get_image(stack)
			nx   = img.get_xsize()
			ny   = img.get_ysize()
			if options.sym != "c1" :
				imgdata = get_im(stack)
				try:
					i = imgdata.get_attr("variabilitysymmetry")
					if(i != options.sym):
						ERROR("The symmetry provided does not agree with the symmetry of the input stack", "sx3dvariability", myid=myid)
				except:
					ERROR("Input stack is not prepared for symmetry, please follow instructions", "sx3dvariability", myid=myid)
				from utilities import get_symt
				i = len(get_symt(options.sym))
				if((nima/i)*i != nima):
					ERROR("The length of the input stack is incorrect for symmetry processing", "sx3dvariability", myid=myid)
				symbaselen = nima/i
			else:  symbaselen = nima
		else:
			nima = 0
			nx = 0
			ny = 0
		nima = bcast_number_to_all(nima)
		nx   = bcast_number_to_all(nx)
		ny   = bcast_number_to_all(ny)
		Tracker ={}
		Tracker["nx"]  =nx
		Tracker["ny"]  =ny
		Tracker["total_stack"]=nima
		if options.decimate==1.:
			if options.window !=0:
				nx = options.window
				ny = options.window
		else:
			if options.window ==0:
				nx = int(nx/options.decimate)
				ny = int(ny/options.decimate)
			else:
				nx = int(options.window/options.decimate)
				ny = nx
		symbaselen = bcast_number_to_all(symbaselen)
		if radiuspca == -1: radiuspca = nx/2-2

		if myid == main_node:
			print_msg("%-70s:  %d\n"%("Number of projection", nima))
		
		img_begin, img_end = MPI_start_end(nima, number_of_proc, myid)
		"""
		if options.SND:
			from projection		import prep_vol, prgs
			from statistics		import im_diff
			from utilities		import get_im, model_circle, get_params_proj, set_params_proj
			from utilities		import get_ctf, generate_ctf
			from filter			import filt_ctf
		
			imgdata = EMData.read_images(stack, range(img_begin, img_end))

			if options.CTF:
				vol = recons3d_4nn_ctf_MPI(myid, imgdata, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1)
			else:
				vol = recons3d_4nn_MPI(myid, imgdata, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1)

			bcast_EMData_to_all(vol, myid)
			volft, kb = prep_vol(vol)

			mask = model_circle(nx/2-2, nx, ny)
			varList = []
			for i in xrange(img_begin, img_end):
				phi, theta, psi, s2x, s2y = get_params_proj(imgdata[i-img_begin])
				ref_prj = prgs(volft, kb, [phi, theta, psi, -s2x, -s2y])
				if options.CTF:
					ctf_params = get_ctf(imgdata[i-img_begin])
					ref_prj = filt_ctf(ref_prj, generate_ctf(ctf_params))
				diff, A, B = im_diff(ref_prj, imgdata[i-img_begin], mask)
				diff2 = diff*diff
				set_params_proj(diff2, [phi, theta, psi, s2x, s2y])
				varList.append(diff2)
			mpi_barrier(MPI_COMM_WORLD)
		"""
		if options.VAR:
			#varList = EMData.read_images(stack, range(img_begin, img_end))
			varList = []
			this_image = EMData()
			for index_of_particle in xrange(img_begin,img_end):
				this_image.read_image(stack,index_of_particle)
				varList.append(image_decimate_window_xform_ctf(img,options.decimate,options.window,options.CTF))
		else:
			from utilities		import bcast_number_to_all, bcast_list_to_all, send_EMData, recv_EMData
			from utilities		import set_params_proj, get_params_proj, params_3D_2D, get_params2D, set_params2D, compose_transform2
			from utilities		import model_blank, nearest_proj, model_circle
			from applications	import pca
			from statistics		import avgvar, avgvar_ctf, ccc
			from filter		    import filt_tanl
			from morphology		import threshold, square_root
			from projection 	import project, prep_vol, prgs
			from sets		    import Set

			if myid == main_node:
				t1 = time()
				proj_angles = []
				aveList = []
				tab = EMUtil.get_all_attributes(stack, 'xform.projection')
				for i in xrange(nima):
					t     = tab[i].get_params('spider')
					phi   = t['phi']
					theta = t['theta']
					psi   = t['psi']
					x     = theta
					if x > 90.0: x = 180.0 - x
					x = x*10000+psi
					proj_angles.append([x, t['phi'], t['theta'], t['psi'], i])
				t2 = time()
				print_msg("%-70s:  %d\n"%("Number of neighboring projections", img_per_grp))
				print_msg("...... Finding neighboring projections\n")
				if options.VERBOSE:
					print "Number of images per group: ", img_per_grp
					print "Now grouping projections"
				proj_angles.sort()

			proj_angles_list = [0.0]*(nima*4)
			if myid == main_node:
				for i in xrange(nima):
					proj_angles_list[i*4]   = proj_angles[i][1]
					proj_angles_list[i*4+1] = proj_angles[i][2]
					proj_angles_list[i*4+2] = proj_angles[i][3]
					proj_angles_list[i*4+3] = proj_angles[i][4]
			proj_angles_list = bcast_list_to_all(proj_angles_list, myid, main_node)
			proj_angles = []
			for i in xrange(nima):
				proj_angles.append([proj_angles_list[i*4], proj_angles_list[i*4+1], proj_angles_list[i*4+2], int(proj_angles_list[i*4+3])])
			del proj_angles_list

			proj_list, mirror_list = nearest_proj(proj_angles, img_per_grp, range(img_begin, img_end))

			all_proj = Set()
			for im in proj_list:
				for jm in im:
					all_proj.add(proj_angles[jm][3])

			all_proj = list(all_proj)
			if options.VERBOSE:
				print "On node %2d, number of images needed to be read = %5d"%(myid, len(all_proj))

			index = {}
			for i in xrange(len(all_proj)): index[all_proj[i]] = i
			mpi_barrier(MPI_COMM_WORLD)

			if myid == main_node:
				print_msg("%-70s:  %.2f\n"%("Finding neighboring projections lasted [s]", time()-t2))
				print_msg("%-70s:  %d\n"%("Number of groups processed on the main node", len(proj_list)))
				if options.VERBOSE:
					print "Grouping projections took: ", (time()-t2)/60	, "[min]"
					print "Number of groups on main node: ", len(proj_list)
			mpi_barrier(MPI_COMM_WORLD)

			if myid == main_node:
				print_msg("...... calculating the stack of 2D variances \n")
				if options.VERBOSE:
					print "Now calculating the stack of 2D variances"

			proj_params = [0.0]*(nima*5)
			aveList = []
			varList = []				
			if nvec > 0:
				eigList = [[] for i in xrange(nvec)]

			if options.VERBOSE: 	print "Begin to read images on processor %d"%(myid)
			ttt = time()
			#imgdata = EMData.read_images(stack, all_proj)
			img     = EMData()
			imgdata = []
			for index_of_proj in xrange(len(all_proj)):
				img.read_image(stack, all_proj[index_of_proj])
				dmg = image_decimate_window_xform_ctf(img,options.decimate,options.window,options.CTF)
				#print dmg.get_xsize(), "init"
				imgdata.append(dmg)
			if options.VERBOSE:
				print "Reading images on processor %d done, time = %.2f"%(myid, time()-ttt)
				print "On processor %d, we got %d images"%(myid, len(imgdata))
			mpi_barrier(MPI_COMM_WORLD)

			'''	
			imgdata2 = EMData.read_images(stack, range(img_begin, img_end))
			if options.fl > 0.0:
				for k in xrange(len(imgdata2)):
					imgdata2[k] = filt_tanl(imgdata2[k], options.fl, options.aa)
			if options.CTF:
				vol = recons3d_4nn_ctf_MPI(myid, imgdata2, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1)
			else:
				vol = recons3d_4nn_MPI(myid, imgdata2, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1)
			if myid == main_node:
				vol.write_image("vol_ctf.hdf")
				print_msg("Writing to the disk volume reconstructed from averages as		:  %s\n"%("vol_ctf.hdf"))
			del vol, imgdata2
			mpi_barrier(MPI_COMM_WORLD)
			'''
			from applications import prepare_2d_forPCA
			from utilities import model_blank
			for i in xrange(len(proj_list)):
				ki = proj_angles[proj_list[i][0]][3]
				if ki >= symbaselen:  continue
				mi = index[ki]
				phiM, thetaM, psiM, s2xM, s2yM = get_params_proj(imgdata[mi])

				grp_imgdata = []
				for j in xrange(img_per_grp):
					mj = index[proj_angles[proj_list[i][j]][3]]
					phi, theta, psi, s2x, s2y = get_params_proj(imgdata[mj])
					alpha, sx, sy, mirror = params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror_list[i][j])
					if thetaM <= 90:
						if mirror == 0:  alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, phiM-phi, 0.0, 0.0, 1.0)
						else:            alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, 180-(phiM-phi), 0.0, 0.0, 1.0)
					else:
						if mirror == 0:  alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, -(phiM-phi), 0.0, 0.0, 1.0)
						else:            alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, -(180-(phiM-phi)), 0.0, 0.0, 1.0)
					set_params2D(imgdata[mj], [alpha, sx, sy, mirror, 1.0])
					grp_imgdata.append(imgdata[mj])
					#print grp_imgdata[j].get_xsize(), imgdata[mj].get_xsize()

				if not options.no_norm:
					#print grp_imgdata[j].get_xsize()
					mask = model_circle(nx/2-2, nx, nx)
					for k in xrange(img_per_grp):
						ave, std, minn, maxx = Util.infomask(grp_imgdata[k], mask, False)
						grp_imgdata[k] -= ave
						grp_imgdata[k] /= std
					del mask

				if options.fl > 0.0:
					from filter import filt_ctf, filt_table
					from fundamentals import fft, window2d
					nx2 = 2*nx
					ny2 = 2*ny
					if options.CTF:
						from utilities import pad
						for k in xrange(img_per_grp):
							grp_imgdata[k] = window2d(fft( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa) ),nx,ny)
							#grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny)
							#grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa)
					else:
						for k in xrange(img_per_grp):
							grp_imgdata[k] = filt_tanl( grp_imgdata[k], options.fl, options.aa)
							#grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny)
							#grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa)
				else:
					from utilities import pad, read_text_file
					from filter import filt_ctf, filt_table
					from fundamentals import fft, window2d
					nx2 = 2*nx
					ny2 = 2*ny
					if options.CTF:
						from utilities import pad
						for k in xrange(img_per_grp):
							grp_imgdata[k] = window2d( fft( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1) ) , nx,ny)
							#grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny)
							#grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa)

				'''
				if i < 10 and myid == main_node:
					for k in xrange(10):
						grp_imgdata[k].write_image("grp%03d.hdf"%i, k)
				'''
				"""
				if myid == main_node and i==0:
					for pp in xrange(len(grp_imgdata)):
						grp_imgdata[pp].write_image("pp.hdf", pp)
				"""
				ave, grp_imgdata = prepare_2d_forPCA(grp_imgdata)
				"""
				if myid == main_node and i==0:
					for pp in xrange(len(grp_imgdata)):
						grp_imgdata[pp].write_image("qq.hdf", pp)
				"""

				var = model_blank(nx,ny)
				for q in grp_imgdata:  Util.add_img2( var, q )
				Util.mul_scalar( var, 1.0/(len(grp_imgdata)-1))
				# Switch to std dev
				var = square_root(threshold(var))
				#if options.CTF:	ave, var = avgvar_ctf(grp_imgdata, mode="a")
				#else:	            ave, var = avgvar(grp_imgdata, mode="a")
				"""
				if myid == main_node:
					ave.write_image("avgv.hdf",i)
					var.write_image("varv.hdf",i)
				"""
			
				set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0])
				set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0])

				aveList.append(ave)
				varList.append(var)

				if options.VERBOSE:
					print "%5.2f%% done on processor %d"%(i*100.0/len(proj_list), myid)
				if nvec > 0:
					eig = pca(input_stacks=grp_imgdata, subavg="", mask_radius=radiuspca, nvec=nvec, incore=True, shuffle=False, genbuf=True)
					for k in xrange(nvec):
						set_params_proj(eig[k], [phiM, thetaM, 0.0, 0.0, 0.0])
						eigList[k].append(eig[k])
					"""
					if myid == 0 and i == 0:
						for k in xrange(nvec):
							eig[k].write_image("eig.hdf", k)
					"""

			del imgdata
			#  To this point, all averages, variances, and eigenvectors are computed

			if options.ave2D:
				from fundamentals import fpol
				if myid == main_node:
					km = 0
					for i in xrange(number_of_proc):
						if i == main_node :
							for im in xrange(len(aveList)):
								aveList[im].write_image(options.ave2D, km)
								km += 1
						else:
							nl = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD)
							nl = int(nl[0])
							for im in xrange(nl):
								ave = recv_EMData(i, im+i+70000)
								"""
								nm = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD)
								nm = int(nm[0])
								members = mpi_recv(nm, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD)
								ave.set_attr('members', map(int, members))
								members = mpi_recv(nm, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD)
								ave.set_attr('pix_err', map(float, members))
								members = mpi_recv(3, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD)
								ave.set_attr('refprojdir', map(float, members))
								"""
								tmpvol=fpol(ave, Tracker["nx"],Tracker["nx"],Tracker["nx"])								
								tmpvol.write_image(options.ave2D, km)
								km += 1
				else:
					mpi_send(len(aveList), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD)
					for im in xrange(len(aveList)):
						send_EMData(aveList[im], main_node,im+myid+70000)
						"""
						members = aveList[im].get_attr('members')
						mpi_send(len(members), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD)
						mpi_send(members, len(members), MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD)
						members = aveList[im].get_attr('pix_err')
						mpi_send(members, len(members), MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD)
						try:
							members = aveList[im].get_attr('refprojdir')
							mpi_send(members, 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD)
						except:
							mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD)
						"""

			if options.ave3D:
				from fundamentals import fpol
				if options.VERBOSE:
					print "Reconstructing 3D average volume"
				ave3D = recons3d_4nn_MPI(myid, aveList, symmetry=options.sym, npad=options.npad)
				bcast_EMData_to_all(ave3D, myid)
				if myid == main_node:
					ave3D=fpol(ave3D,Tracker["nx"],Tracker["nx"],Tracker["nx"])
					ave3D.write_image(options.ave3D)
					print_msg("%-70s:  %s\n"%("Writing to the disk volume reconstructed from averages as", options.ave3D))
			del ave, var, proj_list, stack, phi, theta, psi, s2x, s2y, alpha, sx, sy, mirror, aveList

			if nvec > 0:
				for k in xrange(nvec):
					if options.VERBOSE:
						print "Reconstruction eigenvolumes", k
					cont = True
					ITER = 0
					mask2d = model_circle(radiuspca, nx, nx)
					while cont:
						#print "On node %d, iteration %d"%(myid, ITER)
						eig3D = recons3d_4nn_MPI(myid, eigList[k], symmetry=options.sym, npad=options.npad)
						bcast_EMData_to_all(eig3D, myid, main_node)
						if options.fl > 0.0:
							eig3D = filt_tanl(eig3D, options.fl, options.aa)
						if myid == main_node:
							eig3D.write_image("eig3d_%03d.hdf"%k, ITER)
						Util.mul_img( eig3D, model_circle(radiuspca, nx, nx, nx) )
						eig3Df, kb = prep_vol(eig3D)
						del eig3D
						cont = False
						icont = 0
						for l in xrange(len(eigList[k])):
							phi, theta, psi, s2x, s2y = get_params_proj(eigList[k][l])
							proj = prgs(eig3Df, kb, [phi, theta, psi, s2x, s2y])
							cl = ccc(proj, eigList[k][l], mask2d)
							if cl < 0.0:
								icont += 1
								cont = True
								eigList[k][l] *= -1.0
						u = int(cont)
						u = mpi_reduce([u], 1, MPI_INT, MPI_MAX, main_node, MPI_COMM_WORLD)
						icont = mpi_reduce([icont], 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD)

						if myid == main_node:
							u = int(u[0])
							print " Eigenvector: ",k," number changed ",int(icont[0])
						else: u = 0
						u = bcast_number_to_all(u, main_node)
						cont = bool(u)
						ITER += 1

					del eig3Df, kb
					mpi_barrier(MPI_COMM_WORLD)
				del eigList, mask2d

			if options.ave3D: del ave3D
			if options.var2D:
				from fundamentals import fpol 
				if myid == main_node:
					km = 0
					for i in xrange(number_of_proc):
						if i == main_node :
							for im in xrange(len(varList)):
								tmpvol=fpol(varList[im], Tracker["nx"], Tracker["nx"],1)
								tmpvol.write_image(options.var2D, km)
								km += 1
						else:
							nl = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD)
							nl = int(nl[0])
							for im in xrange(nl):
								ave = recv_EMData(i, im+i+70000)
								tmpvol=fpol(ave, Tracker["nx"], Tracker["nx"],1)
								tmpvol.write_image(options.var2D, km)
								km += 1
				else:
					mpi_send(len(varList), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD)
					for im in xrange(len(varList)):
						send_EMData(varList[im], main_node, im+myid+70000)#  What with the attributes??

			mpi_barrier(MPI_COMM_WORLD)

		if  options.var3D:
			if myid == main_node and options.VERBOSE:
				print "Reconstructing 3D variability volume"

			t6 = time()
			radiusvar = options.radiusvar
			if( radiusvar < 0 ):  radiusvar = nx//2 -3
			res = recons3d_4nn_MPI(myid, varList, symmetry=options.sym, npad=options.npad)
			#res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ)
			if myid == main_node:
				from fundamentals import fpol
				res =fpol(res, Tracker["nx"], Tracker["nx"], Tracker["nx"])
				res.write_image(options.var3D)

			if myid == main_node:
				print_msg("%-70s:  %.2f\n"%("Reconstructing 3D variability took [s]", time()-t6))
				if options.VERBOSE:
					print "Reconstruction took: %.2f [min]"%((time()-t6)/60)

			if myid == main_node:
				print_msg("%-70s:  %.2f\n"%("Total time for these computations [s]", time()-t0))
				if options.VERBOSE:
					print "Total time for these computations: %.2f [min]"%((time()-t0)/60)
				print_end_msg("sx3dvariability")

		global_def.BATCH = False

		from mpi import mpi_finalize
		mpi_finalize()
Example #35
0
def main():
    progname = os.path.basename(sys.argv[0])
    usage = """prog [options] imagefile ...

	This program can be used to extract various metadata/header information from images of any file format,
	including BDB databases (though e2bdb.py has additional database-specific functionality).
	"""

    parser = EMArgumentParser(usage=usage, version=EMANVERSION)

    parser.add_argument("-H",
                        "--header",
                        action="store_true",
                        help="Show all header information",
                        default=False)
    parser.add_argument("-N",
                        "--number",
                        type=int,
                        help="Image number for single image info",
                        default=-1)
    parser.add_argument(
        "-Q",
        "--quality",
        type=int,
        help="Include only images with a single quality value (integer 0-9)",
        default=-1)
    parser.add_argument(
        "--dfmin",
        type=float,
        help="Include only images with defocus >= the specified value",
        default=None)
    parser.add_argument(
        "--dfmax",
        type=float,
        help="Include only images with defocus <= the specified value",
        default=None)
    parser.add_argument(
        "--nameonly",
        action="store_true",
        help="Only display the matching filenames. No other info.",
        default=False)
    parser.add_argument(
        "-s",
        "--stat",
        action="store_true",
        help="Show statistical information about the image(s).",
        default=False)
    parser.add_argument("-E",
                        "--euler",
                        action="store_true",
                        help="Show Euler angles from header",
                        default=False)
    parser.add_argument("-a",
                        "--all",
                        action="store_true",
                        help="Show info for all images in file",
                        default=False)
    parser.add_argument(
        "-C",
        "--check",
        action="store_true",
        help=
        "Checks to make sure all image numbers are populated with images, and that all images have valid CTF parameters",
        default=False)
    parser.add_argument(
        "-c",
        "--count",
        action="store_true",
        help="Just show a count of the number of particles in each file",
        default=False)
    parser.add_argument(
        "--ppid",
        type=int,
        help="Set the PID of the parent process, used for cross platform PPID",
        default=-2)
    parser.add_argument(
        "--verbose",
        "-v",
        dest="verbose",
        action="store",
        metavar="n",
        type=int,
        default=0,
        help=
        "verbose level [0-9], higner number means higher level of verboseness")

    (options, args) = parser.parse_args()

    if len(args) < 1:
        print(usage)
        parser.error("Specify image file")

    if options.header and options.stat:
        print("Only one of --header and --stat may be specified")
        sys.exit(1)

    nimgs = 0
    for imagefile in args:
        if options.quality != -1 or options.dfmin != None or options.dfmax != None:
            try:
                db = js_open_dict(info_name(imagefile))
                if options.quality != -1:
                    q = db["quality"]
                db.close()
                if q != options.quality: continue
            except:
                sys.stderr.write(
                    "No quality for {}. Including\n".format(imagefile))

        if options.nameonly:
            print(imagefile)
            continue

        if imagefile.lower()[:4] != "bdb:":
            try:
                nimg = EMUtil.get_image_count(imagefile)
            except:
                print(imagefile, " is not a recognized image format")
                continue
            nimgs += nimg
            imgtype = EMUtil.get_image_type(imagefile)
            imgtypename = EMUtil.get_imagetype_name(imgtype)
            if imgtype == EMUtil.ImageType.IMAGE_SPIDER and not options.stat:
                image_index = -1

            d = EMData()
            try:
                d.read_image(imagefile, max(options.number, 0), True)
            except:
                print("Image read error (%s)" % imagefile)
                continue
            if options.count: print("%d\t" % (nimg), end=' ')
            if d["nz"] == 1:
                print("%s\t %d images in %s format\t%d x %d" %
                      (imagefile, nimg, imgtypename, d["nx"], d["ny"]))
            else:
                print(
                    "%s\t %d images in %s format\t%d x %d x %d" %
                    (imagefile, nimg, imgtypename, d["nx"], d["ny"], d["nz"]))

        else:
            dct = db_open_dict(imagefile, ro=True)
            d = dct.get_header(0)
            nimg = len(dct)
            nimgs += nimg

            d = EMData(imagefile, max(options.number, 0), True)
            if d["nz"] == 1:
                print("%s\t %d images in BDB format\t%d x %d" %
                      (imagefile, len(dct), d["nx"], d["ny"]))
            else:
                print("%s\t %d images in BDB format\t%d x %d x %d" %
                      (imagefile, len(dct), d["nx"], d["ny"], d["nz"]))

        if options.all or options.check:
            imgn = list(range(nimg))
        elif options.number >= 0:
            imgn = [options.number]
        elif options.header or options.stat or options.euler:
            # If we request header information, without specifying an image #, assume the first image.
            imgn = [0]
        else:
            imgn = []

        nptcl = 0
        d = EMData()
        for i in imgn:
            if options.stat: d.read_image(imagefile, i)
            else:
                try:
                    d.read_image(imagefile, i, True)  #Jesus
                except:
                    print("Error reading image ", imagefile, i)
            if options.check:
                try:
                    ctf = d["ctf"]
                    snr = ctf.snr[0]
                except:
                    print("Error with CTF on ", imagefile, i)
            else:
                print("%d. " % i, end='')
                try:
                    print("%d ptcl\t" % d["ptcl_repr"], end=' ')
                    nptcl += d["ptcl_repr"]
                except:
                    print("\t", end='')

            if options.stat:
                print(
                    "apix=%-5.2f min=%-10.4g max=%-10.4g mean=%-10.4g sigma=%-9.4g skewness=%-9.4g kurtosis=%-9.4g"
                    % (d["apix_x"], d["minimum"], d["maximum"], d["mean"],
                       d["sigma"], d["skewness"], d["kurtosis"]),
                    end=' ')
                try:
                    c = d["ctf"]
                    print("   defocus=%-6.2f B=%-1.0f" %
                          (c.defocus, c.bfactor))
                except:
                    print(" ")

            if options.euler:
                #				d=EMData(imagefile,i,True) #Jesus
                try:
                    print("%s" % (str(d["xform.projection"])))
                except:
                    print("No transform information", end=' ')

            if options.header:
                #				d=EMData(imagefile,i, True) #Jesus
                print("")
                keys = list(d.get_attr_dict().keys())
                keys.sort()
                for k in keys:
                    print("\t%s: %s" % (k, str(d[k])))
                print("======================")

    if nimgs > 1: print("%d total images" % nimgs)
    try:
        print("representing %d particles" % nptcl)
    except:
        pass
Example #36
0
def main():
	progname = os.path.basename(sys.argv[0])
	usage = """prog [options] <volume> <mask> <output>

	WARNING: Do not use this program. The whole concept has been replaced by "gold standard" refinement.

	Note that this method has not yet been published, and is not yet a reliable
	scheme for resolution determination. DO NOT EXPECT RELIABLE ANSWERS AT THIS POINT !

	This will compute an FSC resolution curve from a single structure by
	comparing the power spectrum of the noise region to the power spectrum
	of the reconstructed particle. The 'mask' input should mask out the particle,
	and should be a 'soft' mask. Sharp edges on the mask may ruin the results.
	proc3d (EMAN1) with the automask2 option can produce appropriate masks. The
	3rd parameter (in automask2) should be about 10 percent of the box size. This will not
	work with particles that have been tightly masked already. If doing an EMAN1
	reconstruction with the amask= option, you must also use the refmaskali option
	(in the refine command). Note that the resultant curve is guaranteed to go
	to zero at near Nyquist because it assumes that the SNR is zero near Nyquist.
	If your data is undersampled, the resulting curve may also be inaccurate.
	Models should also not be heavily low-pass filtered
	"""
	parser = EMArgumentParser(usage=usage,version=EMANVERSION)

	parser.add_pos_argument(name="volume",help="Volume to compute resolution on.", default="", guitype='filebox',  row=0, col=0,rowspan=1, colspan=2)
	parser.add_pos_argument(name="mask",help="Mask for the volume. The volume is masked by this file (should be ssoft mask).", default="", guitype='filebox',  row=1, col=0,rowspan=1, colspan=2)
	parser.add_pos_argument(name="output",help="Name of the output file. These data will contain FSC stats.", default="", guitype='strbox',  row=2, col=0,rowspan=1, colspan=2)
	parser.add_header(name="eotestheader", help='Options below this label are specific to e2resolution', title="### e2resolution options ###", row=3, col=0, rowspan=1, colspan=2)
	parser.add_argument("--apix", "-A", type=float, help="A/voxel", default=-1.0, guitype='floatbox', row=4, col=0, rowspan=1, colspan=1)
	parser.add_argument("--path", type=str,help="The name the e2refine directory that contains the reconstruction data. If specified will place curves generated in bdb:path#convergence.results", guitype='dirbox', default=None, dirbasename='refine', row=4, col=1,rowspan=1, colspan=1)
	parser.add_argument("--ppid", type=int, help="Set the PID of the parent process, used for cross platform PPID",default=-1)
	parser.add_argument("--verbose", "-v", dest="verbose", action="store", metavar="n", type=int, default=0, help="verbose level [0-9], higner number means higher level of verboseness")
	
	(options, args) = parser.parse_args()
	
	if len(args)<3 : parser.error("Input and output files required")
	
	E2n=E2init(sys.argv,options.ppid)
	
	#options.align=parsemodopt(options.align)

	print "WARNING:  e2resolution is an experimental program. It does not (yet) produce reliable resolution curves in most cases."

	print "read models"
	data=EMData(args[0],0)
	mask=EMData(args[1],0)

#	mask.to_one()
#	mask.process_inplace("mask.gaussian",{"outer_radius":mask.get_xsize()/6,"inner_radius":mask.get_xsize()/6})
	mask.write_image("msk.mrc",0)

	# inverted mask
	maski=mask.copy()
	maski*=-1.0
	maski+=1.0
	maski.process_inplace("mask.gaussian",{"outer_radius":mask.get_xsize()/6,"inner_radius":mask.get_xsize()/3})
	maski.write_image("msk2.mrc",0)

	noise=data.copy()
	noise*=maski

	data*=mask

	print "compute FFT"
	dataf=data.do_fft()
	noisef=noise.do_fft()

	print "compute power 1"
	datapow=dataf.calc_radial_dist(dataf.get_ysize()/2-1,1,1,1)
	print "compute power 2"
	noisepow=noisef.calc_radial_dist(noisef.get_ysize()/2-1,1,1,1)

	x=range(1,len(datapow)+1)
	if options.apix>0:
		x=[i/(len(datapow)*options.apix*2.0) for i in x]
	else:
		x=[i/(len(datapow)*data["apix_x"]*2.0) for i in x]

	# normalize noise near Nyquist
	s=0
	sn=0
	for i in range(int(len(noisepow)*.9),len(noisepow)-1):
		if datapow[i]<datapow[i+1] or noisepow[i]<noisepow[i+1] : continue
		s+=datapow[i]/noisepow[i]
		sn+=1.0
	if sn==0 :
		print "Warning, strange normalization"
		s=datapow[int(len(noisepow)*.9)]/noisepow[int(len(noisepow)*.9)]
	else: s/=sn

	noisepow=[i*s for i in noisepow]
#
#	# normalize based on volume
#	datapow=[v/mask["mean"] for v in datapow]
#	noisepow=[v/maski["mean"] for v in noisepow]

	# compute signal to noise ratio
	snr=[]
	for i in range(len(datapow)):
		try: snr.append((datapow[i]-noisepow[i])/noisepow[i])
		except: snr.append(0)
	
	# convert to FSC
	fsc=[i/(2.0+i) for i in snr]

	out=file(args[2],"w")
	for i in range(len(fsc)): out.write("%f\t%f\n"%(x[i],fsc[i]))
	out.close()
	
	out=file(args[2]+".dat","w")
	for i in range(len(fsc)): out.write("%f\t%f\n"%(x[i],datapow[i]))
	out.close()

	out=file(args[2]+".noi","w")
	for i in range(len(noisepow)): out.write("%f\t%f\n"%(x[i],noisepow[i]))
	out.close()
	
	if options.path != None:
		s = base_name(args[0])
		db = db_open_dict("bdb:"+options.path+"#convergence.results")	
		db[s+"res_fsc"] = [x,fsc] # warning, changing this naming convention will disrupt forms in the workflow (make them fail)
		db[s+"res_datapow"] = [x,datapow]
		db[s+"res_noisepow"] = [x,noisepow]
		db_close_dict("bdb:"+options.path+"#convergence.results")
		

	E2end(E2n)
	def get_params(self):
		table_params = []
		params = []
		db = db_open_dict(self.form_db_name)
		
		p,n = self.get_tomo_hunter_basic_table() # note n is unused, it's a refactoring residual		
		params.append(ParamDef(name="blurb",vartype="text",desc_short="Interactive use of tomohunter",desc_long="",property=None,defaultunits=self.__doc__,choices=None))
		params.append(p)
		psavesteps = ParamDef(name="savesteps",vartype="boolean",desc_short="Savesteps",desc_long="Save the steps",property=None,defaultunits=db.get("savesteps",dfl=True),choices=None)
		psaveali = ParamDef(name="saveali",vartype="boolean",desc_short="Saveali",desc_long="Save the alignments",property=None,defaultunits=db.get("saveali",dfl=True),choices=None)
		params.append([psavesteps, psaveali])
		piter = ParamDef(name="number of iterations",vartype="int",desc_short="Number of iterations", desc_long="Number of iterations",property=None,defaultunits=db.get("number of iterations",dfl=5),choices=None )
		pncoarse = ParamDef(name="coarse number",vartype="int",desc_short="Coarse Number", desc_long="Coarse number",property=None,defaultunits=db.get("coarse number",dfl=6),choices=None )
		params.append([piter, pncoarse])
		pshrink = ParamDef(name="Percentage to shrink",vartype="int",desc_short="Shrink", desc_long="Percentage to shrink",property=None,defaultunits=db.get("Percentage to shrink",dfl=2),choices=None )
		pshrinkrefine = ParamDef(name="Percentage to shrink, refinement",vartype="int",desc_short="Shrink refine", desc_long="Percentage to shrink for refienment",property=None,defaultunits=db.get("Percentage to shrink, refinement",dfl=2),choices=None )
		params.append([pshrink, pshrinkrefine])
		
		proc_data = dump_processors_list()
		masks = {}
		for key in proc_data.keys():
			if len(key) >= 5 and key[:5] == "mask.":
				masks[key] = proc_data[key]
		masks["None"] = ["Choose this to stop masking from occuring"]
		pmask = ParamDef("mask",vartype="string",desc_short="Mask",desc_long="The mask to apply to the subtomos",property=None,defaultunits=db.get("mask",dfl="None"),choices=masks)
		pmaskparams = ParamDef("maskparams",vartype="string",desc_short="Params",desc_long="Parameters for the mask",property=None,defaultunits=db.get("maskparams",dfl=""))
		params.append([pmask, pmaskparams])
		
		filters = {}
		for key in proc_data.keys():
			if len(key) >= 7 and key[:7] == "filter.":
				filters[key] = proc_data[key]
		filters["None"] = ["Choose this to stop filtering from occuring"]
		pfilter = ParamDef("filter",vartype="string",desc_short="Filter",desc_long="The Filter to apply to the subtomos",property=None,defaultunits=db.get("filter",dfl="None"),choices=filters)
		pfilterparams = ParamDef("filterparams",vartype="string",desc_short="Params",desc_long="Parameters for the filter",property=None,defaultunits=db.get("filterparams",dfl=""))
		params.append([pfilter, pfilterparams])

		ali_data = dump_aligners_list()
		caligners = {}
		for key in ali_data.keys():
			if len(key) >= 19 and key[:19] == "rotate_translate_3d":
				caligners[key] = ali_data[key]
		pali = ParamDef("aligner3D",vartype="string",desc_short="Aligner3D",desc_long="The 3D course aligner",property=None,defaultunits=db.get("aligner3D",dfl="rotate_translate_3d"),choices=caligners)
		paliparams = ParamDef("ali3dparams",vartype="string",desc_short="Params",desc_long="Parameters for the 3D aligner",property=None,defaultunits=db.get("ali3dparams",dfl="search=10:delta=15:dphi=15:verbose=1"))
		params.append([pali, paliparams])
		
		craligners = {}
		for key in ali_data.keys():
			if len(key) >= 9 and key[:9] == "refine_3d":
				craligners[key] = ali_data[key]
		prali = ParamDef("raligner3D",vartype="string",desc_short="RAligner3D",desc_long="The 3D refine aligner",property=None,defaultunits=db.get("raligner3D",dfl="refine_3d_grid"),choices=craligners)
		praliparams = ParamDef("rali3dparams",vartype="string",desc_short="Params",desc_long="Parameters for the 3D refine aligner",property=None,defaultunits=db.get("rali3dparams",dfl="verbose=1"))
		params.append([prali, praliparams])
		
		ppostfilter = ParamDef("postfilter",vartype="string",desc_short="PostFilter",desc_long="The Filter to apply to the average",property=None,defaultunits=db.get("postfilter",dfl="None"),choices=filters)
		ppostfilterparams = ParamDef("postfilterparams",vartype="string",desc_short="Params",desc_long="Parameters for the postfilter",property=None,defaultunits=db.get("postfilterparams",dfl=""))
		params.append([ppostfilter, ppostfilterparams])
		
		pparallel = ParamDef("parallel",vartype="string",desc_short="Parallel",desc_long="Parallalization parameters",property=None,defaultunits=db.get("parallel",dfl=""))
		params.append(pparallel)
			
		#pylong = ParamDef(name="yshort",vartype="boolean",desc_short="yshort",desc_long="Use Z axis as normal",property=None,defaultunits=1,choices=None)
		#pinmem = ParamDef(name="inmemory",vartype="boolean",desc_short="inmemory",desc_long="Load the tomo into memory",property=None,defaultunits=1,choices=None)
		#papix = ParamDef(name="apix",vartype="float",desc_short=u"\u212B per pixel", desc_long="Angstroms per pixel",property=None,defaultunits=1.0,choices=None )
		#params.append([pylong, pinmem, papix])
		#params.append(papix)
		table_params.append(["Main",params])
		
		advanced_params = []
		r,rn = self.get_tomo_hunter_ref_table() # note rn is unused, it's a refactoring residual
		advanced_params.append(ParamDef(name="blurb",vartype="text",desc_short="Interactive use tomo refs",desc_long="",property=None,defaultunits="Use this for selecting references. If no reference is chosen, then reference free alignment will be executed",choices=None))
		advanced_params.append(r)
		
		table_params.append(["References",advanced_params])
#		db = db_open_dict(self.form_db_name)
#		params.append(ParamDef(name="interface_boxsize",vartype="int",desc_short="Box size",desc_long="An integer value",property=None,defaultunits=db.get("interface_boxsize",dfl=128),choices=[]))
#		#db_close_dict(self.form_db_name)
		return table_params
Example #38
0
def main():
	progname = os.path.basename(sys.argv[0])
	usage = """prog [options] imagefile ...

	This program can be used to extract various metadata/header information from images of any file format,
	including BDB databases (though e2bdb.py has additional database-specific functionality).
	"""
	
	parser = EMArgumentParser(usage=usage,version=EMANVERSION)
	
	parser.add_argument("-H", "--header", action="store_true",help="Show all header information",default=False)
	parser.add_argument("-N", "--number", type=int, help="Image number for single image info",default=-1)
	parser.add_argument("-s", "--stat", action="store_true",help="Show statistical information about the image(s).",default=False)
	parser.add_argument("-E", "--euler", action="store_true",help="Show Euler angles from header",default=False)
	parser.add_argument("-a", "--all", action="store_true",help="Show info for all images in file",default=False)
	parser.add_argument("-c", "--count", action="store_true",help="Just show a count of the number of particles in each file",default=False)
	parser.add_argument("--ppid", type=int, help="Set the PID of the parent process, used for cross platform PPID",default=-2)
	parser.add_argument("--verbose", "-v", dest="verbose", action="store", metavar="n", type=int, default=0, help="verbose level [0-9], higner number means higher level of verboseness")
	
	(options, args) = parser.parse_args()
	
	if len(args)<1:
		print usage
		parser.error("Specify image file")

	if options.header and options.stat : 
		print "Only one of --header and --stat may be specified"
		sys.exit(1)
		
	nimgs=0
	for imagefile in args:
		
		if imagefile.lower()[:4]!="bdb:" :
			nimg = EMUtil.get_image_count(imagefile)
			nimgs+=nimg
			imgtype = EMUtil.get_image_type(imagefile)
			imgtypename = EMUtil.get_imagetype_name(imgtype)
			if imgtype == EMUtil.ImageType.IMAGE_SPIDER and not options.stat: 
				image_index = -1
				
			d=EMData()
			try: d.read_image(imagefile, max(options.number,0), True)
			except :
				print "Image read error (%s)"%imagefile
				continue
			if options.count : print "%d\t"%(nimg),
			if d["nz"]==1 : print "%s\t %d images in %s format\t%d x %d"%(imagefile,nimg,imgtypename,d["nx"],d["ny"])
			else : print "%s\t %d images in %s format\t%d x %d x %d"%(imagefile,nimg,imgtypename,d["nx"],d["ny"],d["nz"])
			
			
		else :
			dct=db_open_dict(imagefile,ro=True)
			d=dct.get_header(0)
			nimg=len(dct)
			nimgs+=nimg
			
			d=EMData(imagefile, max(options.number,0), True)
			if d["nz"]==1 : print "%s\t %d images in BDB format\t%d x %d"%(imagefile,len(dct),d["nx"],d["ny"])
			else : print "%s\t %d images in BDB format\t%d x %d x %d"%(imagefile,len(dct),d["nx"],d["ny"],d["nz"])

		if options.all:
			imgn = xrange(nimg)
		elif options.number >= 0:
			imgn = [options.number]
		elif options.header or options.stat or options.euler:
			# If we request header information, without specifying an image #, assume the first image.
			imgn = [0]
		else:
			imgn = []

		nptcl=0
		d=EMData()
		for i in imgn:
			if options.stat : d.read_image(imagefile,i)
			else : d.read_image(imagefile,i,True) #Jesus
			print "%d. "%i,
			try:
				print "%d ptcl\t"%d["ptcl_repr"],
				nptcl+=d["ptcl_repr"]
			except:
				print "\t"
			
			if options.stat :
				print "min=%1.4g\tmax=%1.4g\tmean=%1.4g\tsigma=%1.4g\tskewness=%1.4g \tkurtosis=%1.4g"%(d["minimum"],d["maximum"],d["mean"],d["sigma"],d["skewness"],d["kurtosis"]),
				try:
					c=d["ctf"]
					print "\tdefocus=%1.2f\tB=%1.0f"%(c.defocus,c.bfactor),
				except:
					print " "
						
			if options.euler:
#				d=EMData(imagefile,i,True) #Jesus
				try: print "%s"%(str(d["xform.projection"])),
				except : print "No transform information",

			if options.header :
#				d=EMData(imagefile,i, True) #Jesus
				print ""
				keys=d.get_attr_dict().keys()
				keys.sort()
				for k in keys:
					print "\t%s: %s"%(k,str(d[k]))
				print "======================"
			
			print ""
Example #39
0
def main():
    progname = os.path.basename(sys.argv[0])
    usage = """prog [options] imagefile ...

	This program can be used to extract various metadata/header information from images of any file format,
	including BDB databases (though e2bdb.py has additional database-specific functionality).
	"""

    parser = EMArgumentParser(usage=usage, version=EMANVERSION)

    parser.add_argument("-H",
                        "--header",
                        action="store_true",
                        help="Show all header information",
                        default=False)
    parser.add_argument("-N",
                        "--number",
                        type=int,
                        help="Image number for single image info",
                        default=-1)
    parser.add_argument(
        "-s",
        "--stat",
        action="store_true",
        help="Show statistical information about the image(s).",
        default=False)
    parser.add_argument("-E",
                        "--euler",
                        action="store_true",
                        help="Show Euler angles from header",
                        default=False)
    parser.add_argument("-a",
                        "--all",
                        action="store_true",
                        help="Show info for all images in file",
                        default=False)
    parser.add_argument(
        "-c",
        "--count",
        action="store_true",
        help="Just show a count of the number of particles in each file",
        default=False)
    parser.add_argument(
        "--ppid",
        type=int,
        help="Set the PID of the parent process, used for cross platform PPID",
        default=-2)
    parser.add_argument(
        "--verbose",
        "-v",
        dest="verbose",
        action="store",
        metavar="n",
        type=int,
        default=0,
        help=
        "verbose level [0-9], higner number means higher level of verboseness")

    (options, args) = parser.parse_args()

    if len(args) < 1:
        print usage
        parser.error("Specify image file")

    if options.header and options.stat:
        print "Only one of --header and --stat may be specified"
        sys.exit(1)

    nimgs = 0
    for imagefile in args:

        if imagefile.lower()[:4] != "bdb:":
            nimg = EMUtil.get_image_count(imagefile)
            nimgs += nimg
            imgtype = EMUtil.get_image_type(imagefile)
            imgtypename = EMUtil.get_imagetype_name(imgtype)
            if imgtype == EMUtil.ImageType.IMAGE_SPIDER and not options.stat:
                image_index = -1

            d = EMData()
            try:
                d.read_image(imagefile, max(options.number, 0), True)
            except:
                print "Image read error (%s)" % imagefile
                continue
            if options.count: print "%d\t" % (nimg),
            if d["nz"] == 1:
                print "%s\t %d images in %s format\t%d x %d" % (
                    imagefile, nimg, imgtypename, d["nx"], d["ny"])
            else:
                print "%s\t %d images in %s format\t%d x %d x %d" % (
                    imagefile, nimg, imgtypename, d["nx"], d["ny"], d["nz"])

        else:
            dct = db_open_dict(imagefile, ro=True)
            d = dct.get_header(0)
            nimg = len(dct)
            nimgs += nimg

            d = EMData(imagefile, max(options.number, 0), True)
            if d["nz"] == 1:
                print "%s\t %d images in BDB format\t%d x %d" % (
                    imagefile, len(dct), d["nx"], d["ny"])
            else:
                print "%s\t %d images in BDB format\t%d x %d x %d" % (
                    imagefile, len(dct), d["nx"], d["ny"], d["nz"])

        if options.all:
            imgn = xrange(nimg)
        elif options.number >= 0:
            imgn = [options.number]
        elif options.header or options.stat or options.euler:
            # If we request header information, without specifying an image #, assume the first image.
            imgn = [0]
        else:
            imgn = []

        nptcl = 0
        d = EMData()
        for i in imgn:
            if options.stat: d.read_image(imagefile, i)
            else: d.read_image(imagefile, i, True)  #Jesus
            print "%d. " % i,
            try:
                print "%d ptcl\t" % d["ptcl_repr"],
                nptcl += d["ptcl_repr"]
            except:
                print "\t"

            if options.stat:
                print "min=%1.4g\tmax=%1.4g\tmean=%1.4g\tsigma=%1.4g\tskewness=%1.4g \tkurtosis=%1.4g" % (
                    d["minimum"], d["maximum"], d["mean"], d["sigma"],
                    d["skewness"], d["kurtosis"]),
                try:
                    c = d["ctf"]
                    print "\tdefocus=%1.2f\tB=%1.0f" % (c.defocus, c.bfactor),
                except:
                    print " "

            if options.euler:
                #				d=EMData(imagefile,i,True) #Jesus
                try:
                    print "%s" % (str(d["xform.projection"])),
                except:
                    print "No transform information",

            if options.header:
                #				d=EMData(imagefile,i, True) #Jesus
                print ""
                keys = d.get_attr_dict().keys()
                keys.sort()
                for k in keys:
                    print "\t%s: %s" % (k, str(d[k]))
                print "======================"

            print ""

    if nimgs > 1: print "%d total images" % nimgs
    try:
        print "representing %d particles" % nptcl
    except:
        pass
Example #40
0
def main():
    def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror):
        if mirror:
            m = 1
            alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0,
                                                       540.0 - psi, 0, 0, 1.0)
        else:
            m = 0
            alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0,
                                                       360.0 - psi, 0, 0, 1.0)
        return alpha, sx, sy, m

    progname = os.path.basename(sys.argv[0])
    usage = progname + " prj_stack  --ave2D= --var2D=  --ave3D= --var3D= --img_per_grp= --fl=15. --aa=0.01  --sym=symmetry --CTF"
    parser = OptionParser(usage, version=SPARXVERSION)

    parser.add_option("--output_dir",
                      type="string",
                      default="./",
                      help="output directory")
    parser.add_option("--ave2D",
                      type="string",
                      default=False,
                      help="write to the disk a stack of 2D averages")
    parser.add_option("--var2D",
                      type="string",
                      default=False,
                      help="write to the disk a stack of 2D variances")
    parser.add_option("--ave3D",
                      type="string",
                      default=False,
                      help="write to the disk reconstructed 3D average")
    parser.add_option("--var3D",
                      type="string",
                      default=False,
                      help="compute 3D variability (time consuming!)")
    parser.add_option("--img_per_grp",
                      type="int",
                      default=10,
                      help="number of neighbouring projections")
    parser.add_option("--no_norm",
                      action="store_true",
                      default=False,
                      help="do not use normalization")
    #parser.add_option("--radius", 	    type="int"         ,	default=-1   ,				help="radius for 3D variability" )
    parser.add_option("--npad",
                      type="int",
                      default=2,
                      help="number of time to pad the original images")
    parser.add_option("--sym", type="string", default="c1", help="symmetry")
    parser.add_option(
        "--fl",
        type="float",
        default=0.0,
        help=
        "cutoff freqency in absolute frequency (0.0-0.5). (Default - no filtration)"
    )
    parser.add_option(
        "--aa",
        type="float",
        default=0.0,
        help=
        "fall off of the filter. Put 0.01 if user has no clue about falloff (Default - no filtration)"
    )
    parser.add_option("--CTF",
                      action="store_true",
                      default=False,
                      help="use CFT correction")
    parser.add_option("--VERBOSE",
                      action="store_true",
                      default=False,
                      help="Long output for debugging")
    #parser.add_option("--MPI" , 		action="store_true",	default=False,				help="use MPI version")
    #parser.add_option("--radiuspca", 	type="int"         ,	default=-1   ,				help="radius for PCA" )
    #parser.add_option("--iter", 		type="int"         ,	default=40   ,				help="maximum number of iterations (stop criterion of reconstruction process)" )
    #parser.add_option("--abs", 		type="float"   ,        default=0.0  ,				help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" )
    #parser.add_option("--squ", 		type="float"   ,	    default=0.0  ,				help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" )
    parser.add_option(
        "--VAR",
        action="store_true",
        default=False,
        help="stack on input consists of 2D variances (Default False)")
    parser.add_option(
        "--decimate",
        type="float",
        default=1.0,
        help=
        "image decimate rate, a number larger (expand image) or less (shrink image) than 1. default is 1"
    )
    parser.add_option(
        "--window",
        type="int",
        default=0,
        help=
        "reduce images to a small image size without changing pixel_size. Default value is zero."
    )
    #parser.add_option("--SND",			action="store_true",	default=False,				help="compute squared normalized differences (Default False)")
    parser.add_option(
        "--nvec",
        type="int",
        default=0,
        help="number of eigenvectors, default = 0 meaning no PCA calculated")
    parser.add_option(
        "--symmetrize",
        action="store_true",
        default=False,
        help="Prepare input stack for handling symmetry (Default False)")

    (options, args) = parser.parse_args()
    #####
    from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, mpi_recv, MPI_COMM_WORLD
    from mpi import mpi_barrier, mpi_reduce, mpi_bcast, mpi_send, MPI_FLOAT, MPI_SUM, MPI_INT, MPI_MAX
    from applications import MPI_start_end
    from reconstruction import recons3d_em, recons3d_em_MPI
    from reconstruction import recons3d_4nn_MPI, recons3d_4nn_ctf_MPI
    from utilities import print_begin_msg, print_end_msg, print_msg
    from utilities import read_text_row, get_image, get_im
    from utilities import bcast_EMData_to_all, bcast_number_to_all
    from utilities import get_symt

    #  This is code for handling symmetries by the above program.  To be incorporated. PAP 01/27/2015

    from EMAN2db import db_open_dict

    # Set up global variables related to bdb cache
    if global_def.CACHE_DISABLE:
        from utilities import disable_bdb_cache
        disable_bdb_cache()

    # Set up global variables related to ERROR function
    global_def.BATCH = True

    # detect if program is running under MPI
    RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in os.environ
    if RUNNING_UNDER_MPI:
        global_def.MPI = True

    if options.symmetrize:
        if RUNNING_UNDER_MPI:
            try:
                sys.argv = mpi_init(len(sys.argv), sys.argv)
                try:
                    number_of_proc = mpi_comm_size(MPI_COMM_WORLD)
                    if (number_of_proc > 1):
                        ERROR(
                            "Cannot use more than one CPU for symmetry prepration",
                            "sx3dvariability", 1)
                except:
                    pass
            except:
                pass
        if options.output_dir != "./" and not os.path.exists(
                options.output_dir):
            os.mkdir(options.output_dir)
        #  Input
        #instack = "Clean_NORM_CTF_start_wparams.hdf"
        #instack = "bdb:data"

        from logger import Logger, BaseLogger_Files
        if os.path.exists(os.path.join(options.output_dir, "log.txt")):
            os.remove(os.path.join(options.output_dir, "log.txt"))
        log_main = Logger(BaseLogger_Files())
        log_main.prefix = os.path.join(options.output_dir, "./")

        instack = args[0]
        sym = options.sym.lower()
        if (sym == "c1"):
            ERROR("There is no need to symmetrize stack for C1 symmetry",
                  "sx3dvariability", 1)

        line = ""
        for a in sys.argv:
            line += " " + a
        log_main.add(line)

        if (instack[:4] != "bdb:"):
            if output_dir == "./": stack = "bdb:data"
            else: stack = "bdb:" + options.output_dir + "/data"
            delete_bdb(stack)
            junk = cmdexecute("sxcpy.py  " + instack + "  " + stack)
        else:
            stack = instack

        qt = EMUtil.get_all_attributes(stack, 'xform.projection')

        na = len(qt)
        ts = get_symt(sym)
        ks = len(ts)
        angsa = [None] * na

        for k in xrange(ks):
            #Qfile = "Q%1d"%k
            if options.output_dir != "./":
                Qfile = os.path.join(options.output_dir, "Q%1d" % k)
            else:
                Qfile = os.path.join(options.output_dir, "Q%1d" % k)
            #delete_bdb("bdb:Q%1d"%k)
            delete_bdb("bdb:" + Qfile)
            #junk = cmdexecute("e2bdb.py  "+stack+"  --makevstack=bdb:Q%1d"%k)
            junk = cmdexecute("e2bdb.py  " + stack + "  --makevstack=bdb:" +
                              Qfile)
            #DB = db_open_dict("bdb:Q%1d"%k)
            DB = db_open_dict("bdb:" + Qfile)
            for i in xrange(na):
                ut = qt[i] * ts[k]
                DB.set_attr(i, "xform.projection", ut)
                #bt = ut.get_params("spider")
                #angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]]
            #write_text_row(angsa, 'ptsma%1d.txt'%k)
            #junk = cmdexecute("e2bdb.py  "+stack+"  --makevstack=bdb:Q%1d"%k)
            #junk = cmdexecute("sxheader.py  bdb:Q%1d  --params=xform.projection  --import=ptsma%1d.txt"%(k,k))
            DB.close()
        if options.output_dir == "./": delete_bdb("bdb:sdata")
        else: delete_bdb("bdb:" + options.output_dir + "/" + "sdata")
        #junk = cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q")
        sdata = "bdb:" + options.output_dir + "/" + "sdata"
        print(sdata)
        junk = cmdexecute("e2bdb.py   " + options.output_dir +
                          "  --makevstack=" + sdata + " --filt=Q")
        #junk = cmdexecute("ls  EMAN2DB/sdata*")
        #a = get_im("bdb:sdata")
        a = get_im(sdata)
        a.set_attr("variabilitysymmetry", sym)
        #a.write_image("bdb:sdata")
        a.write_image(sdata)

    else:

        sys.argv = mpi_init(len(sys.argv), sys.argv)
        myid = mpi_comm_rank(MPI_COMM_WORLD)
        number_of_proc = mpi_comm_size(MPI_COMM_WORLD)
        main_node = 0

        if len(args) == 1:
            stack = args[0]
        else:
            print(("usage: " + usage))
            print(("Please run '" + progname + " -h' for detailed options"))
            return 1

        t0 = time()
        # obsolete flags
        options.MPI = True
        options.nvec = 0
        options.radiuspca = -1
        options.iter = 40
        options.abs = 0.0
        options.squ = 0.0

        if options.fl > 0.0 and options.aa == 0.0:
            ERROR("Fall off has to be given for the low-pass filter",
                  "sx3dvariability", 1, myid)
        if options.VAR and options.SND:
            ERROR("Only one of var and SND can be set!", "sx3dvariability",
                  myid)
            exit()
        if options.VAR and (options.ave2D or options.ave3D or options.var2D):
            ERROR(
                "When VAR is set, the program cannot output ave2D, ave3D or var2D",
                "sx3dvariability", 1, myid)
            exit()
        #if options.SND and (options.ave2D or options.ave3D):
        #	ERROR("When SND is set, the program cannot output ave2D or ave3D", "sx3dvariability", 1, myid)
        #	exit()
        if options.nvec > 0:
            ERROR("PCA option not implemented", "sx3dvariability", 1, myid)
            exit()
        if options.nvec > 0 and options.ave3D == None:
            ERROR("When doing PCA analysis, one must set ave3D",
                  "sx3dvariability",
                  myid=myid)
            exit()
        import string
        options.sym = options.sym.lower()

        # if global_def.CACHE_DISABLE:
        # 	from utilities import disable_bdb_cache
        # 	disable_bdb_cache()
        # global_def.BATCH = True

        if myid == main_node:
            if options.output_dir != "./" and not os.path.exists(
                    options.output_dir):
                os.mkdir(options.output_dir)

        img_per_grp = options.img_per_grp
        nvec = options.nvec
        radiuspca = options.radiuspca

        from logger import Logger, BaseLogger_Files
        #if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt"))
        log_main = Logger(BaseLogger_Files())
        log_main.prefix = os.path.join(options.output_dir, "./")

        if myid == main_node:
            line = ""
            for a in sys.argv:
                line += " " + a
            log_main.add(line)
            log_main.add("-------->>>Settings given by all options<<<-------")
            log_main.add("instack  		    :" + stack)
            log_main.add("output_dir        :" + options.output_dir)
            log_main.add("var3d   		    :" + options.var3D)

        if myid == main_node:
            line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>"
            #print_begin_msg("sx3dvariability")
            msg = "sx3dvariability"
            log_main.add(msg)
            print(line, msg)
            msg = ("%-70s:  %s\n" % ("Input stack", stack))
            log_main.add(msg)
            print(line, msg)

        symbaselen = 0
        if myid == main_node:
            nima = EMUtil.get_image_count(stack)
            img = get_image(stack)
            nx = img.get_xsize()
            ny = img.get_ysize()
            if options.sym != "c1":
                imgdata = get_im(stack)
                try:
                    i = imgdata.get_attr("variabilitysymmetry").lower()
                    if (i != options.sym):
                        ERROR(
                            "The symmetry provided does not agree with the symmetry of the input stack",
                            "sx3dvariability",
                            myid=myid)
                except:
                    ERROR(
                        "Input stack is not prepared for symmetry, please follow instructions",
                        "sx3dvariability",
                        myid=myid)
                from utilities import get_symt
                i = len(get_symt(options.sym))
                if ((nima / i) * i != nima):
                    ERROR(
                        "The length of the input stack is incorrect for symmetry processing",
                        "sx3dvariability",
                        myid=myid)
                symbaselen = nima / i
            else:
                symbaselen = nima
        else:
            nima = 0
            nx = 0
            ny = 0
        nima = bcast_number_to_all(nima)
        nx = bcast_number_to_all(nx)
        ny = bcast_number_to_all(ny)
        Tracker = {}
        Tracker["total_stack"] = nima
        if options.decimate == 1.:
            if options.window != 0:
                nx = options.window
                ny = options.window
        else:
            if options.window == 0:
                nx = int(nx * options.decimate)
                ny = int(ny * options.decimate)
            else:
                nx = int(options.window * options.decimate)
                ny = nx
        Tracker["nx"] = nx
        Tracker["ny"] = ny
        Tracker["nz"] = nx
        symbaselen = bcast_number_to_all(symbaselen)
        if radiuspca == -1: radiuspca = nx / 2 - 2

        if myid == main_node:
            line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>"
            msg = "%-70s:  %d\n" % ("Number of projection", nima)
            log_main.add(msg)
            print(line, msg)
        img_begin, img_end = MPI_start_end(nima, number_of_proc, myid)
        """
		if options.SND:
			from projection		import prep_vol, prgs
			from statistics		import im_diff
			from utilities		import get_im, model_circle, get_params_proj, set_params_proj
			from utilities		import get_ctf, generate_ctf
			from filter			import filt_ctf
		
			imgdata = EMData.read_images(stack, range(img_begin, img_end))

			if options.CTF:
				vol = recons3d_4nn_ctf_MPI(myid, imgdata, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1)
			else:
				vol = recons3d_4nn_MPI(myid, imgdata, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1)

			bcast_EMData_to_all(vol, myid)
			volft, kb = prep_vol(vol)

			mask = model_circle(nx/2-2, nx, ny)
			varList = []
			for i in xrange(img_begin, img_end):
				phi, theta, psi, s2x, s2y = get_params_proj(imgdata[i-img_begin])
				ref_prj = prgs(volft, kb, [phi, theta, psi, -s2x, -s2y])
				if options.CTF:
					ctf_params = get_ctf(imgdata[i-img_begin])
					ref_prj = filt_ctf(ref_prj, generate_ctf(ctf_params))
				diff, A, B = im_diff(ref_prj, imgdata[i-img_begin], mask)
				diff2 = diff*diff
				set_params_proj(diff2, [phi, theta, psi, s2x, s2y])
				varList.append(diff2)
			mpi_barrier(MPI_COMM_WORLD)
		"""
        if options.VAR:
            #varList   = EMData.read_images(stack, range(img_begin, img_end))
            varList = []
            this_image = EMData()
            for index_of_particle in xrange(img_begin, img_end):
                this_image.read_image(stack, index_of_particle)
                varList.append(
                    image_decimate_window_xform_ctf(this_image,
                                                    options.decimate,
                                                    options.window,
                                                    options.CTF))
        else:
            from utilities import bcast_number_to_all, bcast_list_to_all, send_EMData, recv_EMData
            from utilities import set_params_proj, get_params_proj, params_3D_2D, get_params2D, set_params2D, compose_transform2
            from utilities import model_blank, nearest_proj, model_circle
            from applications import pca
            from statistics import avgvar, avgvar_ctf, ccc
            from filter import filt_tanl
            from morphology import threshold, square_root
            from projection import project, prep_vol, prgs
            from sets import Set

            if myid == main_node:
                t1 = time()
                proj_angles = []
                aveList = []
                tab = EMUtil.get_all_attributes(stack, 'xform.projection')
                for i in xrange(nima):
                    t = tab[i].get_params('spider')
                    phi = t['phi']
                    theta = t['theta']
                    psi = t['psi']
                    x = theta
                    if x > 90.0: x = 180.0 - x
                    x = x * 10000 + psi
                    proj_angles.append([x, t['phi'], t['theta'], t['psi'], i])
                t2 = time()
                line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>"
                msg = "%-70s:  %d\n" % ("Number of neighboring projections",
                                        img_per_grp)
                log_main.add(msg)
                print(line, msg)
                msg = "...... Finding neighboring projections\n"
                log_main.add(msg)
                print(line, msg)
                if options.VERBOSE:
                    msg = "Number of images per group: %d" % img_per_grp
                    log_main.add(msg)
                    print(line, msg)
                    msg = "Now grouping projections"
                    log_main.add(msg)
                    print(line, msg)
                proj_angles.sort()
            proj_angles_list = [0.0] * (nima * 4)
            if myid == main_node:
                for i in xrange(nima):
                    proj_angles_list[i * 4] = proj_angles[i][1]
                    proj_angles_list[i * 4 + 1] = proj_angles[i][2]
                    proj_angles_list[i * 4 + 2] = proj_angles[i][3]
                    proj_angles_list[i * 4 + 3] = proj_angles[i][4]
            proj_angles_list = bcast_list_to_all(proj_angles_list, myid,
                                                 main_node)
            proj_angles = []
            for i in xrange(nima):
                proj_angles.append([
                    proj_angles_list[i * 4], proj_angles_list[i * 4 + 1],
                    proj_angles_list[i * 4 + 2],
                    int(proj_angles_list[i * 4 + 3])
                ])
            del proj_angles_list
            proj_list, mirror_list = nearest_proj(proj_angles, img_per_grp,
                                                  range(img_begin, img_end))

            all_proj = Set()
            for im in proj_list:
                for jm in im:
                    all_proj.add(proj_angles[jm][3])

            all_proj = list(all_proj)
            if options.VERBOSE:
                print("On node %2d, number of images needed to be read = %5d" %
                      (myid, len(all_proj)))

            index = {}
            for i in xrange(len(all_proj)):
                index[all_proj[i]] = i
            mpi_barrier(MPI_COMM_WORLD)

            if myid == main_node:
                line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>"
                msg = ("%-70s:  %.2f\n" %
                       ("Finding neighboring projections lasted [s]",
                        time() - t2))
                log_main.add(msg)
                print(msg)
                msg = ("%-70s:  %d\n" %
                       ("Number of groups processed on the main node",
                        len(proj_list)))
                log_main.add(msg)
                print(line, msg)
                if options.VERBOSE:
                    print("Grouping projections took: ", (time() - t2) / 60,
                          "[min]")
                    print("Number of groups on main node: ", len(proj_list))
            mpi_barrier(MPI_COMM_WORLD)

            if myid == main_node:
                line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>"
                msg = ("...... calculating the stack of 2D variances \n")
                log_main.add(msg)
                print(line, msg)
                if options.VERBOSE:
                    print("Now calculating the stack of 2D variances")

            proj_params = [0.0] * (nima * 5)
            aveList = []
            varList = []
            if nvec > 0:
                eigList = [[] for i in xrange(nvec)]

            if options.VERBOSE:
                print("Begin to read images on processor %d" % (myid))
            ttt = time()
            #imgdata = EMData.read_images(stack, all_proj)
            imgdata = []
            for index_of_proj in xrange(len(all_proj)):
                #img     = EMData()
                #img.read_image(stack, all_proj[index_of_proj])
                dmg = image_decimate_window_xform_ctf(
                    get_im(stack, all_proj[index_of_proj]), options.decimate,
                    options.window, options.CTF)
                #print dmg.get_xsize(), "init"
                imgdata.append(dmg)
            if options.VERBOSE:
                print("Reading images on processor %d done, time = %.2f" %
                      (myid, time() - ttt))
                print("On processor %d, we got %d images" %
                      (myid, len(imgdata)))
            mpi_barrier(MPI_COMM_WORLD)
            '''	
			imgdata2 = EMData.read_images(stack, range(img_begin, img_end))
			if options.fl > 0.0:
				for k in xrange(len(imgdata2)):
					imgdata2[k] = filt_tanl(imgdata2[k], options.fl, options.aa)
			if options.CTF:
				vol = recons3d_4nn_ctf_MPI(myid, imgdata2, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1)
			else:
				vol = recons3d_4nn_MPI(myid, imgdata2, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1)
			if myid == main_node:
				vol.write_image("vol_ctf.hdf")
				print_msg("Writing to the disk volume reconstructed from averages as		:  %s\n"%("vol_ctf.hdf"))
			del vol, imgdata2
			mpi_barrier(MPI_COMM_WORLD)
			'''
            from applications import prepare_2d_forPCA
            from utilities import model_blank
            for i in xrange(len(proj_list)):
                ki = proj_angles[proj_list[i][0]][3]
                if ki >= symbaselen: continue
                mi = index[ki]
                phiM, thetaM, psiM, s2xM, s2yM = get_params_proj(imgdata[mi])

                grp_imgdata = []
                for j in xrange(img_per_grp):
                    mj = index[proj_angles[proj_list[i][j]][3]]
                    phi, theta, psi, s2x, s2y = get_params_proj(imgdata[mj])
                    alpha, sx, sy, mirror = params_3D_2D_NEW(
                        phi, theta, psi, s2x, s2y, mirror_list[i][j])
                    if thetaM <= 90:
                        if mirror == 0:
                            alpha, sx, sy, scale = compose_transform2(
                                alpha, sx, sy, 1.0, phiM - phi, 0.0, 0.0, 1.0)
                        else:
                            alpha, sx, sy, scale = compose_transform2(
                                alpha, sx, sy, 1.0, 180 - (phiM - phi), 0.0,
                                0.0, 1.0)
                    else:
                        if mirror == 0:
                            alpha, sx, sy, scale = compose_transform2(
                                alpha, sx, sy, 1.0, -(phiM - phi), 0.0, 0.0,
                                1.0)
                        else:
                            alpha, sx, sy, scale = compose_transform2(
                                alpha, sx, sy, 1.0, -(180 - (phiM - phi)), 0.0,
                                0.0, 1.0)
                    set_params2D(imgdata[mj], [alpha, sx, sy, mirror, 1.0])
                    grp_imgdata.append(imgdata[mj])
                    #print grp_imgdata[j].get_xsize(), imgdata[mj].get_xsize()

                if not options.no_norm:
                    #print grp_imgdata[j].get_xsize()
                    mask = model_circle(nx / 2 - 2, nx, nx)
                    for k in xrange(img_per_grp):
                        ave, std, minn, maxx = Util.infomask(
                            grp_imgdata[k], mask, False)
                        grp_imgdata[k] -= ave
                        grp_imgdata[k] /= std
                    del mask

                if options.fl > 0.0:
                    from filter import filt_ctf, filt_table
                    from fundamentals import fft, window2d
                    nx2 = 2 * nx
                    ny2 = 2 * ny
                    if options.CTF:
                        from utilities import pad
                        for k in xrange(img_per_grp):
                            grp_imgdata[k] = window2d(
                                fft(
                                    filt_tanl(
                                        filt_ctf(
                                            fft(
                                                pad(grp_imgdata[k], nx2, ny2,
                                                    1, 0.0)),
                                            grp_imgdata[k].get_attr("ctf"),
                                            binary=1), options.fl,
                                        options.aa)), nx, ny)
                            #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny)
                            #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa)
                    else:
                        for k in xrange(img_per_grp):
                            grp_imgdata[k] = filt_tanl(grp_imgdata[k],
                                                       options.fl, options.aa)
                            #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny)
                            #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa)
                else:
                    from utilities import pad, read_text_file
                    from filter import filt_ctf, filt_table
                    from fundamentals import fft, window2d
                    nx2 = 2 * nx
                    ny2 = 2 * ny
                    if options.CTF:
                        from utilities import pad
                        for k in xrange(img_per_grp):
                            grp_imgdata[k] = window2d(
                                fft(
                                    filt_ctf(fft(
                                        pad(grp_imgdata[k], nx2, ny2, 1, 0.0)),
                                             grp_imgdata[k].get_attr("ctf"),
                                             binary=1)), nx, ny)
                            #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny)
                            #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa)
                '''
				if i < 10 and myid == main_node:
					for k in xrange(10):
						grp_imgdata[k].write_image("grp%03d.hdf"%i, k)
				'''
                """
				if myid == main_node and i==0:
					for pp in xrange(len(grp_imgdata)):
						grp_imgdata[pp].write_image("pp.hdf", pp)
				"""
                ave, grp_imgdata = prepare_2d_forPCA(grp_imgdata)
                """
				if myid == main_node and i==0:
					for pp in xrange(len(grp_imgdata)):
						grp_imgdata[pp].write_image("qq.hdf", pp)
				"""

                var = model_blank(nx, ny)
                for q in grp_imgdata:
                    Util.add_img2(var, q)
                Util.mul_scalar(var, 1.0 / (len(grp_imgdata) - 1))
                # Switch to std dev
                var = square_root(threshold(var))
                #if options.CTF:	ave, var = avgvar_ctf(grp_imgdata, mode="a")
                #else:	            ave, var = avgvar(grp_imgdata, mode="a")
                """
				if myid == main_node:
					ave.write_image("avgv.hdf",i)
					var.write_image("varv.hdf",i)
				"""

                set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0])
                set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0])

                aveList.append(ave)
                varList.append(var)

                if options.VERBOSE:
                    print("%5.2f%% done on processor %d" %
                          (i * 100.0 / len(proj_list), myid))
                if nvec > 0:
                    eig = pca(input_stacks=grp_imgdata,
                              subavg="",
                              mask_radius=radiuspca,
                              nvec=nvec,
                              incore=True,
                              shuffle=False,
                              genbuf=True)
                    for k in xrange(nvec):
                        set_params_proj(eig[k], [phiM, thetaM, 0.0, 0.0, 0.0])
                        eigList[k].append(eig[k])
                    """
					if myid == 0 and i == 0:
						for k in xrange(nvec):
							eig[k].write_image("eig.hdf", k)
					"""

            del imgdata
            #  To this point, all averages, variances, and eigenvectors are computed

            if options.ave2D:
                from fundamentals import fpol
                if myid == main_node:
                    km = 0
                    for i in xrange(number_of_proc):
                        if i == main_node:
                            for im in xrange(len(aveList)):
                                aveList[im].write_image(
                                    os.path.join(options.output_dir,
                                                 options.ave2D), km)
                                km += 1
                        else:
                            nl = mpi_recv(1, MPI_INT, i,
                                          SPARX_MPI_TAG_UNIVERSAL,
                                          MPI_COMM_WORLD)
                            nl = int(nl[0])
                            for im in xrange(nl):
                                ave = recv_EMData(i, im + i + 70000)
                                """
								nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
								nm = int(nm[0])
								members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
								ave.set_attr('members', map(int, members))
								members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
								ave.set_attr('pix_err', map(float, members))
								members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
								ave.set_attr('refprojdir', map(float, members))
								"""
                                tmpvol = fpol(ave, Tracker["nx"],
                                              Tracker["nx"], 1)
                                tmpvol.write_image(
                                    os.path.join(options.output_dir,
                                                 options.ave2D), km)
                                km += 1
                else:
                    mpi_send(len(aveList), 1, MPI_INT, main_node,
                             SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                    for im in xrange(len(aveList)):
                        send_EMData(aveList[im], main_node, im + myid + 70000)
                        """
						members = aveList[im].get_attr('members')
						mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
						mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
						members = aveList[im].get_attr('pix_err')
						mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
						try:
							members = aveList[im].get_attr('refprojdir')
							mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
						except:
							mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
						"""

            if options.ave3D:
                from fundamentals import fpol
                if options.VERBOSE:
                    print("Reconstructing 3D average volume")
                ave3D = recons3d_4nn_MPI(myid,
                                         aveList,
                                         symmetry=options.sym,
                                         npad=options.npad)
                bcast_EMData_to_all(ave3D, myid)
                if myid == main_node:
                    line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>"
                    ave3D = fpol(ave3D, Tracker["nx"], Tracker["nx"],
                                 Tracker["nx"])
                    ave3D.write_image(
                        os.path.join(options.output_dir, options.ave3D))
                    msg = ("%-70s:  %s\n" % (
                        "Writing to the disk volume reconstructed from averages as",
                        options.ave3D))
                    log_main.add(msg)
                    print(line, msg)
            del ave, var, proj_list, stack, phi, theta, psi, s2x, s2y, alpha, sx, sy, mirror, aveList

            if nvec > 0:
                for k in xrange(nvec):
                    if options.VERBOSE:
                        print("Reconstruction eigenvolumes", k)
                    cont = True
                    ITER = 0
                    mask2d = model_circle(radiuspca, nx, nx)
                    while cont:
                        #print "On node %d, iteration %d"%(myid, ITER)
                        eig3D = recons3d_4nn_MPI(myid,
                                                 eigList[k],
                                                 symmetry=options.sym,
                                                 npad=options.npad)
                        bcast_EMData_to_all(eig3D, myid, main_node)
                        if options.fl > 0.0:
                            eig3D = filt_tanl(eig3D, options.fl, options.aa)
                        if myid == main_node:
                            eig3D.write_image(
                                os.path.join(options.outpout_dir,
                                             "eig3d_%03d.hdf" % (k, ITER)))
                        Util.mul_img(eig3D,
                                     model_circle(radiuspca, nx, nx, nx))
                        eig3Df, kb = prep_vol(eig3D)
                        del eig3D
                        cont = False
                        icont = 0
                        for l in xrange(len(eigList[k])):
                            phi, theta, psi, s2x, s2y = get_params_proj(
                                eigList[k][l])
                            proj = prgs(eig3Df, kb,
                                        [phi, theta, psi, s2x, s2y])
                            cl = ccc(proj, eigList[k][l], mask2d)
                            if cl < 0.0:
                                icont += 1
                                cont = True
                                eigList[k][l] *= -1.0
                        u = int(cont)
                        u = mpi_reduce([u], 1, MPI_INT, MPI_MAX, main_node,
                                       MPI_COMM_WORLD)
                        icont = mpi_reduce([icont], 1, MPI_INT, MPI_SUM,
                                           main_node, MPI_COMM_WORLD)

                        if myid == main_node:
                            line = strftime("%Y-%m-%d_%H:%M:%S",
                                            localtime()) + " =>"
                            u = int(u[0])
                            msg = (" Eigenvector: ", k, " number changed ",
                                   int(icont[0]))
                            log_main.add(msg)
                            print(line, msg)
                        else:
                            u = 0
                        u = bcast_number_to_all(u, main_node)
                        cont = bool(u)
                        ITER += 1

                    del eig3Df, kb
                    mpi_barrier(MPI_COMM_WORLD)
                del eigList, mask2d

            if options.ave3D: del ave3D
            if options.var2D:
                from fundamentals import fpol
                if myid == main_node:
                    km = 0
                    for i in xrange(number_of_proc):
                        if i == main_node:
                            for im in xrange(len(varList)):
                                tmpvol = fpol(varList[im], Tracker["nx"],
                                              Tracker["nx"], 1)
                                tmpvol.write_image(
                                    os.path.join(options.output_dir,
                                                 options.var2D), km)
                                km += 1
                        else:
                            nl = mpi_recv(1, MPI_INT, i,
                                          SPARX_MPI_TAG_UNIVERSAL,
                                          MPI_COMM_WORLD)
                            nl = int(nl[0])
                            for im in xrange(nl):
                                ave = recv_EMData(i, im + i + 70000)
                                tmpvol = fpol(ave, Tracker["nx"],
                                              Tracker["nx"], 1)
                                tmpvol.write_image(
                                    os.path.join(options.output_dir,
                                                 options.var2D, km))
                                km += 1
                else:
                    mpi_send(len(varList), 1, MPI_INT, main_node,
                             SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                    for im in xrange(len(varList)):
                        send_EMData(varList[im], main_node, im + myid +
                                    70000)  #  What with the attributes??

            mpi_barrier(MPI_COMM_WORLD)

        if options.var3D:
            if myid == main_node and options.VERBOSE:
                line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>"
                msg = ("Reconstructing 3D variability volume")
                log_main.add(msg)
                print(line, msg)
            t6 = time()
            # radiusvar = options.radius
            # if( radiusvar < 0 ):  radiusvar = nx//2 -3
            res = recons3d_4nn_MPI(myid,
                                   varList,
                                   symmetry=options.sym,
                                   npad=options.npad)
            #res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ)
            if myid == main_node:
                from fundamentals import fpol
                res = fpol(res, Tracker["nx"], Tracker["nx"], Tracker["nx"])
                res.write_image(os.path.join(options.output_dir,
                                             options.var3D))

            if myid == main_node:
                line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>"
                msg = ("%-70s:  %.2f\n" %
                       ("Reconstructing 3D variability took [s]", time() - t6))
                log_main.add(msg)
                print(line, msg)
                if options.VERBOSE:
                    print("Reconstruction took: %.2f [min]" %
                          ((time() - t6) / 60))

            if myid == main_node:
                line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>"
                msg = ("%-70s:  %.2f\n" %
                       ("Total time for these computations [s]", time() - t0))
                print(line, msg)
                log_main.add(msg)
                if options.VERBOSE:
                    print("Total time for these computations: %.2f [min]" %
                          ((time() - t0) / 60))
                line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>"
                msg = ("sx3dvariability")
                print(line, msg)
                log_main.add(msg)

        from mpi import mpi_finalize
        mpi_finalize()

        if RUNNING_UNDER_MPI:
            global_def.MPI = False

        global_def.BATCH = False
Example #41
0
def main():
    global debug
    progname = os.path.basename(sys.argv[0])
    usage = """prog [options] <path or db> ...
	
Various utilities related to BDB databases.

examples :
e2bdb.py -c   Is perhaps the most critical function, as it cleans up the database cache. See the Wiki for more.
e2bdb.py <path> -s    will list the contents of the database in a directory in bdb: notation
e2bdb.py <path> -l    Will give useful summary info about stacks in a directory
e2bdb.py <database> --dump    Gives a mechanism to dump all of the metadata in a database, even if the database contains no images
"""

    parser = EMArgumentParser(usage=usage, version=EMANVERSION)

    parser.add_argument(
        "--cleanup",
        "-c",
        action="store_true",
        default=False,
        help=
        "This option will clean up the database cache so files can safely be moved or accessed on another computer via NFS."
    )
    parser.add_argument(
        "--force",
        "-F",
        action="store_true",
        default=False,
        help=
        "This will force an action that would normally fail due to failed checks."
    )
    parser.add_argument(
        "--delete",
        action="store_true",
        default=False,
        help="This will delete (or at least empty) the named database(s)")
    parser.add_argument("--all",
                        "-a",
                        action="store_true",
                        help="List per-particle info",
                        default=False)
    parser.add_argument("--long",
                        "-l",
                        action="store_true",
                        help="Long listing",
                        default=False)
    parser.add_argument("--short",
                        "-s",
                        action="store_true",
                        help="Dense listing of names only",
                        default=False)
    parser.add_argument(
        "--filt",
        type=str,
        help="Only include dictionary names containing the specified string",
        default=None)
    parser.add_argument(
        "--filtexclude",
        type=str,
        help="Exclude dictionary names containing the specified string",
        default=None)
    parser.add_argument(
        "--match",
        type=str,
        help=
        "Only include dictionaries matching the provided Python regular expression",
        default=None)
    parser.add_argument(
        "--exclude",
        type=str,
        help="The name of a database containing a list of exclusion keys",
        default=None)
    parser.add_argument(
        "--dump",
        "-D",
        action="store_true",
        help=
        "List contents of an entire database, eg 'e2bdb.py -D refine_01#register",
        default=False)
    parser.add_argument(
        "--smalldump",
        action="store_true",
        help=
        "Lists contents of an entire database, but only list 2 items per dictionary to better see headers",
        default=False)
    parser.add_argument(
        "--extractplots",
        action="store_true",
        help=
        "If a database contains sets of plots, such as bdb:refine_xx#convergence.results, this will extract the plots as text files."
    )
    parser.add_argument(
        "--check",
        action="store_true",
        help=
        "Check for self-consistency and errors in the structure of specified databases",
        default=False)
    parser.add_argument("--nocache",
                        action="store_true",
                        help="Don't use the database cache for this operation",
                        default=False)
    parser.add_argument(
        "--merge",
        action="store_true",
        help=
        "This will merge the contents of BDB 2-N into BDB 1 (including BDB 1's contents)",
        default=False)

    parser.add_argument(
        "--makevstack",
        type=str,
        help=
        "Creates a 'virtual' BDB stack with its own metadata, but the binary data taken from the (filtered) list of stacks",
        default=None)
    parser.add_argument(
        "--appendvstack",
        type=str,
        help=
        "Appends to/creates a 'virtual' BDB stack with its own metadata, but the binary data taken from the (filtered) list of stacks",
        default=None)
    parser.add_argument(
        "--verbose",
        "-v",
        dest="verbose",
        action="store",
        metavar="n",
        type=int,
        default=0,
        help=
        "verbose level [0-9], higher number means higher level of verboseness")
    parser.add_argument(
        "--list",
        type=str,
        help=
        "Specify the name of a file with a list of images to use in creation of virtual stacks. Please see source for details.",
        default=None)
    parser.add_argument(
        "--exlist",
        type=str,
        help=
        "Specify the name of a file with a list of images to exclude in creation of virtual stacks. Please see source for details.",
        default=None)
    parser.add_argument(
        "--restore",
        type=str,
        help=
        "Write changes in the derived virtual stack back to the original stack",
        default=None)
    parser.add_argument(
        "--ppid",
        type=int,
        help="Set the PID of the parent process, used for cross platform PPID",
        default=-1)
    parser.add_argument(
        "--checkctf",
        action="store_true",
        help=
        "Verfies that all images in the file contain CTF information, and gives some basic statistics",
        default=False)

    parser.add_argument(
        "--step",
        type=str,
        default="0,1",
        help=
        "Specify <init>,<step>[,<max>]. Processes only a subset of the input data. For example, 0,2 would process only the even numbered particles"
    )
    (options, args) = parser.parse_args()

    if options.nocache: EMAN2db.BDB_CACHE_DISABLE = True

    if options.cleanup:
        db_cleanup(options.force)
        sys.exit(0)

    try:
        options.step = int(options.step.split(",")[0]), int(
            options.step.split(",")[1]), int(
                options.step.split(",")[2])  # convert strings to tuple
    except:
        try:
            options.step = int(options.step.split(",")[0]), int(
                options.step.split(",")[1])
        except:
            print("Invalid --step specification")
            sys.exit(1)

    if options.all: options.long = 1
    if len(args) == 0: args.append("bdb:.")

    logid = 0
    if options.makevstack:
        logid = E2init(sys.argv)
        vstack = db_open_dict(options.makevstack)
        vstackn = 0
    elif options.appendvstack:
        logid = E2init(sys.argv)
        vstack = db_open_dict(options.appendvstack)
        vstackn = len(vstack)
    else:
        vstack = None

    if options.merge:
        print("WARNING: Merge mode\nCombining contents of: ",
              ", ".join(args[1:]))
        print("into ", args[0])

        if input("Proceed (y/n) :").lower() != "y":
            print("Aborting")
            sys.exit(1)

        for i, path in enumerate(args):
            if path.lower()[:4] == "bdb:" and not "#" in path:
                path = "bdb:.#" + path[4:]
            if path.lower()[:4] != "bdb:": path = "bdb:" + path

            if i == 0:
                outdb = db_open_dict(path)
                continue

            indb = db_open_dict(path, True)
            for k in list(indb.keys()):
                outdb[k] = indb[k]

        print("Merging complete")
        sys.exit(0)

    for path in args:
        if path.lower()[:4] == "bdb:" and not "#" in path:
            uu = os.path.split(path)
            if (uu[0] == ''): path = "bdb:.#" + path[4:]
            else: path = uu[0] + "#" + uu[1]
        if path.lower()[:4] != "bdb:": path = "bdb:" + path
        if '#' in path:
            if len(args) > 1: print("\n", path, ":")
            path, dbs = path.rsplit("#", 1)
            path += "#"
            dbs = [dbs]
        else:
            if not '#' in path and path[-1] != '/': path += '#'
            if len(args) > 1: print("\n", path[:-1], ":")
            dbs = db_list_dicts(path)

        dbs.sort()
        if options.filt:
            dbs = [db for db in dbs if options.filt in db]

        if options.filtexclude:
            dbs = [db for db in dbs if options.filtexclude not in db]

        if options.match != None:
            dbs = [db for db in dbs if re.match(options.match, db)]

        if options.list:
            if options.makevstack == None and options.appendvstack == None:
                print(
                    "ERROR, this option is used for virtual stack creation, please add makevstack or appendvstack options, and restart"
                )
                sys.exit(1)
            vdata = open(options.list, 'r').readlines()
            n = len(vdata[0].split())
            slist = []
            for line in vdata:
                line = line.split()
                for i in range(n):
                    val = int(line[i])
                    slist.append(val)
            del n, val, vdata

        if options.exlist:
            if options.makevstack == None:
                print(
                    "ERROR, this option is used for virtual stack creation, please add makevstack or appendvstack options, and restart"
                )
                sys.exit(1)
            vdata = open(options.exlist, 'r').readlines()
            n = len(vdata[0].split())
            slist = []
            for line in vdata:
                line = line.split()
                for i in range(n):
                    val = int(line[i])
                    slist.append(val)
            n = EMUtil.get_image_count(args[0])
            good = set(range(n)) - set(slist)
            slist = [i for i in good]
            slist.sort()
            del n, val, vdata, good

        if options.makevstack != None or options.appendvstack != None:

            vspath = os.path.realpath(vstack.path) + "/"
            if options.verbose > 2: print("vspath: ", vspath)
            for db in dbs:
                dct, keys = db_open_dict(path + db, ro=True, with_keys=True)
                if dct == vstack: continue
                if len(options.step) == 2:
                    if keys == None:
                        vals = list(
                            range(options.step[0], len(dct), options.step[1]))
                    else:
                        vals = keys[options.step[0]::options.step[
                            1]]  # we apply --step even if we have a list of keys
                else:
                    if keys == None:
                        vals = list(
                            range(options.step[0], options.step[2],
                                  options.step[1]))
                    else:
                        vals = keys[options.step[0]:options.step[2]:options.step[
                            1]]  # we apply --step even if we have a list of keys

                if options.list != None or options.exlist != None: vals = slist
                for n in vals:
                    try:
                        d = dct.get(n, nodata=1).get_attr_dict()
                    except:
                        traceback.print_exc()
                        print("---\nerror reading ", db, n)
                        continue
                    # This block converts an absolute path to the actual data to a relative path
                    try:
                        dpath = os.path.realpath(dct.get_data_path(n))
                        if options.verbose > 2: print("dpath: ", dpath)
                        if os.name == 'nt':
                            vspath = vspath.replace("\\", '/')
                            dpath = dpath.replace('\\', '/')
                        rpath = makerelpath(vspath, dpath)
                        if options.verbose > 2: print("rpath: ", rpath)
                    except:
                        print("error with data_path ", db, n)
                        continue
                    d["data_path"] = rpath
                    d["data_n"] = n
                    d["data_source"] = path + db
                    if d["data_path"] == None:
                        print("error with data_path ", db, n)
                        continue
                    vstack[vstackn] = d
                    vstackn += 1
                    if vstackn % 100 == 0:
                        try:
                            print("\r  ", vstackn, "     ", end=' ')
                            sys.stdout.flush()
                        except:
                            pass
                print("\r  ", vstackn, "     ")
                dct.close()

        try:
            maxname = max([len(s) for s in dbs])
        except:
            print("Error reading ", path)

        if options.restore:
            nima = EMUtil.get_image_count(options.restore)
            IB = db_open_dict(options.restore)
            source_old = None
            if len(options.step) == 3: nima = min(options.step[2], nima)
            for i in range(options.step[0], nima, options.step[1]):
                source = IB.get_header(i)
                source_path = source["source_path"]
                ID = source["source_n"]
                if (source_old != source_path):
                    if (source_old != None): DB.close()
                    DB = db_open_dict(source_path, ro=True)
                    source_old = source_path
                target = DB.get_header(ID)
                try:
                    source["data_path"] = target["data_path"]
                    source["data_n"] = target["data_n"]
                    source["source_path"] = target["source_path"]
                    source["source_n"] = target["source_n"]
                except:
                    #  top level does not have data_path
                    del source['data_path']
                    del source['data_n']
                    source["source_path"] = target["source_path"]
                    source["source_n"] = target["source_n"]
                DB.set_header(ID, source)
            DB.close()

        if options.extractplots:
            for db in dbs:
                print("####  Extracting plots from ", db)
                dct = db_open_dict(path + db, ro=True)

                #### Dump
                keys = list(dct.keys())
                keys.sort()
                for k in keys:
                    v = dct[k]
                    try:
                        ns = [len(i) for i in v]
                        fsp = db + "-" + k + ".txt"
                        print("%s  (%d columns)" % (fsp, len(ns)))
                        out = open(fsp, "w")
                        for i in range(ns[0]):
                            for j in range(len(ns)):
                                out.write(str(v[j][i]))
                                if j < len(ns) - 1: out.write("\t")
                            out.write("\n")
                        out.close()
                    except:
                        continue
                dct.close()

        if options.smalldump:
            for db in dbs:
                print("##### ", db)
                dct = db_open_dict(path + db, ro=True)

                #### Dump
                keys = list(dct.keys())
                keys.sort()
                if len(options.step) == 3: keys = keys[:options.step[2]]
                for k in keys[options.step[0]::options.step[1]]:
                    v = dct[k]
                    print("%s : " % k, end=' ')
                    if isinstance(v, list) or isinstance(v, tuple):
                        for i in v:
                            print("\n\t%s" % str(i), end=' ')
                        print("")
                    elif isinstance(v, dict):
                        ks2 = list(v.keys())
                        ks2.sort()
                        kc = 0
                        for i in ks2:
                            if kc >= 2:
                                print("...")
                                break
                            print("\n\t%s : %s" % (i, v[i]), end=' ')
                            kc += 1
                        print("")
                    else:
                        print(str(v))
                dct.close()
        if options.checkctf:
            for db in dbs:
                print("##### CTF -> ", db)
                dct = db_open_dict(path + db, ro=True)
                keys = list(dct.keys())
                if len(options.step) == 3: keys = keys[:options.step[2]]
                defocus = set()
                for k in keys[options.step[0]::options.step[1]]:
                    v = dct.get_header(k)
                    try:
                        ctf = v["ctf"]
                    except:
                        if k != "maxrec": print("CTF missing on image %s" % k)
                        continue

                    defocus.add(ctf.defocus)

                defocus = list(defocus)
                print("Defocuses found: ", end=' ')
                for i in defocus:
                    print("%1.3f, " % i, end=' ')
                print("\n\nRange: %1.3f - %1.3f  (%d unique values)" %
                      (min(defocus), max(defocus), len(defocus)))

        if options.dump:
            for db in dbs:
                print("##### ", db)
                dct = db_open_dict(path + db, ro=True)

                #### Dump
                keys = list(dct.keys())
                if len(options.step) == 3: keys = keys[:options.step[2]]
                keys.sort()
                for k in keys[options.step[0]::options.step[1]]:
                    v = dct[k]
                    print("%s : " % k, end=' ')
                    if isinstance(v, list) or isinstance(v, tuple):
                        for i in v:
                            print("\n\t%s" % str(i), end=' ')
                        print("")
                    elif isinstance(v, dict):
                        ks2 = list(v.keys())
                        ks2.sort()
                        for i in ks2:
                            print("\n\t%s : %s" % (i, v[i]), end=' ')
                        print("")
                    else:
                        print(str(v))
                dct.close()

        # long listing, one db per line
        elif options.long:
            width = maxname + 3
            fmt = "%%-%ds %%-07d %%14s  %%s" % width
            fmt2 = "%%-%ds (not an image stack)" % width
            total = [0, 0]
            for db in dbs:
                dct = db_open_dict(path + db, True)

                ### Info on all particles
                if options.all:
                    mx = len(dct)
                    if len(options.step) == 3: mx = min(mx, options.step[2])
                    for i in range(options.step[0], mx, options.step[1]):
                        try:
                            im = dct[i]
                            if im == None: raise Exception
                        except:
                            continue
                        print(
                            "%d. %d x %d x %d\tA/pix=%1.2f\tM=%1.4f\tS=%1.4f\tSk=%1.4f"
                            % (i, im["nx"], im["ny"], im["nz"], im["apix_x"],
                               im["mean"], im["sigma"], im["skewness"]),
                            end=' ')
                        try:
                            print("\t%s" % str(im["model_id"]))
                        except:
                            pass
                        try:
                            print("\tdf=%1.3f\tB=%1.1f" %
                                  (im["ctf"].defocus, im["ctf"].bfactor))
                        except:
                            print(" ")

                first = EMData()
                try:
                    first.read_image(path + db, 0, True)
                    size = first.get_xsize() * first.get_ysize(
                    ) * first.get_zsize() * len(dct) * 4
                    total[0] += len(dct)
                    total[1] += size
                    print(fmt % (db, len(dct), "%dx%dx%d   apix: %1.2f" %
                                 (first.get_xsize(), first.get_ysize(),
                                  first.get_zsize(), first["apix_x"]),
                                 human_size(size)),
                          end=' ')
                except:
                    print(fmt2 % db)
                try:
                    print("\tdf: %1.3f\tB: %1.0f" %
                          (first["ctf"].defocus, first["ctf"].bfactor))
                except:
                    print("")
                dct.close()
            print(fmt % ("TOTAL", total[0], "", human_size(total[1])))
        elif options.check:
            from pickle import loads
            for db in dbs:
                dct = db_open_dict(path + db, ro=True)
                dct.realopen()
                keys = list(dct.bdb.keys())
                allkvp = {}
                for k in keys:
                    s1, s2 = k.split("\x80", 1)  # start of a pickled string.
                    s2 = loads("\x80" + s2)  # the pickled part
                    if len(
                            s1
                    ) > 0:  # If anything unpickled, then it is an axbxc prefix identifying the location of a binary
                        st = allkvp.setdefault(
                            s1, set())  # set of all positions seen so far
                        v = loads(dct.bdb.get(k))  # position in binary file
                        if v in st:
                            print(
                                "Error: value %d seen multiple times in %s (%s,%s)"
                                % (v, db, s1, s2))
                        st.add(v)
                print("%s : " % db, end=' ')
                for i in list(allkvp.keys()):
                    if options.verbose > 0:
                        print("%s %d/%d\t" %
                              (i, len(allkvp[i]), int(max(allkvp[i])) + 1),
                              end=' ')
                    if len(allkvp[i]) != int(max(allkvp[i]) + 1):
                        print(
                            "\nMismatch found in %s. Could be normal if file has been rewritten multiple times, but is unusual"
                            % db)
                if options.verbose > 0: print("")
                else: print(" done")
                dct.close()

        elif options.short:
            for db in dbs:
                print(path + db, end=' ')
            print(" ")

        elif not options.makevstack and not options.appendvstack:
            # Nicely formatted 'ls' style display
            cols = int(floor(old_div(80.0, (maxname + 3))))
            width = old_div(80, cols)
            rows = int(ceil(old_div(float(len(dbs)), cols)))

            fmt = "%%-%ds" % width
            for r in range(rows):
                for c in range(cols):
                    try:
                        print(fmt % dbs[r + c * rows], end=' ')
                    except:
                        pass
                print(" ")

        if options.delete:
            if not options.force:
                print("You are requesting to delete the following databases:")
                for db in dbs:
                    print(db, " ", end=' ')
                if input("\nAre you sure (y/n) ? ")[0].lower() != 'y':
                    print("Aborted")
                    sys.exit(1)

            for db in dbs:
                db_remove_dict(path + db)

    if logid: E2end(logid)
Example #42
0
from math import *
from os import *

import EMAN2fsc
from EMAN2db import db_open_dict
from EMAN2 import *

if len(sys.argv)>1 : dirs=sys.argv[1:]
else : dirs=[i for i in os.listdir(".") if "refine_"==i[:7] and len(i)==9]

# iterates over all refine directories
for d in dirs:

	print "Updating ",d
	
	db2=db_open_dict("bdb:%s#register"%d,True)
	try :
		initm=db2["cmd_dict"]["model"]
		print " Initial model ",initm
	except:
		print "No initial model recorded"
		initm=None

	db=db_open_dict("bdb:%s#convergence.results"%d)

	if d[-5:]=="_even" :
		# For e2refine_evenodd results
		db2=db_open_dict("bdb:%s#convergence.results"%d[:-5])
		tdflist = [i for i in db_list_dicts("bdb:%s"%d) if "threed_filt" in i]
		for i in tdflist:
			dictname = re.sub('^threed_filt_','conv_even_odd_', i)
Example #43
0
def main():

	def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror):
		# the final ali2d parameters already combine shifts operation first and rotation operation second for parameters converted from 3D
		if mirror:
			m = 1
			alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 540.0-psi, 0, 0, 1.0)
		else:
			m = 0
			alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 360.0-psi, 0, 0, 1.0)
		return  alpha, sx, sy, m
	
	progname = os.path.basename(sys.argv[0])
	usage = progname + " prj_stack  --ave2D= --var2D=  --ave3D= --var3D= --img_per_grp= --fl=  --aa=   --sym=symmetry --CTF"
	parser = OptionParser(usage, version=SPARXVERSION)
	
	parser.add_option("--output_dir",   type="string"	   ,	default="./",				    help="Output directory")
	parser.add_option("--ave2D",		type="string"	   ,	default=False,				help="Write to the disk a stack of 2D averages")
	parser.add_option("--var2D",		type="string"	   ,	default=False,				help="Write to the disk a stack of 2D variances")
	parser.add_option("--ave3D",		type="string"	   ,	default=False,				help="Write to the disk reconstructed 3D average")
	parser.add_option("--var3D",		type="string"	   ,	default=False,				help="Compute 3D variability (time consuming!)")
	parser.add_option("--img_per_grp",	type="int"         ,	default=100,	     	    help="Number of neighbouring projections.(Default is 100)")
	parser.add_option("--no_norm",		action="store_true",	default=False,				help="Do not use normalization.(Default is to apply normalization)")
	#parser.add_option("--radius", 	    type="int"         ,	default=-1   ,				help="radius for 3D variability" )
	parser.add_option("--npad",			type="int"         ,	default=2    ,				help="Number of time to pad the original images.(Default is 2 times padding)")
	parser.add_option("--sym" , 		type="string"      ,	default="c1",				help="Symmetry. (Default is no symmetry)")
	parser.add_option("--fl",			type="float"       ,	default=0.0,				help="Low pass filter cutoff in absolute frequency (0.0 - 0.5) and is applied to decimated images. (Default - no filtration)")
	parser.add_option("--aa",			type="float"       ,	default=0.02 ,				help="Fall off of the filter. Use default value if user has no clue about falloff (Default value is 0.02)")
	parser.add_option("--CTF",			action="store_true",	default=False,				help="Use CFT correction.(Default is no CTF correction)")
	#parser.add_option("--MPI" , 		action="store_true",	default=False,				help="use MPI version")
	#parser.add_option("--radiuspca", 	type="int"         ,	default=-1   ,				help="radius for PCA" )
	#parser.add_option("--iter", 		type="int"         ,	default=40   ,				help="maximum number of iterations (stop criterion of reconstruction process)" )
	#parser.add_option("--abs", 		type="float"   ,        default=0.0  ,				help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" )
	#parser.add_option("--squ", 		type="float"   ,	    default=0.0  ,				help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" )
	parser.add_option("--VAR" , 		action="store_true",	default=False,				help="Stack of input consists of 2D variances (Default False)")
	parser.add_option("--decimate",     type  ="float",         default=0.25,               help="Image decimate rate, a number less than 1. (Default is 0.25)")
	parser.add_option("--window",       type  ="int",           default=0,                  help="Target image size relative to original image size. (Default value is zero.)")
	#parser.add_option("--SND",			action="store_true",	default=False,				help="compute squared normalized differences (Default False)")
	#parser.add_option("--nvec",			type="int"         ,	default=0    ,				help="Number of eigenvectors, (Default = 0 meaning no PCA calculated)")
	parser.add_option("--symmetrize",	action="store_true",	default=False,				help="Prepare input stack for handling symmetry (Default False)")
	parser.add_option("--overhead",     type  ="float",         default=0.5,                help="python overhead per CPU.")

	(options,args) = parser.parse_args()
	#####
	from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, mpi_recv, MPI_COMM_WORLD
	from mpi import mpi_barrier, mpi_reduce, mpi_bcast, mpi_send, MPI_FLOAT, MPI_SUM, MPI_INT, MPI_MAX
	#from mpi import *
	from applications   import MPI_start_end
	from reconstruction import recons3d_em, recons3d_em_MPI
	from reconstruction	import recons3d_4nn_MPI, recons3d_4nn_ctf_MPI
	from utilities      import print_begin_msg, print_end_msg, print_msg
	from utilities      import read_text_row, get_image, get_im, wrap_mpi_send, wrap_mpi_recv
	from utilities      import bcast_EMData_to_all, bcast_number_to_all
	from utilities      import get_symt

	#  This is code for handling symmetries by the above program.  To be incorporated. PAP 01/27/2015

	from EMAN2db import db_open_dict

	# Set up global variables related to bdb cache 
	if global_def.CACHE_DISABLE:
		from utilities import disable_bdb_cache
		disable_bdb_cache()
	
	# Set up global variables related to ERROR function
	global_def.BATCH = True
	
	# detect if program is running under MPI
	RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in os.environ
	if RUNNING_UNDER_MPI: global_def.MPI = True
	if options.output_dir =="./": current_output_dir = os.path.abspath(options.output_dir)
	else: current_output_dir = options.output_dir
	if options.symmetrize :
		if RUNNING_UNDER_MPI:
			try:
				sys.argv = mpi_init(len(sys.argv), sys.argv)
				try:	
					number_of_proc = mpi_comm_size(MPI_COMM_WORLD)
					if( number_of_proc > 1 ):
						ERROR("Cannot use more than one CPU for symmetry preparation","sx3dvariability",1)
				except:
					pass
			except:
				pass
		if not os.path.exists(current_output_dir): os.mkdir(current_output_dir)
		
		#  Input
		#instack = "Clean_NORM_CTF_start_wparams.hdf"
		#instack = "bdb:data"
		
		
		from logger import Logger,BaseLogger_Files
		if os.path.exists(os.path.join(current_output_dir, "log.txt")): os.remove(os.path.join(current_output_dir, "log.txt"))
		log_main=Logger(BaseLogger_Files())
		log_main.prefix = os.path.join(current_output_dir, "./")
		
		instack = args[0]
		sym = options.sym.lower()
		if( sym == "c1" ):
			ERROR("There is no need to symmetrize stack for C1 symmetry","sx3dvariability",1)
		
		line =""
		for a in sys.argv:
			line +=" "+a
		log_main.add(line)
	
		if(instack[:4] !="bdb:"):
			#if output_dir =="./": stack = "bdb:data"
			stack = "bdb:"+current_output_dir+"/data"
			delete_bdb(stack)
			junk = cmdexecute("sxcpy.py  "+instack+"  "+stack)
		else: stack = instack
		
		qt = EMUtil.get_all_attributes(stack,'xform.projection')

		na = len(qt)
		ts = get_symt(sym)
		ks = len(ts)
		angsa = [None]*na
		
		for k in range(ks):
			#Qfile = "Q%1d"%k
			#if options.output_dir!="./": Qfile = os.path.join(options.output_dir,"Q%1d"%k)
			Qfile = os.path.join(current_output_dir, "Q%1d"%k)
			#delete_bdb("bdb:Q%1d"%k)
			delete_bdb("bdb:"+Qfile)
			#junk = cmdexecute("e2bdb.py  "+stack+"  --makevstack=bdb:Q%1d"%k)
			junk = cmdexecute("e2bdb.py  "+stack+"  --makevstack=bdb:"+Qfile)
			#DB = db_open_dict("bdb:Q%1d"%k)
			DB = db_open_dict("bdb:"+Qfile)
			for i in range(na):
				ut = qt[i]*ts[k]
				DB.set_attr(i, "xform.projection", ut)
				#bt = ut.get_params("spider")
				#angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]]
			#write_text_row(angsa, 'ptsma%1d.txt'%k)
			#junk = cmdexecute("e2bdb.py  "+stack+"  --makevstack=bdb:Q%1d"%k)
			#junk = cmdexecute("sxheader.py  bdb:Q%1d  --params=xform.projection  --import=ptsma%1d.txt"%(k,k))
			DB.close()
		#if options.output_dir =="./": delete_bdb("bdb:sdata")
		delete_bdb("bdb:" + current_output_dir + "/"+"sdata")
		#junk = cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q")
		sdata = "bdb:"+current_output_dir+"/"+"sdata"
		print(sdata)
		junk = cmdexecute("e2bdb.py   " + current_output_dir +"  --makevstack="+sdata +" --filt=Q")
		#junk = cmdexecute("ls  EMAN2DB/sdata*")
		#a = get_im("bdb:sdata")
		a = get_im(sdata)
		a.set_attr("variabilitysymmetry",sym)
		#a.write_image("bdb:sdata")
		a.write_image(sdata)

	else:

		from fundamentals import window2d
		sys.argv       = mpi_init(len(sys.argv), sys.argv)
		myid           = mpi_comm_rank(MPI_COMM_WORLD)
		number_of_proc = mpi_comm_size(MPI_COMM_WORLD)
		main_node      = 0
		shared_comm  = mpi_comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED,  0, MPI_INFO_NULL)
		myid_on_node = mpi_comm_rank(shared_comm)
		no_of_processes_per_group = mpi_comm_size(shared_comm)
		masters_from_groups_vs_everything_else_comm = mpi_comm_split(MPI_COMM_WORLD, main_node == myid_on_node, myid_on_node)
		color, no_of_groups, balanced_processor_load_on_nodes = get_colors_and_subsets(main_node, MPI_COMM_WORLD, myid, \
		    shared_comm, myid_on_node, masters_from_groups_vs_everything_else_comm)
		overhead_loading = options.overhead*number_of_proc
		#memory_per_node  = options.memory_per_node
		#if memory_per_node == -1.: memory_per_node = 2.*no_of_processes_per_group
		keepgoing = 1
		
		current_window   = options.window
		current_decimate = options.decimate
		
		if len(args) == 1: stack = args[0]
		else:
			print(( "usage: " + usage))
			print(( "Please run '" + progname + " -h' for detailed options"))
			return 1

		t0 = time()	
		# obsolete flags
		options.MPI  = True
		#options.nvec = 0
		options.radiuspca = -1
		options.iter = 40
		options.abs  = 0.0
		options.squ  = 0.0

		if options.fl > 0.0 and options.aa == 0.0:
			ERROR("Fall off has to be given for the low-pass filter", "sx3dvariability", 1, myid)
			
		#if options.VAR and options.SND:
		#	ERROR("Only one of var and SND can be set!", "sx3dvariability", myid)
			
		if options.VAR and (options.ave2D or options.ave3D or options.var2D): 
			ERROR("When VAR is set, the program cannot output ave2D, ave3D or var2D", "sx3dvariability", 1, myid)
			
		#if options.SND and (options.ave2D or options.ave3D):
		#	ERROR("When SND is set, the program cannot output ave2D or ave3D", "sx3dvariability", 1, myid)
		
		#if options.nvec > 0 :
		#	ERROR("PCA option not implemented", "sx3dvariability", 1, myid)
			
		#if options.nvec > 0 and options.ave3D == None:
		#	ERROR("When doing PCA analysis, one must set ave3D", "sx3dvariability", 1, myid)
		
		if current_decimate>1.0 or current_decimate<0.0:
			ERROR("Decimate rate should be a value between 0.0 and 1.0", "sx3dvariability", 1, myid)
		
		if current_window < 0.0:
			ERROR("Target window size should be always larger than zero", "sx3dvariability", 1, myid)
			
		if myid == main_node:
			img  = get_image(stack, 0)
			nx   = img.get_xsize()
			ny   = img.get_ysize()
			if(min(nx, ny) < current_window):   keepgoing = 0
		keepgoing = bcast_number_to_all(keepgoing, main_node, MPI_COMM_WORLD)
		if keepgoing == 0: ERROR("The target window size cannot be larger than the size of decimated image", "sx3dvariability", 1, myid)

		import string
		options.sym = options.sym.lower()
		# if global_def.CACHE_DISABLE:
		# 	from utilities import disable_bdb_cache
		# 	disable_bdb_cache()
		# global_def.BATCH = True
		
		if myid == main_node:
			if not os.path.exists(current_output_dir): os.mkdir(current_output_dir)# Never delete output_dir in the program!
	
		img_per_grp = options.img_per_grp
		#nvec        = options.nvec
		radiuspca   = options.radiuspca
		from logger import Logger,BaseLogger_Files
		#if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt"))
		log_main=Logger(BaseLogger_Files())
		log_main.prefix = os.path.join(current_output_dir, "./")

		if myid == main_node:
			line = ""
			for a in sys.argv: line +=" "+a
			log_main.add(line)
			log_main.add("-------->>>Settings given by all options<<<-------")
			log_main.add("Symmetry             : %s"%options.sym)
			log_main.add("Input stack          : %s"%stack)
			log_main.add("Output_dir           : %s"%current_output_dir)
			
			if options.ave3D: log_main.add("Ave3d                : %s"%options.ave3D)
			if options.var3D: log_main.add("Var3d                : %s"%options.var3D)
			if options.ave2D: log_main.add("Ave2D                : %s"%options.ave2D)
			if options.var2D: log_main.add("Var2D                : %s"%options.var2D)
			if options.VAR:   log_main.add("VAR                  : True")
			else:             log_main.add("VAR                  : False")
			if options.CTF:   log_main.add("CTF correction       : True  ")
			else:             log_main.add("CTF correction       : False ")
			
			log_main.add("Image per group      : %5d"%options.img_per_grp)
			log_main.add("Image decimate rate  : %4.3f"%current_decimate)
			log_main.add("Low pass filter      : %4.3f"%options.fl)
			current_fl = options.fl
			if current_fl == 0.0: current_fl = 0.5
			log_main.add("Current low pass filter is equivalent to cutoff frequency %4.3f for original image size"%round((current_fl*current_decimate),3))
			log_main.add("Window size          : %5d "%current_window)
			log_main.add("sx3dvariability begins")
	
		symbaselen = 0
		if myid == main_node:
			nima = EMUtil.get_image_count(stack)
			img  = get_image(stack)
			nx   = img.get_xsize()
			ny   = img.get_ysize()
			nnxo = nx
			nnyo = ny
			if options.sym != "c1" :
				imgdata = get_im(stack)
				try:
					i = imgdata.get_attr("variabilitysymmetry").lower()
					if(i != options.sym):
						ERROR("The symmetry provided does not agree with the symmetry of the input stack", "sx3dvariability", 1, myid)
				except:
					ERROR("Input stack is not prepared for symmetry, please follow instructions", "sx3dvariability", 1, myid)
				from utilities import get_symt
				i = len(get_symt(options.sym))
				if((nima/i)*i != nima):
					ERROR("The length of the input stack is incorrect for symmetry processing", "sx3dvariability", 1, myid)
				symbaselen = nima/i
			else:  symbaselen = nima
		else:
			nima = 0
			nx = 0
			ny = 0
			nnxo = 0
			nnyo = 0
		nima    = bcast_number_to_all(nima)
		nx      = bcast_number_to_all(nx)
		ny      = bcast_number_to_all(ny)
		nnxo    = bcast_number_to_all(nnxo)
		nnyo    = bcast_number_to_all(nnyo)
		if current_window > max(nx, ny):
			ERROR("Window size is larger than the original image size", "sx3dvariability", 1)
		
		if current_decimate == 1.:
			if current_window !=0:
				nx = current_window
				ny = current_window
		else:
			if current_window == 0:
				nx = int(nx*current_decimate+0.5)
				ny = int(ny*current_decimate+0.5)
			else:
				nx = int(current_window*current_decimate+0.5)
				ny = nx
		symbaselen = bcast_number_to_all(symbaselen)
		
		# check FFT prime number
		from fundamentals import smallprime
		is_fft_friendly = (nx == smallprime(nx))
		
		if not is_fft_friendly:
			if myid == main_node:
				log_main.add("The target image size is not a product of small prime numbers")
				log_main.add("Program adjusts the input settings!")
			### two cases
			if current_decimate == 1.:
				nx = smallprime(nx)
				ny = nx
				current_window = nx # update
				if myid == main_node:
					log_main.add("The window size is updated to %d."%current_window)
			else:
				if current_window == 0:
					nx = smallprime(int(nx*current_decimate+0.5))
					current_decimate = float(nx)/nnxo
					ny = nx
					if (myid == main_node):
						log_main.add("The decimate rate is updated to %f."%current_decimate)
				else:
					nx = smallprime(int(current_window*current_decimate+0.5))
					ny = nx
					current_window = int(nx/current_decimate+0.5)
					if (myid == main_node):
						log_main.add("The window size is updated to %d."%current_window)
						
		if myid == main_node:
			log_main.add("The target image size is %d"%nx)
						
		if radiuspca == -1: radiuspca = nx/2-2
		if myid == main_node: log_main.add("%-70s:  %d\n"%("Number of projection", nima))
		img_begin, img_end = MPI_start_end(nima, number_of_proc, myid)
		
		"""
		if options.SND:
			from projection		import prep_vol, prgs
			from statistics		import im_diff
			from utilities		import get_im, model_circle, get_params_proj, set_params_proj
			from utilities		import get_ctf, generate_ctf
			from filter			import filt_ctf
		
			imgdata = EMData.read_images(stack, range(img_begin, img_end))

			if options.CTF:
				vol = recons3d_4nn_ctf_MPI(myid, imgdata, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1)
			else:
				vol = recons3d_4nn_MPI(myid, imgdata, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1)

			bcast_EMData_to_all(vol, myid)
			volft, kb = prep_vol(vol)

			mask = model_circle(nx/2-2, nx, ny)
			varList = []
			for i in xrange(img_begin, img_end):
				phi, theta, psi, s2x, s2y = get_params_proj(imgdata[i-img_begin])
				ref_prj = prgs(volft, kb, [phi, theta, psi, -s2x, -s2y])
				if options.CTF:
					ctf_params = get_ctf(imgdata[i-img_begin])
					ref_prj = filt_ctf(ref_prj, generate_ctf(ctf_params))
				diff, A, B = im_diff(ref_prj, imgdata[i-img_begin], mask)
				diff2 = diff*diff
				set_params_proj(diff2, [phi, theta, psi, s2x, s2y])
				varList.append(diff2)
			mpi_barrier(MPI_COMM_WORLD)
		"""
		
		if options.VAR: # 2D variance images have no shifts
			#varList   = EMData.read_images(stack, range(img_begin, img_end))
			from EMAN2 import Region
			for index_of_particle in range(img_begin,img_end):
				image = get_im(stack, index_of_proj)
				if current_window > 0: varList.append(fdecimate(window2d(image,current_window,current_window), nx,ny))
				else:   varList.append(fdecimate(image, nx,ny))
				
		else:
			from utilities		import bcast_number_to_all, bcast_list_to_all, send_EMData, recv_EMData
			from utilities		import set_params_proj, get_params_proj, params_3D_2D, get_params2D, set_params2D, compose_transform2
			from utilities		import model_blank, nearest_proj, model_circle, write_text_row, wrap_mpi_gatherv
			from applications	import pca
			from statistics		import avgvar, avgvar_ctf, ccc
			from filter		    import filt_tanl
			from morphology		import threshold, square_root
			from projection 	import project, prep_vol, prgs
			from sets		    import Set
			from utilities      import wrap_mpi_recv, wrap_mpi_bcast, wrap_mpi_send
			import numpy as np
			if myid == main_node:
				t1          = time()
				proj_angles = []
				aveList     = []
				tab = EMUtil.get_all_attributes(stack, 'xform.projection')	
				for i in range(nima):
					t     = tab[i].get_params('spider')
					phi   = t['phi']
					theta = t['theta']
					psi   = t['psi']
					x     = theta
					if x > 90.0: x = 180.0 - x
					x = x*10000+psi
					proj_angles.append([x, t['phi'], t['theta'], t['psi'], i])
				t2 = time()
				log_main.add( "%-70s:  %d\n"%("Number of neighboring projections", img_per_grp))
				log_main.add("...... Finding neighboring projections\n")
				log_main.add( "Number of images per group: %d"%img_per_grp)
				log_main.add( "Now grouping projections")
				proj_angles.sort()
				proj_angles_list = np.full((nima, 4), 0.0, dtype=np.float32)	
				for i in range(nima):
					proj_angles_list[i][0] = proj_angles[i][1]
					proj_angles_list[i][1] = proj_angles[i][2]
					proj_angles_list[i][2] = proj_angles[i][3]
					proj_angles_list[i][3] = proj_angles[i][4]
			else: proj_angles_list = 0
			proj_angles_list = wrap_mpi_bcast(proj_angles_list, main_node, MPI_COMM_WORLD)
			proj_angles      = []
			for i in range(nima):
				proj_angles.append([proj_angles_list[i][0], proj_angles_list[i][1], proj_angles_list[i][2], int(proj_angles_list[i][3])])
			del proj_angles_list
			proj_list, mirror_list = nearest_proj(proj_angles, img_per_grp, range(img_begin, img_end))
			all_proj = Set()
			for im in proj_list:
				for jm in im:
					all_proj.add(proj_angles[jm][3])
			all_proj = list(all_proj)
			index = {}
			for i in range(len(all_proj)): index[all_proj[i]] = i
			mpi_barrier(MPI_COMM_WORLD)
			if myid == main_node:
				log_main.add("%-70s:  %.2f\n"%("Finding neighboring projections lasted [s]", time()-t2))
				log_main.add("%-70s:  %d\n"%("Number of groups processed on the main node", len(proj_list)))
				log_main.add("Grouping projections took:  %12.1f [m]"%((time()-t2)/60.))
				log_main.add("Number of groups on main node: ", len(proj_list))
			mpi_barrier(MPI_COMM_WORLD)

			if myid == main_node:
				log_main.add("...... Calculating the stack of 2D variances \n")
			# Memory estimation. There are two memory consumption peaks
			# peak 1. Compute ave, var; 
			# peak 2. Var volume reconstruction;
			# proj_params = [0.0]*(nima*5)
			aveList = []
			varList = []				
			#if nvec > 0: eigList = [[] for i in range(nvec)]
			dnumber   = len(all_proj)# all neighborhood set for assigned to myid
			pnumber   = len(proj_list)*2. + img_per_grp # aveList and varList 
			tnumber   = dnumber+pnumber
			vol_size2 = nx**3*4.*8/1.e9
			vol_size1 = 2.*nnxo**3*4.*8/1.e9
			proj_size         = nnxo*nnyo*len(proj_list)*4.*2./1.e9 # both aveList and varList
			orig_data_size    = nnxo*nnyo*4.*tnumber/1.e9
			reduced_data_size = nx*nx*4.*tnumber/1.e9
			full_data         = np.full((number_of_proc, 2), -1., dtype=np.float16)
			full_data[myid]   = orig_data_size, reduced_data_size
			if myid != main_node: wrap_mpi_send(full_data, main_node, MPI_COMM_WORLD)
			if myid == main_node:
				for iproc in range(number_of_proc):
					if iproc != main_node:
						dummy = wrap_mpi_recv(iproc, MPI_COMM_WORLD)
						full_data[np.where(dummy>-1)] = dummy[np.where(dummy>-1)]
				del dummy
			mpi_barrier(MPI_COMM_WORLD)
			full_data = wrap_mpi_bcast(full_data, main_node, MPI_COMM_WORLD)
			# find the CPU with heaviest load
			minindx         = np.argsort(full_data, 0)
			heavy_load_myid = minindx[-1][1]
			total_mem       = sum(full_data)
			if myid == main_node:
				if current_window == 0:
					log_main.add("Nx:   current image size = %d. Decimated by %f from %d"%(nx, current_decimate, nnxo))
				else:
					log_main.add("Nx:   current image size = %d. Windowed to %d, and decimated by %f from %d"%(nx, current_window, current_decimate, nnxo))
				log_main.add("Nproj:       number of particle images.")
				log_main.add("Navg:        number of 2D average images.")
				log_main.add("Nvar:        number of 2D variance images.")
				log_main.add("Img_per_grp: user defined image per group for averaging = %d"%img_per_grp)
				log_main.add("Overhead:    total python overhead memory consumption   = %f"%overhead_loading)
				log_main.add("Total memory) = 4.0*nx^2*(nproj + navg +nvar+ img_per_grp)/1.0e9 + overhead: %12.3f [GB]"%\
				   (total_mem[1] + overhead_loading))
			del full_data
			mpi_barrier(MPI_COMM_WORLD)
			if myid == heavy_load_myid:
				log_main.add("Begin reading and preprocessing images on processor. Wait... ")
				ttt = time()
			#imgdata = EMData.read_images(stack, all_proj)			
			imgdata = [ None for im in range(len(all_proj))]
			for index_of_proj in range(len(all_proj)):
				#image = get_im(stack, all_proj[index_of_proj])
				if( current_window > 0): imgdata[index_of_proj] = fdecimate(window2d(get_im(stack, all_proj[index_of_proj]),current_window,current_window), nx, ny)
				else:                    imgdata[index_of_proj] = fdecimate(get_im(stack, all_proj[index_of_proj]), nx, ny)
				
				if (current_decimate> 0.0 and options.CTF):
					ctf = imgdata[index_of_proj].get_attr("ctf")
					ctf.apix = ctf.apix/current_decimate
					imgdata[index_of_proj].set_attr("ctf", ctf)
					
				if myid == heavy_load_myid and index_of_proj%100 == 0:
					log_main.add(" ...... %6.2f%% "%(index_of_proj/float(len(all_proj))*100.))
			mpi_barrier(MPI_COMM_WORLD)
			if myid == heavy_load_myid:
				log_main.add("All_proj preprocessing cost %7.2f m"%((time()-ttt)/60.))
				log_main.add("Wait untill reading on all CPUs done...")
			'''	
			imgdata2 = EMData.read_images(stack, range(img_begin, img_end))
			if options.fl > 0.0:
				for k in xrange(len(imgdata2)):
					imgdata2[k] = filt_tanl(imgdata2[k], options.fl, options.aa)
			if options.CTF:
				vol = recons3d_4nn_ctf_MPI(myid, imgdata2, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1)
			else:
				vol = recons3d_4nn_MPI(myid, imgdata2, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1)
			if myid == main_node:
				vol.write_image("vol_ctf.hdf")
				print_msg("Writing to the disk volume reconstructed from averages as		:  %s\n"%("vol_ctf.hdf"))
			del vol, imgdata2
			mpi_barrier(MPI_COMM_WORLD)
			'''
			from applications import prepare_2d_forPCA
			from utilities    import model_blank
			from EMAN2        import Transform
			if not options.no_norm: 
				mask = model_circle(nx/2-2, nx, nx)
			if options.CTF: 
				from utilities import pad
				from filter import filt_ctf
			from filter import filt_tanl
			if myid == heavy_load_myid:
				log_main.add("Start computing 2D aveList and varList. Wait...")
				ttt = time()
			inner=nx//2-4
			outer=inner+2
			xform_proj_for_2D = [ None for i in range(len(proj_list))]
			for i in range(len(proj_list)):
				ki = proj_angles[proj_list[i][0]][3]
				if ki >= symbaselen:  continue
				mi = index[ki]
				dpar = Util.get_transform_params(imgdata[mi], "xform.projection", "spider")
				phiM, thetaM, psiM, s2xM, s2yM  = dpar["phi"],dpar["theta"],dpar["psi"],-dpar["tx"]*current_decimate,-dpar["ty"]*current_decimate
				grp_imgdata = []
				for j in range(img_per_grp):
					mj = index[proj_angles[proj_list[i][j]][3]]
					cpar = Util.get_transform_params(imgdata[mj], "xform.projection", "spider")
					alpha, sx, sy, mirror = params_3D_2D_NEW(cpar["phi"], cpar["theta"],cpar["psi"], -cpar["tx"]*current_decimate, -cpar["ty"]*current_decimate, mirror_list[i][j])
					if thetaM <= 90:
						if mirror == 0:  alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, phiM - cpar["phi"], 0.0, 0.0, 1.0)
						else:            alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, 180-(phiM - cpar["phi"]), 0.0, 0.0, 1.0)
					else:
						if mirror == 0:  alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, -(phiM- cpar["phi"]), 0.0, 0.0, 1.0)
						else:            alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, -(180-(phiM - cpar["phi"])), 0.0, 0.0, 1.0)
					imgdata[mj].set_attr("xform.align2d", Transform({"type":"2D","alpha":alpha,"tx":sx,"ty":sy,"mirror":mirror,"scale":1.0}))
					grp_imgdata.append(imgdata[mj])
				if not options.no_norm:
					for k in range(img_per_grp):
						ave, std, minn, maxx = Util.infomask(grp_imgdata[k], mask, False)
						grp_imgdata[k] -= ave
						grp_imgdata[k] /= std
				if options.fl > 0.0:
					for k in range(img_per_grp):
						grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa)

				#  Because of background issues, only linear option works.
				if options.CTF:  ave, var = aves_wiener(grp_imgdata, SNR = 1.0e5, interpolation_method = "linear")
				else:  ave, var = ave_var(grp_imgdata)
				# Switch to std dev
				# threshold is not really needed,it is just in case due to numerical accuracy something turns out negative.
				var = square_root(threshold(var))

				set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0])
				set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0])

				aveList.append(ave)
				varList.append(var)
				xform_proj_for_2D[i] = [phiM, thetaM, 0.0, 0.0, 0.0]

				'''
				if nvec > 0:
					eig = pca(input_stacks=grp_imgdata, subavg="", mask_radius=radiuspca, nvec=nvec, incore=True, shuffle=False, genbuf=True)
					for k in range(nvec):
						set_params_proj(eig[k], [phiM, thetaM, 0.0, 0.0, 0.0])
						eigList[k].append(eig[k])
					"""
					if myid == 0 and i == 0:
						for k in xrange(nvec):
							eig[k].write_image("eig.hdf", k)
					"""
				'''
				if (myid == heavy_load_myid) and (i%100 == 0):
					log_main.add(" ......%6.2f%%  "%(i/float(len(proj_list))*100.))		
			del imgdata, grp_imgdata, cpar, dpar, all_proj, proj_angles, index
			if not options.no_norm: del mask
			if myid == main_node: del tab
			#  At this point, all averages and variances are computed
			mpi_barrier(MPI_COMM_WORLD)
			
			if (myid == heavy_load_myid):
				log_main.add("Computing aveList and varList took %12.1f [m]"%((time()-ttt)/60.))
			
			xform_proj_for_2D = wrap_mpi_gatherv(xform_proj_for_2D, main_node, MPI_COMM_WORLD)
			if (myid == main_node):
				write_text_row(xform_proj_for_2D, os.path.join(current_output_dir, "params.txt"))
			del xform_proj_for_2D
			mpi_barrier(MPI_COMM_WORLD)
			if options.ave2D:
				from fundamentals import fpol
				from applications import header
				if myid == main_node:
					log_main.add("Compute ave2D ... ")
					km = 0
					for i in range(number_of_proc):
						if i == main_node :
							for im in range(len(aveList)):
								aveList[im].write_image(os.path.join(current_output_dir, options.ave2D), km)
								km += 1
						else:
							nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
							nl = int(nl[0])
							for im in range(nl):
								ave = recv_EMData(i, im+i+70000)
								"""
								nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
								nm = int(nm[0])
								members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
								ave.set_attr('members', map(int, members))
								members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
								ave.set_attr('pix_err', map(float, members))
								members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
								ave.set_attr('refprojdir', map(float, members))
								"""
								tmpvol=fpol(ave, nx, nx,1)								
								tmpvol.write_image(os.path.join(current_output_dir, options.ave2D), km)
								km += 1
				else:
					mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
					for im in range(len(aveList)):
						send_EMData(aveList[im], main_node,im+myid+70000)
						"""
						members = aveList[im].get_attr('members')
						mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
						mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
						members = aveList[im].get_attr('pix_err')
						mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
						try:
							members = aveList[im].get_attr('refprojdir')
							mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
						except:
							mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
						"""
				if myid == main_node:
					header(os.path.join(current_output_dir, options.ave2D), params='xform.projection', fimport = os.path.join(current_output_dir, "params.txt"))
				mpi_barrier(MPI_COMM_WORLD)	
			if options.ave3D:
				from fundamentals import fpol
				t5 = time()
				if myid == main_node: log_main.add("Reconstruct ave3D ... ")
				ave3D = recons3d_4nn_MPI(myid, aveList, symmetry=options.sym, npad=options.npad)
				bcast_EMData_to_all(ave3D, myid)
				if myid == main_node:
					if current_decimate != 1.0: ave3D = resample(ave3D, 1./current_decimate)
					ave3D = fpol(ave3D, nnxo, nnxo, nnxo) # always to the orignal image size
					set_pixel_size(ave3D, 1.0)
					ave3D.write_image(os.path.join(current_output_dir, options.ave3D))
					log_main.add("Ave3D reconstruction took %12.1f [m]"%((time()-t5)/60.0))
					log_main.add("%-70s:  %s\n"%("The reconstructed ave3D is saved as ", options.ave3D))
					
			mpi_barrier(MPI_COMM_WORLD)		
			del ave, var, proj_list, stack, alpha, sx, sy, mirror, aveList
			'''
			if nvec > 0:
				for k in range(nvec):
					if myid == main_node:log_main.add("Reconstruction eigenvolumes", k)
					cont = True
					ITER = 0
					mask2d = model_circle(radiuspca, nx, nx)
					while cont:
						#print "On node %d, iteration %d"%(myid, ITER)
						eig3D = recons3d_4nn_MPI(myid, eigList[k], symmetry=options.sym, npad=options.npad)
						bcast_EMData_to_all(eig3D, myid, main_node)
						if options.fl > 0.0:
							eig3D = filt_tanl(eig3D, options.fl, options.aa)
						if myid == main_node:
							eig3D.write_image(os.path.join(options.outpout_dir, "eig3d_%03d.hdf"%(k, ITER)))
						Util.mul_img( eig3D, model_circle(radiuspca, nx, nx, nx) )
						eig3Df, kb = prep_vol(eig3D)
						del eig3D
						cont = False
						icont = 0
						for l in range(len(eigList[k])):
							phi, theta, psi, s2x, s2y = get_params_proj(eigList[k][l])
							proj = prgs(eig3Df, kb, [phi, theta, psi, s2x, s2y])
							cl = ccc(proj, eigList[k][l], mask2d)
							if cl < 0.0:
								icont += 1
								cont = True
								eigList[k][l] *= -1.0
						u = int(cont)
						u = mpi_reduce([u], 1, MPI_INT, MPI_MAX, main_node, MPI_COMM_WORLD)
						icont = mpi_reduce([icont], 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD)

						if myid == main_node:
							u = int(u[0])
							log_main.add(" Eigenvector: ",k," number changed ",int(icont[0]))
						else: u = 0
						u = bcast_number_to_all(u, main_node)
						cont = bool(u)
						ITER += 1

					del eig3Df, kb
					mpi_barrier(MPI_COMM_WORLD)
				del eigList, mask2d
			'''
			if options.ave3D: del ave3D
			if options.var2D:
				from fundamentals import fpol 
				from applications import header
				if myid == main_node:
					log_main.add("Compute var2D...")
					km = 0
					for i in range(number_of_proc):
						if i == main_node :
							for im in range(len(varList)):
								tmpvol=fpol(varList[im], nx, nx,1)
								tmpvol.write_image(os.path.join(current_output_dir, options.var2D), km)
								km += 1
						else:
							nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
							nl = int(nl[0])
							for im in range(nl):
								ave = recv_EMData(i, im+i+70000)
								tmpvol=fpol(ave, nx, nx,1)
								tmpvol.write_image(os.path.join(current_output_dir, options.var2D), km)
								km += 1
				else:
					mpi_send(len(varList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
					for im in range(len(varList)):
						send_EMData(varList[im], main_node, im+myid+70000)#  What with the attributes??
				mpi_barrier(MPI_COMM_WORLD)
				if myid == main_node:
					from applications import header
					header(os.path.join(current_output_dir, options.var2D), params = 'xform.projection',fimport = os.path.join(current_output_dir, "params.txt"))
				mpi_barrier(MPI_COMM_WORLD)
		if options.var3D:
			if myid == main_node: log_main.add("Reconstruct var3D ...")
			t6 = time()
			# radiusvar = options.radius
			# if( radiusvar < 0 ):  radiusvar = nx//2 -3
			res = recons3d_4nn_MPI(myid, varList, symmetry = options.sym, npad=options.npad)
			#res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ)
			if myid == main_node:
				from fundamentals import fpol
				if current_decimate != 1.0: res	= resample(res, 1./current_decimate)
				res = fpol(res, nnxo, nnxo, nnxo)
				set_pixel_size(res, 1.0)
				res.write_image(os.path.join(current_output_dir, options.var3D))
				log_main.add("%-70s:  %s\n"%("The reconstructed var3D is saved as ", options.var3D))
				log_main.add("Var3D reconstruction took %f12.1 [m]"%((time()-t6)/60.0))
				log_main.add("Total computation time %f12.1 [m]"%((time()-t0)/60.0))
				log_main.add("sx3dvariability finishes")
		from mpi import mpi_finalize
		mpi_finalize()
		
		if RUNNING_UNDER_MPI: global_def.MPI = False

		global_def.BATCH = False
Example #44
0
def main():
	global debug,logid
	progname = os.path.basename(sys.argv[0])
	usage = """%prog [options] <input stack/image> ...
	
Various CTF-related operations on images, including automatic fitting. Note that automatic fitting is limited to 5 microns
underfocus at most. Input particles should be unmasked and unfiltered. A minimum of ~20% padding around the
particles is required for background extraction, even if this brings the edge of another particle into the box in some cases.
Particles should be reasonably well centered. Can also optionally phase flip and Wiener filter particles. Wiener filtration comes
after phase-flipping, so if phase flipping is performed Wiener filtered particles will also be phase-flipped. Note that both
operations are performed on oversampled images if specified (though final real-space images are clipped back to their original
size. Increasing padding during the particle picking process will improve the accuracy of phase-flipping, particularly for
images far from focus."""

	parser = OptionParser(usage=usage,version=EMANVERSION)

	parser.add_option("--gui",action="store_true",help="Start the GUI for interactive fitting",default=False)
	parser.add_option("--auto_fit",action="store_true",help="Runs automated CTF fitting on the input images",default=False)
	parser.add_option("--bgmask",type="int",help="Compute the background power spectrum from the edge of the image, specify a mask radius in pixels which would largely mask out the particles. Default is boxsize/2.",default=0)
	parser.add_option("--apix",type="float",help="Angstroms per pixel for all images",default=0)
	parser.add_option("--voltage",type="float",help="Microscope voltage in KV",default=0)
	parser.add_option("--cs",type="float",help="Microscope Cs (spherical aberation)",default=0)
	parser.add_option("--ac",type="float",help="Amplitude contrast (percentage, default=10)",default=10)
	parser.add_option("--autohp",action="store_true",help="Automatic high pass filter of the SNR only to remove initial sharp peak, phase-flipped data is not directly affected (default false)",default=False)
	#parser.add_option("--invert",action="store_true",help="Invert the contrast of the particles in output files (default false)",default=False)
	parser.add_option("--nonorm",action="store_true",help="Suppress per image real-space normalization",default=False)
	parser.add_option("--nosmooth",action="store_true",help="Disable smoothing of the background (running-average of the log with adjustment at the zeroes of the CTF)",default=False)
	#parser.add_option("--phaseflip",action="store_true",help="Perform phase flipping after CTF determination and writes to specified file.",default=False)
	#parser.add_option("--wiener",action="store_true",help="Wiener filter (optionally phaseflipped) particles.",default=False)
	parser.add_option("--oversamp",type="int",help="Oversampling factor",default=1)
	parser.add_option("--sf",type="string",help="The name of a file containing a structure factor curve. Can improve B-factor determination.",default=None)
	parser.add_option("--debug",action="store_true",default=False)
	
	(options, args) = parser.parse_args()

	if len(args)<1 : parser.error("Input image required")
	
	if global_def.CACHE_DISABLE:
		from utilities import disable_bdb_cache
		disable_bdb_cache()

	if options.auto_fit:
		if options.voltage==0 : parser.error("Please specify voltage")
		if options.cs==0 : parser.error("Please specify Cs")
	if options.apix==0 : print "Using A/pix from header"
		
	debug=options.debug

	global sfcurve
	if options.sf :
		sfcurve=XYData()
		sfcurve.read_file(options.sf)

	logid=E2init(sys.argv)

#	if options.oversamp>1 : options.apix/=float(options.oversamp)

	db_project=db_open_dict("bdb:project")
	db_parms=db_open_dict("bdb:e2ctf.parms")
	db_misc=db_open_dict("bdb:e2ctf.misc")

	options.filenames = args
	### Power spectrum and CTF fitting
	if options.auto_fit:
		img_sets=pspec_and_ctf_fit(options,debug) # converted to a function so to work with the workflow
		
		### This computes the intensity of the background subtracted power spectrum at each CTF maximum for all sets
		global envelopes # needs to be a global for the Simplex minimizer
		# envelopes is essentially a cache of information that could be useful at later stages of refinement
		# as according to Steven Ludtke
		for i in img_sets:
			envelopes.append(ctf_env_points(i[2],i[3],i[1]))

		# we use a simplex minimizer to try to rescale the individual sets to match as best they can
		scales=[1.0]*len(img_sets)
		if (len(img_sets)>3) :
			incr=[0.2]*len(img_sets)
			simp=Simplex(env_cmp,scales,incr)
			scales=simp.minimize(maxiters=1000)[0]
	#		print scales
			print " "

		# apply the final rescaling
		envelope=[]
		for i in range(len(scales)):
			cur=envelopes[i]
			for j in range(len(cur)):
				envelope.append((cur[j][0],cur[j][1]*scales[i]))

		envelope.sort()
		envelope=[i for i in envelope if i[1]>0]	# filter out all negative peak values

		db_misc=db_open_dict("bdb:e2ctf.misc")
		db_misc["envelope"]=envelope
		#db_close_dict("bdb:e2ctf.misc")

		#out=file("envelope.txt","w")
		#for i in envelope: out.write("%f\t%f\n"%(i[0],i[1]))
		#out.close()

	### GUI - user can update CTF parameters interactively
	if options.gui :
		img_sets = get_gui_arg_img_sets(options.filenames)
		if len(img_sets) == 0:
			E2end(logid)
			sys.exit(1)
		app=EMApp()
		gui=GUIctf(app,img_sets)
		gui.show_guis()
		app.exec_()

		print "done execution"

	### Process input files
	#if debug : print "Phase flipping / Wiener filtration"
	# write wiener filtered and/or phase flipped particle data to the local database
	#if options.phaseflip or options.wiener: # only put this if statement here to make the program flow obvious
	#	write_e2ctf_output(options) # converted to a function so to work with the workflow

	E2end(logid)
Example #45
0
def filter_shrink(input_bdb_name,
                  output_stack_path,
                  output_bdb_name,
                  alignYN=False,
                  filtrad=None,
                  shrink=None,
                  verbose=False):
    """
	Filters and shrinks image stack.
	
	Arguments:
		input_bdb_name : Input BDB stack  (in the form bdb:DIRECTORY#STACK)
		output_stack_path : Name for output image stack (MRCS/HDF/etc.)
		output_bdb_name : Name for output BDB stack (in the form bdb:DIRECTORY#STACK)
		alignYN: (boolean) Whether to apply alignments
		filtrad : Filter radius, reciprocal pixels
		shrink : Downsampling factor
		combined_params_file : Output combined alignment parameters
		verbose : (boolean) Whether to write to screen
	"""

    input_stack = EMData.read_images(input_bdb_name)
    num_imgs = EMUtil.get_image_count(input_bdb_name)

    box_size = input_stack[0].get_attr('nx')

    if options.shrink:
        sub_rate = float(1) / options.shrink
        box_size = int(float(box_size) / options.shrink + 0.5)
        if verbose:
            print('sub_rate', sub_rate, type(sub_rate), box_size,
                  options.shrink)

    # Initialize stack & BDB
    aligned_stack_obj = EMData(box_size, box_size, num_imgs)
    new_bdb_dict = db_open_dict(output_bdb_name)

    # Loop through images
    for img_num in range(len(input_stack)):
        img_orig = input_stack[img_num]

        try:
            alpha, sx, sy, mirror, scale = get_params2D(img_orig)
        except RuntimeError:
            print('\nERROR! Exiting with RuntimeError')
            img_prev = input_stack[img_num - 1]
            print('\nPrevious particle: %s %s' %
                  (img_num - 1, img_prev.get_attr_dict()))
            print('\nCurrent particle: %s %s' %
                  (img_num, img_orig.get_attr_dict()))
            exit()

        # Optionally apply alignment parameters
        if alignYN:
            img_ali = rot_shift2D(img_orig, alpha, sx, sy, mirror, scale,
                                  "quadratic")
        else:
            img_ali = img_orig

        if verbose and img_num == 0:
            print('\nimg_orig.get_attr_dict0', img_orig.get_attr_dict())
            img_ali_dict = img_ali.get_attr_dict()
            print('\nimg_ali.get_attr_dict1\n', img_ali.get_attr_dict())

        if filtrad:
            img_ali = filt_gaussl(img_ali, filtrad)

        if shrink:
            img_ali = resample(img_ali, sub_rate)
            #### (Maybe update resample_ratio)

        img_ali_dict = img_ali.get_attr_dict()
        img_ali_dict["data_path"] = os.path.join(
            '..', STACKFILEDIR, os.path.basename(output_stack_path))
        img_ali_dict["ptcl_source_coord_id"] = img_num
        new_bdb_dict[img_num] = img_ali_dict

        aligned_stack_obj.insert_clip(img_ali, (0, 0, img_num))
    # End image-loop

    aligned_stack_obj.write_image(output_stack_path)
    db_close_dict(output_bdb_name)

    return num_imgs
Example #46
0
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  2111-1307 USA
#
#

from builtins import range
import sys
from EMAN2 import *
from EMAN2db import db_open_dict

if len(sys.argv)==1 :
	print("Please provide the name of a refine_xx directory to extract FSC curves from")
	exit(1)

db=db_open_dict("bdb:%s#convergence.results"%sys.argv[1],ro=True)

for k in list(db.keys()):
	curve=db[k]
	out=open("fsc_%s_%s.txt"%(sys.argv[1].rsplit("_",1)[-1],k),"w")
	for i in range(len(curve[0])): out.write("%1.5f\t%1.4f\n"%(curve[0][i],curve[1][i]))
Example #47
0
def main():
    progname = os.path.basename(sys.argv[0])
    usage = """prog [options] <volume> <mask> <output>

	WARNING: Do not use this program. The whole concept has been replaced by "gold standard" refinement.

	Note that this method has not yet been published, and is not yet a reliable
	scheme for resolution determination. DO NOT EXPECT RELIABLE ANSWERS AT THIS POINT !

	This will compute an FSC resolution curve from a single structure by
	comparing the power spectrum of the noise region to the power spectrum
	of the reconstructed particle. The 'mask' input should mask out the particle,
	and should be a 'soft' mask. Sharp edges on the mask may ruin the results.
	proc3d (EMAN1) with the automask2 option can produce appropriate masks. The
	3rd parameter (in automask2) should be about 10 percent of the box size. This will not
	work with particles that have been tightly masked already. If doing an EMAN1
	reconstruction with the amask= option, you must also use the refmaskali option
	(in the refine command). Note that the resultant curve is guaranteed to go
	to zero at near Nyquist because it assumes that the SNR is zero near Nyquist.
	If your data is undersampled, the resulting curve may also be inaccurate.
	Models should also not be heavily low-pass filtered
	"""
    parser = EMArgumentParser(usage=usage, version=EMANVERSION)

    parser.add_pos_argument(name="volume",
                            help="Volume to compute resolution on.",
                            default="",
                            guitype='filebox',
                            row=0,
                            col=0,
                            rowspan=1,
                            colspan=2)
    parser.add_pos_argument(
        name="mask",
        help=
        "Mask for the volume. The volume is masked by this file (should be ssoft mask).",
        default="",
        guitype='filebox',
        row=1,
        col=0,
        rowspan=1,
        colspan=2)
    parser.add_pos_argument(
        name="output",
        help="Name of the output file. These data will contain FSC stats.",
        default="",
        guitype='strbox',
        row=2,
        col=0,
        rowspan=1,
        colspan=2)
    parser.add_header(
        name="eotestheader",
        help='Options below this label are specific to e2resolution',
        title="### e2resolution options ###",
        row=3,
        col=0,
        rowspan=1,
        colspan=2)
    parser.add_argument("--apix",
                        "-A",
                        type=float,
                        help="A/voxel",
                        default=-1.0,
                        guitype='floatbox',
                        row=4,
                        col=0,
                        rowspan=1,
                        colspan=1)
    parser.add_argument(
        "--path",
        type=str,
        help=
        "The name the e2refine directory that contains the reconstruction data. If specified will place curves generated in bdb:path#convergence.results",
        guitype='dirbox',
        default=None,
        dirbasename='refine',
        row=4,
        col=1,
        rowspan=1,
        colspan=1)
    parser.add_argument(
        "--ppid",
        type=int,
        help="Set the PID of the parent process, used for cross platform PPID",
        default=-1)
    parser.add_argument(
        "--verbose",
        "-v",
        dest="verbose",
        action="store",
        metavar="n",
        type=int,
        default=0,
        help=
        "verbose level [0-9], higner number means higher level of verboseness")

    (options, args) = parser.parse_args()

    if len(args) < 3: parser.error("Input and output files required")

    E2n = E2init(sys.argv, options.ppid)

    #options.align=parsemodopt(options.align)

    print(
        "WARNING:  e2resolution is an experimental program. It does not (yet) produce reliable resolution curves in most cases."
    )

    print("read models")
    data = EMData(args[0], 0)
    mask = EMData(args[1], 0)

    #	mask.to_one()
    #	mask.process_inplace("mask.gaussian",{"outer_radius":mask.get_xsize()/6,"inner_radius":mask.get_xsize()/6})
    mask.write_image("msk.mrc", 0)

    # inverted mask
    maski = mask.copy()
    maski *= -1.0
    maski += 1.0
    maski.process_inplace(
        "mask.gaussian", {
            "outer_radius": old_div(mask.get_xsize(), 6),
            "inner_radius": old_div(mask.get_xsize(), 3)
        })
    maski.write_image("msk2.mrc", 0)

    noise = data.copy()
    noise *= maski

    data *= mask

    print("compute FFT")
    dataf = data.do_fft()
    noisef = noise.do_fft()

    print("compute power 1")
    datapow = dataf.calc_radial_dist(
        old_div(dataf.get_ysize(), 2) - 1, 1, 1, 1)
    print("compute power 2")
    noisepow = noisef.calc_radial_dist(
        old_div(noisef.get_ysize(), 2) - 1, 1, 1, 1)

    x = list(range(1, len(datapow) + 1))
    if options.apix > 0:
        x = [old_div(i, (len(datapow) * options.apix * 2.0)) for i in x]
    else:
        x = [old_div(i, (len(datapow) * data["apix_x"] * 2.0)) for i in x]

    # normalize noise near Nyquist
    s = 0
    sn = 0
    for i in range(int(len(noisepow) * .9), len(noisepow) - 1):
        if datapow[i] < datapow[i + 1] or noisepow[i] < noisepow[i + 1]:
            continue
        s += old_div(datapow[i], noisepow[i])
        sn += 1.0
    if sn == 0:
        print("Warning, strange normalization")
        s = old_div(datapow[int(len(noisepow) * .9)],
                    noisepow[int(len(noisepow) * .9)])
    else:
        s /= sn

    noisepow = [i * s for i in noisepow]
    #
    #	# normalize based on volume
    #	datapow=[v/mask["mean"] for v in datapow]
    #	noisepow=[v/maski["mean"] for v in noisepow]

    # compute signal to noise ratio
    snr = []
    for i in range(len(datapow)):
        try:
            snr.append(old_div((datapow[i] - noisepow[i]), noisepow[i]))
        except:
            snr.append(0)

    # convert to FSC
    fsc = [old_div(i, (2.0 + i)) for i in snr]

    out = open(args[2], "w")
    for i in range(len(fsc)):
        out.write("%f\t%f\n" % (x[i], fsc[i]))
    out.close()

    out = open(args[2] + ".dat", "w")
    for i in range(len(fsc)):
        out.write("%f\t%f\n" % (x[i], datapow[i]))
    out.close()

    out = open(args[2] + ".noi", "w")
    for i in range(len(noisepow)):
        out.write("%f\t%f\n" % (x[i], noisepow[i]))
    out.close()

    if options.path != None:
        s = base_name(args[0])
        db = db_open_dict("bdb:" + options.path + "#convergence.results")
        db[s + "res_fsc"] = [
            x, fsc
        ]  # warning, changing this naming convention will disrupt forms in the workflow (make them fail)
        db[s + "res_datapow"] = [x, datapow]
        db[s + "res_noisepow"] = [x, noisepow]
        db_close_dict("bdb:" + options.path + "#convergence.results")

    E2end(E2n)
Example #48
0
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  2111-1307 USA
#
#

import sys
from EMAN2 import *
from EMAN2db import db_open_dict

if len(sys.argv)==1 :
	print "Please provide the name of a refine_xx directory to extract FSC curves from"
	exit(1)

db=db_open_dict("bdb:%s#convergence.results"%sys.argv[1],ro=True)

for k in db.keys():
	curve=db[k]
	out=file("fsc_%s_%s.txt"%(sys.argv[1].rsplit("_",1)[-1],k),"w")
	for i in xrange(len(curve[0])): out.write("%1.5f\t%1.4f\n"%(curve[0][i],curve[1][i]))
Example #49
0
def main(args):
	progname = os.path.basename(sys.argv[0])
	usage = ( progname + " stack_file  output_directory --radius=particle_radius --img_per_grp=img_per_grp --CTF --restart_section<The remaining parameters are optional --ir=ir --rs=rs --xr=xr --yr=yr --ts=ts --maxit=maxit --dst=dst --FL=FL --FH=FH --FF=FF --init_iter=init_iter --main_maxit=main_iter" +
			" --iter_reali=iter_reali --match_first=match_first --max_round=max_round --match_second=match_second --stab_ali=stab_ali --thld_err=thld_err --indep_run=indep_run --thld_grp=thld_grp" +
			"  --generation=generation  --rand_seed=rand_seed>" )
	
	parser = OptionParser(usage,version=SPARXVERSION)
	parser.add_option("--radius",         type="int",          default=-1,      help="<Particle radius>, it has to be provided.")
	parser.add_option("--img_per_grp",    type="int",          default=100,     help="<number of images per group> in the ideal case (essentially maximum size of class) (100)")
	parser.add_option("--CTF",            action="store_true", default=False,   help="<CTF flag>, if set the data will be phase-flipped")
	parser.add_option("--ir",             type="int",          default=1,       help="<inner ring> of the resampling to polar coordinates (1)")
	parser.add_option("--rs",             type="int",          default=1,       help="<ring step> of the resampling to polar coordinates (1)")
	parser.add_option("--xr",             type="int",          default=-1,      help="<x range> of translational search (By default set by the program) (advanced)")
	parser.add_option("--yr",             type="int",          default=-1,      help="<y range> of translational search (same as xr) (advanced)")
	parser.add_option("--ts",             type="float",        default=1.0,     help="<search step> of translational search (1.0)")
	parser.add_option("--maxit",          type="int",          default=30,      help="number of iterations for reference-free alignment (30)")
	#parser.add_option("--snr",            type="float",        default=1.0,     help="signal-to-noise ratio (only meaningful when CTF is enabled, currently not supported)")
	parser.add_option("--center_method",  type="int",          default=7,       help="<Method for centering> of global 2D average during initial prealignment of data (default : 7; 0 : no centering; -1 : average shift method; please see center_2D in utilities.py for methods 1-7)")
	parser.add_option("--dst",            type="float",        default=90.0,    help="discrete angle used in within group alignment ")
	parser.add_option("--FL",             type="float",        default=0.2,     help="<lowest stopband> frequency used in the tangent filter (0.2)")
	parser.add_option("--FH",             type="float",        default=0.3,     help="<highest stopband> frequency used in the tangent filter (0.3)")
	parser.add_option("--FF",             type="float",        default=0.2,     help="<fall-off of the tangent> filter (0.2)")
	parser.add_option("--init_iter",      type="int",          default=3,       help="<init_iter> number of iterations of ISAC program in initialization (3)")
	parser.add_option("--main_iter",      type="int",          default=3,       help="<main_iter> number of iterations of ISAC program in main part (3)")
	parser.add_option("--iter_reali",     type="int",          default=1,       help="<iter_reali> number of iterations in ISAC before checking stability (1)")
	parser.add_option("--match_first",    type="int",          default=1,       help="number of iterations to run 2-way matching in the first phase (1)")
	parser.add_option("--max_round",      type="int",          default=20,      help="maximum rounds of generating candidate averages in the first phase (20)")
	parser.add_option("--match_second",   type="int",          default=5,       help="number of iterations to run 2-way (or 3-way) matching in the second phase (5)")
	parser.add_option("--stab_ali",       type="int",          default=5,       help="number of alignments when checking stability (5)")
	parser.add_option("--thld_err",       type="float",        default=0.7,     help="the threshold of pixel error when checking stability (0.7)")
	parser.add_option("--indep_run",      type="int",          default=4,       help="number of independent runs for reproducibility (default=4, only values 2, 3 and 4 are supported (4)")
	parser.add_option("--thld_grp",       type="int",          default=10,      help="minimum size of class (10)")
	parser.add_option("--n_generations",     type="int",          default=100,       help="<n_generations> program stops when reaching this total number of generations (advanced)")
	#parser.add_option("--candidatesexist",action="store_true", default=False,   help="Candidate class averages exist use them (default False)")
	parser.add_option("--rand_seed",      type="int",          default=None,    help="random seed set before calculations, useful for testing purposes (default None - total randomness)")
	parser.add_option("--new",            action="store_true", default=False,   help="use new code (default = False)")
	parser.add_option("--debug",          action="store_true", default=False,   help="debug info printout (default = False)")

	# must be switched off in production
	parser.add_option("--use_latest_master_directory", action="store_true", dest="use_latest_master_directory", default=False)
	
	parser.add_option("--restart_section", type="string", default="", help="<restart section name> (no spaces) followed immediately by comma, followed immediately by generation to restart, example: \n--restart_section=candidate_class_averages,1         (Sections: restart, candidate_class_averages, reproducible_class_averages)")
	parser.add_option("--stop_after_candidates",          action="store_true", default=False,   help="<stop_after_candidates> stops after the 'candidate_class_averages' section")

	parser.add_option("--return_options", action="store_true", dest="return_options", default=False, help = SUPPRESS_HELP)

	(options, args) = parser.parse_args(args)

	if options.return_options:
		return parser
	
	if len(args) > 2:
		print "usage: " + usage
		print "Please run '" + progname + " -h' for detailed options"
		sys.exit()
	
	if global_def.CACHE_DISABLE:
		from utilities import disable_bdb_cache
		disable_bdb_cache()
	
	from isac import iter_isac
	global_def.BATCH = True

	global_def.BATCH = True
	
	command_line_provided_stack_filename = args[0]
	global_def.BATCH = True

	main_node = 0
	mpi_init(0, [])
	myid = mpi_comm_rank(MPI_COMM_WORLD)
	nproc = mpi_comm_size(MPI_COMM_WORLD)

	radi  = options.radius
	center_method  = options.center_method
	if(radi < 1):  ERROR("Particle radius has to be provided!","sxisac",1,myid)

	
	use_latest_master_directory = options.use_latest_master_directory
	stop_after_candidates = options.stop_after_candidates
	program_state_stack.restart_location_title_from_command_line = options.restart_section
	
	from utilities import qw
	program_state_stack.PROGRAM_STATE_VARIABLES = set(qw("""
		isac_generation
	"""))

	# create or reuse master directory
	masterdir = ""
	stack_processed_by_ali2d_base__filename = ""
	stack_processed_by_ali2d_base__filename__without_master_dir = ""
	error_status = 0
	if len(args) == 2:
		masterdir = args[1]
	elif len(args) == 1:
		if use_latest_master_directory:
			all_dirs = [d for d in os.listdir(".") if os.path.isdir(d)]
			import re; r = re.compile("^master.*$")
			all_dirs = filter(r.match, all_dirs)
			if len(all_dirs)>0:
				# all_dirs = max(all_dirs, key=os.path.getctime)
				masterdir = max(all_dirs, key=os.path.getmtime)
				
	#Create folder for all results or check if there is one created already
	if(myid == main_node):
		if( masterdir == ""):
			timestring = strftime("%Y_%m_%d__%H_%M_%S" + DIR_DELIM, localtime())
			masterdir = "master"+timestring
			cmd = "{} {}".format("mkdir", masterdir)
			cmdexecute(cmd)
		elif not os.path.exists(masterdir):
			# os.path.exists(masterdir) does not exist
			masterdir = args[1]
			cmd = "{} {}".format("mkdir", masterdir)
			cmdexecute(cmd)

		if(args[0][:4] == "bdb:"): filename = args[0][4:]
		else:                      filename = args[0][:-4]
		filename = os.path.basename(filename)
		stack_processed_by_ali2d_base__filename  = "bdb:" + os.path.join(masterdir, filename )
		stack_processed_by_ali2d_base__filename__without_master_dir  = "bdb:" + filename
	if_error_all_processes_quit_program(error_status)

	# send masterdir to all processes
	masterdir = send_string_to_all(masterdir)

	if myid == 0:
		if options.restart_section != "":
			if os.path.exists(os.path.join(masterdir,NAME_OF_JSON_STATE_FILE)):
				stored_stack, stored_state = restore_program_stack_and_state(os.path.join(masterdir,NAME_OF_JSON_STATE_FILE))
				import re
				if "," in options.restart_section:
					parsed_restart_section_option = options.restart_section.split(",")
					stored_state[-1]["location_in_program"] = re.sub(r"___.*$", "___%s"%parsed_restart_section_option[0], stored_state[-1]["location_in_program"])
					generation_str_format = parsed_restart_section_option[1]
					if generation_str_format != "":
						isac_generation_from_command_line = int(generation_str_format)
						stored_state[-1]["isac_generation"] = isac_generation_from_command_line 
					else:
						isac_generation_from_command_line = 1
						if "isac_generation" in stored_state[-1]:
							del stored_state[-1]["isac_generation"]
				else:
					isac_generation_from_command_line = -1
					stored_state[-1]["location_in_program"] = re.sub(r"___.*$", "___%s"%options.restart_section, stored_state[-1]["location_in_program"])
					if "isac_generation" in stored_state[-1]:
						del stored_state[-1]["isac_generation"]
				store_program_state(os.path.join(masterdir,NAME_OF_JSON_STATE_FILE), stored_state, stored_stack)
			else:
				print "Please remove the restart_section option from the command line. The program must be started from the beginning."			
				mpi_finalize()
				sys.exit()
		else:
			isac_generation_from_command_line = -1
	
	program_state_stack(locals(), getframeinfo(currentframe()), os.path.join(masterdir,NAME_OF_JSON_STATE_FILE))	

	stack_processed_by_ali2d_base__filename = send_string_to_all(stack_processed_by_ali2d_base__filename)
	stack_processed_by_ali2d_base__filename__without_master_dir = \
		send_string_to_all(stack_processed_by_ali2d_base__filename__without_master_dir)

	#  PARAMETERS OF THE PROCEDURE
	if( options.xr == -1 ):
		#  Default values
		target_nx = 76
		target_radius = 29
		target_xr = 1
	else:  #  nx//2
		#  Check below!
		target_xr = options.xr
		target_nx = 76 + target_xr - 1 # subtract one, which is default
		target_radius = 29

	mpi_barrier(MPI_COMM_WORLD)

	# Initialization of stacks
	if(myid == main_node):
		number_of_images_in_stack = EMUtil.get_image_count(command_line_provided_stack_filename)
	else:
		number_of_images_in_stack = 0

	number_of_images_in_stack = bcast_number_to_all(number_of_images_in_stack, source_node = main_node)
	
	nxrsteps = 4
	
	init2dir = os.path.join(masterdir,"2dalignment")

	if(myid == 0):
		import subprocess
		from logger import Logger, BaseLogger_Files
		#  Create output directory
		log2d = Logger(BaseLogger_Files())
		log2d.prefix = os.path.join(init2dir)
		cmd = "mkdir -p "+log2d.prefix
		outcome = subprocess.call(cmd, shell=True)
		log2d.prefix += "/"
		# outcome = subprocess.call("sxheader.py  "+command_line_provided_stack_filename+"   --params=xform.align2d  --zero", shell=True)
	else:
		outcome = 0
		log2d = None

	if(myid == main_node):
		a = get_im(command_line_provided_stack_filename)
		nnxo = a.get_xsize()
	else:
		nnxo = 0
	nnxo = bcast_number_to_all(nnxo, source_node = main_node)

	txrm = (nnxo - 2*(radi+1))//2
	if(txrm < 0):  			ERROR( "ERROR!!   Radius of the structure larger than the window data size permits   %d"%(radi), "sxisac",1, myid)
	if(txrm/nxrsteps>0):
		tss = ""
		txr = ""
		while(txrm/nxrsteps>0):
			tts=txrm/nxrsteps
			tss += "  %d"%tts
			txr += "  %d"%(tts*nxrsteps)
			txrm =txrm//2
	else:
		tss = "1"
		txr = "%d"%txrm

	# section ali2d_base

	#  centering method is set to #7
	params2d, aligned_images = ali2d_base(command_line_provided_stack_filename, init2dir, None, 1, radi, 1, txr, txr, tss, \
				False, 90.0, center_method, 14, options.CTF, 1.0, False, \
				"ref_ali2d", "", log2d, nproc, myid, main_node, MPI_COMM_WORLD, write_headers = False)

	if( myid == main_node ):
		write_text_row(params2d,os.path.join(init2dir, "initial2Dparams.txt"))
	del params2d
	mpi_barrier(MPI_COMM_WORLD)

	#  We assume the target image size will be target_nx, radius will be 29, and xr = 1.  
	#  Note images can be also padded, in which case shrink_ratio > 1.
	shrink_ratio = float(target_radius)/float(radi)
	nx = aligned_images[0].get_xsize()
	nima = len(aligned_images)
	newx = int(nx*shrink_ratio + 0.5)

	from fundamentals import rot_shift2D, resample
	from utilities import pad, combine_params2
	if(shrink_ratio < 1.0):
		if    newx > target_nx  :
			msk = model_circle(target_radius, target_nx, target_nx)
			for im in xrange(nima):
				#  Here we should use only shifts
				alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
				alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
				aligned_images[im] = rot_shift2D(aligned_images[im], 0, sx, sy, 0)
				aligned_images[im]  = resample(aligned_images[im], shrink_ratio)
				aligned_images[im] = Util.window(aligned_images[im], target_nx, target_nx, 1)
				p = Util.infomask(aligned_images[im], msk, False)
				aligned_images[im] -= p[0]
				p = Util.infomask(aligned_images[im], msk, True)
				aligned_images[im] /= p[1]
		elif  newx == target_nx :
			msk = model_circle(target_radius, target_nx, target_nx)
			for im in xrange(nima):
				#  Here we should use only shifts
				alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
				alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
				aligned_images[im] = rot_shift2D(aligned_images[im], 0, sx, sy, 0)
				aligned_images[im]  = resample(aligned_images[im], shrink_ratio)
				p = Util.infomask(aligned_images[im], msk, False)
				aligned_images[im] -= p[0]
				p = Util.infomask(aligned_images[im], msk, True)
				aligned_images[im] /= p[1]
		elif  newx < target_nx  :	
			msk = model_circle(newx//2-2, newx,  newx)
			for im in xrange(nima):
				#  Here we should use only shifts
				alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
				alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
				aligned_images[im] = rot_shift2D(aligned_images[im], 0, sx, sy, 0)
				aligned_images[im]  = resample(aligned_images[im], shrink_ratio)
				p = Util.infomask(aligned_images[im], msk, False)
				aligned_images[im] -= p[0]
				p = Util.infomask(aligned_images[im], msk, True)
				aligned_images[im] /= p[1]
				aligned_images[im] = pad(aligned_images[im], target_nx, target_nx, 1, 0.0)
	elif(shrink_ratio == 1.0):
		if    newx > target_nx  :
			msk = model_circle(target_radius, target_nx, target_nx)
			for im in xrange(nima):
				#  Here we should use only shifts
				alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
				alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
				aligned_images[im] = rot_shift2D(aligned_images[im], 0, sx, sy, 0)
				aligned_images[im] = Util.window(aligned_images[im], target_nx, target_nx, 1)
				p = Util.infomask(aligned_images[im], msk, False)
				aligned_images[im] -= p[0]
				p = Util.infomask(aligned_images[im], msk, True)
				aligned_images[im] /= p[1]
		elif  newx == target_nx :
			msk = model_circle(target_radius, target_nx, target_nx)
			for im in xrange(nima):
				#  Here we should use only shifts
				alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
				alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
				aligned_images[im] = rot_shift2D(aligned_images[im], 0, sx, sy, 0)
				p = Util.infomask(aligned_images[im], msk, False)
				aligned_images[im] -= p[0]
				p = Util.infomask(aligned_images[im], msk, True)
				aligned_images[im] /= p[1]
		elif  newx < target_nx  :			
			msk = model_circle(nx//2-2, newx,  newx)
			for im in xrange(nima):
				#  Here we should use only shifts
				alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
				alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
				aligned_images[im] = rot_shift2D(aligned_images[im], 0, sx, sy, 0)
				#aligned_images[im]  = resample(aligned_images[im], shrink_ratio)
				p = Util.infomask(aligned_images[im], msk, False)
				aligned_images[im] -= p[0]
				p = Util.infomask(aligned_images[im], msk, True)
				aligned_images[im] /= p[1]
				aligned_images[im] = pad(aligned_images[im], target_nx, target_nx, 1, 0.0)
	elif(shrink_ratio > 1.0):
		target_radius = radi
		msk = model_circle(target_radius, nx, nx)
		for im in xrange(nima):
			#  Here we should use only shifts
			alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
			alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
			aligned_images[im] = rot_shift2D(aligned_images[im], 0, sx, sy, 0)
			p = Util.infomask(aligned_images[im], msk, False)
			aligned_images[im] -= p[0]
			p = Util.infomask(aligned_images[im], msk, True)
			aligned_images[im] /= p[1]
			aligned_images[im] = pad(aligned_images[im], target_nx, target_nx, 1, 0.0)
	del msk

	gather_compacted_EMData_to_root(number_of_images_in_stack, aligned_images, myid)
	number_of_images_in_stack = bcast_number_to_all(number_of_images_in_stack, source_node = main_node)

	if( myid == main_node ):
		for i in range(number_of_images_in_stack):  aligned_images[i].write_image(stack_processed_by_ali2d_base__filename,i)
		#  It has to be explicitly closed
		from EMAN2db import db_open_dict
		DB = db_open_dict(stack_processed_by_ali2d_base__filename)
		DB.close()
		
		fp = open("README_shrink_ratio.txt", "w")
		output_text = """
		Since, for processing purposes, isac changes the image dimensions,
		adjustment of pixel size needs to be made in subsequent steps, (e.g.
		running sxviper.py). The shrink ratio for this particular isac run is
		--------
		%.5f
		--------
		To get the pixel size for the isac output the user needs to divide
		the original pixel size by the above value. This info is saved in
		the following file: README_shrink_ratio.txt
		"""%shrink_ratio
		fp.write(output_text); fp.flush() ;fp.close()
		print output_text

	mpi_barrier(MPI_COMM_WORLD)

	global_def.BATCH = True

	os.chdir(masterdir)

	if program_state_stack(locals(), getframeinfo(currentframe())):
	# if 1:
		pass
		if (myid == main_node):
			cmdexecute("sxheader.py  --consecutive  --params=originalid   %s"%stack_processed_by_ali2d_base__filename__without_master_dir)
			cmdexecute("e2bdb.py %s --makevstack=%s_000"%(stack_processed_by_ali2d_base__filename__without_master_dir, stack_processed_by_ali2d_base__filename__without_master_dir))

	if (myid == main_node):
		main_dir_no = get_latest_directory_increment_value("./", NAME_OF_MAIN_DIR, myformat="%04d")
		print "isac_generation_from_command_line", isac_generation_from_command_line, main_dir_no
		if isac_generation_from_command_line < 0:
			if os.path.exists(NAME_OF_JSON_STATE_FILE):
				stored_stack, stored_state = restore_program_stack_and_state(NAME_OF_JSON_STATE_FILE)
				if "isac_generation" in stored_state[-1]:
					isac_generation_from_command_line = stored_state[-1]["isac_generation"]
				else:
					isac_generation_from_command_line = -1
		if isac_generation_from_command_line >= 0 and isac_generation_from_command_line <= main_dir_no: 
			for i in xrange(isac_generation_from_command_line+1, main_dir_no + 1):
				if i == isac_generation_from_command_line+1:
					backup_dir_no = get_nonexistent_directory_increment_value("./", "000_backup", myformat="%05d", start_value=1)
					cmdexecute("mkdir -p " + "000_backup" + "%05d"%backup_dir_no)
				cmdexecute("mv  " + NAME_OF_MAIN_DIR + "%04d"%i +  " 000_backup" + "%05d"%backup_dir_no)
				cmdexecute("rm  " + "EMAN2DB/"+stack_processed_by_ali2d_base__filename__without_master_dir[4:]+"_%03d.bdb"%i)
				
			# it includes both command line and json file
			my_restart_section = stored_state[-1]["location_in_program"].split("___")[-1]
			if "restart" in my_restart_section:
				if "backup_dir_no" not in locals():
					backup_dir_no = get_nonexistent_directory_increment_value("./", "000_backup", myformat="%05d", start_value=1)
					cmdexecute("mkdir -p " + "000_backup" + "%05d"%backup_dir_no)
				cmdexecute("mv  " + NAME_OF_MAIN_DIR + "%04d"%isac_generation_from_command_line +  " 000_backup" + "%05d"%backup_dir_no)
				cmdexecute("rm  " + "EMAN2DB/"+stack_processed_by_ali2d_base__filename__without_master_dir[4:]+"_%03d.bdb"%isac_generation_from_command_line )
			elif "candidate_class_averages" in my_restart_section:
				if "backup_dir_no" not in locals():
					backup_dir_no = get_nonexistent_directory_increment_value("./", "000_backup", myformat="%05d", start_value=1)
					cmdexecute("mkdir -p " + "000_backup" + "%05d"%backup_dir_no)
				cmdexecute("mv  " + NAME_OF_MAIN_DIR + "%04d"%isac_generation_from_command_line +  " 000_backup" + "%05d"%backup_dir_no)
				cmdexecute("mkdir -p " + NAME_OF_MAIN_DIR + "%04d"%isac_generation_from_command_line)
				# cmdexecute("rm -f " + NAME_OF_MAIN_DIR + "%04d/class_averages_candidate*"%isac_generation_from_command_line)
			elif "reproducible_class_averages" in my_restart_section:
				cmdexecute("rm -rf " + NAME_OF_MAIN_DIR + "%04d/ali_params_generation_*"%isac_generation_from_command_line)
				cmdexecute("rm -f " + NAME_OF_MAIN_DIR + "%04d/class_averages_generation*"%isac_generation_from_command_line)
		else:
			if os.path.exists(NAME_OF_JSON_STATE_FILE):
				stored_stack, stored_state = restore_program_stack_and_state(NAME_OF_JSON_STATE_FILE)
				if "isac_generation" in stored_state[-1]:
					isac_generation_from_command_line = stored_state[-1]["isac_generation"]
				else:
					isac_generation_from_command_line = 1
			else:
				isac_generation_from_command_line = 1
	else:
		isac_generation_from_command_line = 0
		
		
		
	isac_generation_from_command_line = mpi_bcast(isac_generation_from_command_line, 1, MPI_INT, 0, MPI_COMM_WORLD)[0]
	isac_generation = isac_generation_from_command_line - 1
	
	if (myid == main_node):
		if isac_generation == 0:
			cmdexecute("mkdir -p " + NAME_OF_MAIN_DIR + "%04d"%isac_generation)
			write_text_file([1], os.path.join(NAME_OF_MAIN_DIR + "%04d"%isac_generation, "generation_%d_accounted.txt"%isac_generation))
			write_text_file(range(number_of_images_in_stack), os.path.join(NAME_OF_MAIN_DIR + "%04d"%isac_generation, "generation_%d_unaccounted.txt"%isac_generation))

	#  Stopping criterion should be inside the program.
	while True:
		isac_generation += 1
		if isac_generation > options.n_generations:
			break

		data64_stack_current = "bdb:../"+stack_processed_by_ali2d_base__filename__without_master_dir[4:]+"_%03d"%isac_generation

		if(myid == main_node):
			accounted_images = read_text_file(os.path.join(NAME_OF_MAIN_DIR + "%04d"%(isac_generation - 1),"generation_%d_accounted.txt"%(isac_generation - 1)))
			number_of_accounted_images = len(accounted_images)
			# unaccounted_images = read_text_file(os.path.join(NAME_OF_MAIN_DIR + "%04d"%(isac_generation - 1),"generation_%d_unaccounted.txt"%(isac_generation - 1)))
			# number_of_unaccounted_images = len(unaccounted_images)
		else:
			number_of_accounted_images = 0

		number_of_accounted_images = int(mpi_bcast(number_of_accounted_images, 1, MPI_INT, 0, MPI_COMM_WORLD)[0])
		if number_of_accounted_images == 0:
			os.chdir("..")
			break

		program_state_stack.restart_location_title = "restart"
		if program_state_stack(locals(), getframeinfo(currentframe())):
			if (myid == main_node):
				cmdexecute("mkdir -p " + NAME_OF_MAIN_DIR + "%04d"%isac_generation)
				# reference the original stack
				list_file = os.path.join(NAME_OF_MAIN_DIR + "%04d"%(isac_generation - 1), "generation_%d_unaccounted.txt"%(isac_generation - 1))
				cmdexecute("e2bdb.py %s --makevstack=%s --list=%s"%(stack_processed_by_ali2d_base__filename__without_master_dir,\
						stack_processed_by_ali2d_base__filename__without_master_dir + "_%03d"%isac_generation, list_file))
			mpi_barrier(MPI_COMM_WORLD)

		os.chdir(NAME_OF_MAIN_DIR + "%04d"%isac_generation)

		program_state_stack.restart_location_title = "candidate_class_averages"
		if program_state_stack(locals(), getframeinfo(currentframe())):

			iter_isac(data64_stack_current, options.ir, target_radius, options.rs, target_xr, target_xr, options.ts, options.maxit, False, 1.0,\
				options.dst, options.FL, options.FH, options.FF, options.init_iter, options.main_iter, options.iter_reali, options.match_first, \
				options.max_round, options.match_second, options.stab_ali, options.thld_err, options.indep_run, options.thld_grp, \
				options.img_per_grp, isac_generation, False, random_seed=options.rand_seed, new=False)#options.new)

		# program_state_stack.restart_location_title = "stopped_program1"
		# program_state_stack(locals(), getframeinfo(currentframe()))
		
		program_state_stack.restart_location_title = "stop_after_candidates"
		program_state_stack(locals(), getframeinfo(currentframe()))
		if stop_after_candidates:
			mpi_finalize()
			sys.exit()

		exit_program = 0
		if(myid == main_node):
			if not os.path.exists("class_averages_candidate_generation_%d.hdf"%isac_generation):
				print "This generation (%d) no class averages were generated!"%isac_generation
				exit_program = 1
		exit_program = int(mpi_bcast(exit_program, 1, MPI_INT, 0, MPI_COMM_WORLD)[0])
		if exit_program:
			os.chdir("..")
			break

		program_state_stack.restart_location_title = "reproducible_class_averages"
		if program_state_stack(locals(), getframeinfo(currentframe())):


			iter_isac(data64_stack_current, options.ir, target_radius, options.rs, target_xr, target_xr, options.ts, options.maxit, False, 1.0,\
				options.dst, options.FL, options.FH, options.FF, options.init_iter, options.main_iter, options.iter_reali, options.match_first, \
				options.max_round, options.match_second, options.stab_ali, options.thld_err, options.indep_run, options.thld_grp, \
				options.img_per_grp, isac_generation, True, random_seed=options.rand_seed, new=False)#options.new)
			pass

		os.chdir("..")

		if (myid == main_node):
			cmdexecute("rm -f class_averages.hdf")
			cpy(["generation_%04d/class_averages_generation_%d.hdf"%(i,i) for i in xrange(1, isac_generation)], "class_averages.hdf")

		# program_state_stack.restart_location_title = "stopped_program2"
		# program_state_stack(locals(), getframeinfo(currentframe()))

	program_state_stack(locals(), getframeinfo(currentframe()), last_call="__LastCall")


	mpi_finalize()
Example #50
0
def main():
    global debug, logid
    progname = os.path.basename(sys.argv[0])
    usage = """%prog [options] <input stack/image> ...
	
Various CTF-related operations on images, including automatic fitting. Note that automatic fitting is limited to 5 microns
underfocus at most. Input particles should be unmasked and unfiltered. A minimum of ~20% padding around the
particles is required for background extraction, even if this brings the edge of another particle into the box in some cases.
Particles should be reasonably well centered. Can also optionally phase flip and Wiener filter particles. Wiener filtration comes
after phase-flipping, so if phase flipping is performed Wiener filtered particles will also be phase-flipped. Note that both
operations are performed on oversampled images if specified (though final real-space images are clipped back to their original
size. Increasing padding during the particle picking process will improve the accuracy of phase-flipping, particularly for
images far from focus."""

    parser = OptionParser(usage=usage, version=EMANVERSION)

    parser.add_option("--gui",
                      action="store_true",
                      help="Start the GUI for interactive fitting",
                      default=False)
    parser.add_option("--auto_fit",
                      action="store_true",
                      help="Runs automated CTF fitting on the input images",
                      default=False)
    parser.add_option(
        "--bgmask",
        type="int",
        help=
        "Compute the background power spectrum from the edge of the image, specify a mask radius in pixels which would largely mask out the particles. Default is boxsize/2.",
        default=0)
    parser.add_option("--apix",
                      type="float",
                      help="Angstroms per pixel for all images",
                      default=0)
    parser.add_option("--voltage",
                      type="float",
                      help="Microscope voltage in KV",
                      default=0)
    parser.add_option("--cs",
                      type="float",
                      help="Microscope Cs (spherical aberation)",
                      default=0)
    parser.add_option("--ac",
                      type="float",
                      help="Amplitude contrast (percentage, default=10)",
                      default=10)
    parser.add_option(
        "--autohp",
        action="store_true",
        help=
        "Automatic high pass filter of the SNR only to remove initial sharp peak, phase-flipped data is not directly affected (default false)",
        default=False)
    #parser.add_option("--invert",action="store_true",help="Invert the contrast of the particles in output files (default false)",default=False)
    parser.add_option("--nonorm",
                      action="store_true",
                      help="Suppress per image real-space normalization",
                      default=False)
    parser.add_option(
        "--nosmooth",
        action="store_true",
        help=
        "Disable smoothing of the background (running-average of the log with adjustment at the zeroes of the CTF)",
        default=False)
    #parser.add_option("--phaseflip",action="store_true",help="Perform phase flipping after CTF determination and writes to specified file.",default=False)
    #parser.add_option("--wiener",action="store_true",help="Wiener filter (optionally phaseflipped) particles.",default=False)
    parser.add_option("--oversamp",
                      type="int",
                      help="Oversampling factor",
                      default=1)
    parser.add_option(
        "--sf",
        type="string",
        help=
        "The name of a file containing a structure factor curve. Can improve B-factor determination.",
        default=None)
    parser.add_option("--debug", action="store_true", default=False)

    (options, args) = parser.parse_args()

    if len(args) < 1: parser.error("Input image required")

    if global_def.CACHE_DISABLE:
        from utilities import disable_bdb_cache
        disable_bdb_cache()

    if options.auto_fit:
        if options.voltage == 0: parser.error("Please specify voltage")
        if options.cs == 0: parser.error("Please specify Cs")
    if options.apix == 0: print "Using A/pix from header"

    debug = options.debug

    global sfcurve
    if options.sf:
        sfcurve = XYData()
        sfcurve.read_file(options.sf)

    logid = E2init(sys.argv)

    #	if options.oversamp>1 : options.apix/=float(options.oversamp)

    db_project = db_open_dict("bdb:project")
    db_parms = db_open_dict("bdb:e2ctf.parms")
    db_misc = db_open_dict("bdb:e2ctf.misc")

    options.filenames = args
    ### Power spectrum and CTF fitting
    if options.auto_fit:
        img_sets = pspec_and_ctf_fit(
            options,
            debug)  # converted to a function so to work with the workflow

        ### This computes the intensity of the background subtracted power spectrum at each CTF maximum for all sets
        global envelopes  # needs to be a global for the Simplex minimizer
        # envelopes is essentially a cache of information that could be useful at later stages of refinement
        # as according to Steven Ludtke
        for i in img_sets:
            envelopes.append(ctf_env_points(i[2], i[3], i[1]))

        # we use a simplex minimizer to try to rescale the individual sets to match as best they can
        scales = [1.0] * len(img_sets)
        if (len(img_sets) > 3):
            incr = [0.2] * len(img_sets)
            simp = Simplex(env_cmp, scales, incr)
            scales = simp.minimize(maxiters=1000)[0]
            #		print scales
            print " "

        # apply the final rescaling
        envelope = []
        for i in range(len(scales)):
            cur = envelopes[i]
            for j in range(len(cur)):
                envelope.append((cur[j][0], cur[j][1] * scales[i]))

        envelope.sort()
        envelope = [i for i in envelope
                    if i[1] > 0]  # filter out all negative peak values

        db_misc = db_open_dict("bdb:e2ctf.misc")
        db_misc["envelope"] = envelope
        #db_close_dict("bdb:e2ctf.misc")

        #out=file("envelope.txt","w")
        #for i in envelope: out.write("%f\t%f\n"%(i[0],i[1]))
        #out.close()

    ### GUI - user can update CTF parameters interactively
    if options.gui:
        img_sets = get_gui_arg_img_sets(options.filenames)
        if len(img_sets) == 0:
            E2end(logid)
            sys.exit(1)
        app = EMApp()
        gui = GUIctf(app, img_sets)
        gui.show_guis()
        app.exec_()

        print "done execution"

    ### Process input files
    #if debug : print "Phase flipping / Wiener filtration"
    # write wiener filtered and/or phase flipped particle data to the local database
    #if options.phaseflip or options.wiener: # only put this if statement here to make the program flow obvious
    #	write_e2ctf_output(options) # converted to a function so to work with the workflow

    E2end(logid)
Example #51
0
def main(args):
    progname = os.path.basename(sys.argv[0])
    usage = (
        progname +
        " stack_file  output_directory --radius=particle_radius --img_per_grp=img_per_grp --CTF --restart_section<The remaining parameters are optional --ir=ir --rs=rs --xr=xr --yr=yr --ts=ts --maxit=maxit --dst=dst --FL=FL --FH=FH --FF=FF --init_iter=init_iter --main_maxit=main_iter"
        +
        " --iter_reali=iter_reali --match_first=match_first --max_round=max_round --match_second=match_second --stab_ali=stab_ali --thld_err=thld_err --indep_run=indep_run --thld_grp=thld_grp"
        + "  --generation=generation  --rand_seed=rand_seed>")

    parser = OptionParser(usage, version=SPARXVERSION)
    parser.add_option(
        "--radius",
        type="int",
        help=
        "particle radius: there is no default, a sensible number has to be provided, units - pixels (default required int)"
    )
    parser.add_option(
        "--target_radius",
        type="int",
        default=29,
        help=
        "target particle radius: actual particle radius on which isac will process data. Images will be shrinked/enlarged to achieve this radius (default 29)"
    )
    parser.add_option(
        "--target_nx",
        type="int",
        default=76,
        help=
        "target particle image size: actual image size on which isac will process data. Images will be shrinked/enlarged according to target particle radius and then cut/padded to achieve target_nx size. When xr > 0, the final image size for isac processing is 'target_nx + xr - 1'  (default 76)"
    )
    parser.add_option(
        "--img_per_grp",
        type="int",
        default=100,
        help=
        "number of images per class: in the ideal case (essentially maximum size of class) (default 100)"
    )
    parser.add_option(
        "--CTF",
        action="store_true",
        default=False,
        help=
        "apply phase-flip for CTF correction: if set the data will be phase-flipped using CTF information included in image headers (default False)"
    )
    parser.add_option(
        "--ir",
        type="int",
        default=1,
        help=
        "inner ring: of the resampling to polar coordinates. units - pixels (default 1)"
    )
    parser.add_option(
        "--rs",
        type="int",
        default=1,
        help=
        "ring step: of the resampling to polar coordinates. units - pixels (default 1)"
    )
    parser.add_option(
        "--xr",
        type="int",
        default=1,
        help=
        "x range: of translational search. By default, set by the program. (default 1)"
    )
    parser.add_option(
        "--yr",
        type="int",
        default=-1,
        help=
        "y range: of translational search. By default, same as xr. (default -1)"
    )
    parser.add_option(
        "--ts",
        type="float",
        default=1.0,
        help=
        "search step: of translational search: units - pixels (default 1.0)")
    parser.add_option(
        "--maxit",
        type="int",
        default=30,
        help="number of iterations for reference-free alignment: (default 30)")
    #parser.add_option("--snr",            type="float",        default=1.0,     help="signal-to-noise ratio (only meaningful when CTF is enabled, currently not supported)")
    parser.add_option(
        "--center_method",
        type="int",
        default=-1,
        help=
        "method for centering: of global 2D average during initial prealignment of data (0 : no centering; -1 : average shift method; please see center_2D in utilities.py for methods 1-7) (default -1)"
    )
    parser.add_option(
        "--dst",
        type="float",
        default=90.0,
        help="discrete angle used in within group alignment: (default 90.0)")
    parser.add_option(
        "--FL",
        type="float",
        default=0.2,
        help=
        "lowest stopband: frequency used in the tangent filter (default 0.2)")
    parser.add_option(
        "--FH",
        type="float",
        default=0.3,
        help=
        "highest stopband: frequency used in the tangent filter (default 0.3)")
    parser.add_option("--FF",
                      type="float",
                      default=0.2,
                      help="fall-off of the tangent filter: (default 0.2)")
    parser.add_option(
        "--init_iter",
        type="int",
        default=3,
        help=
        "SAC initialization iterations: number of runs of ab-initio within-cluster alignment for stability evaluation in SAC initialization (default 3)"
    )
    parser.add_option(
        "--main_iter",
        type="int",
        default=3,
        help=
        "SAC main iterations: number of runs of ab-initio within-cluster alignment for stability evaluation in SAC (default 3)"
    )
    parser.add_option(
        "--iter_reali",
        type="int",
        default=1,
        help=
        "SAC stability check interval: every iter_reali iterations of SAC stability checking is performed (default 1)"
    )
    parser.add_option(
        "--match_first",
        type="int",
        default=1,
        help=
        "number of iterations to run 2-way matching in the first phase: (default 1)"
    )
    parser.add_option(
        "--max_round",
        type="int",
        default=20,
        help=
        "maximum rounds: of generating candidate class averages in the first phase (default 20)"
    )
    parser.add_option(
        "--match_second",
        type="int",
        default=5,
        help=
        "number of iterations to run 2-way (or 3-way) matching in the second phase: (default 5)"
    )
    parser.add_option(
        "--stab_ali",
        type="int",
        default=5,
        help="number of alignments when checking stability: (default 5)")
    parser.add_option(
        "--thld_err",
        type="float",
        default=0.7,
        help=
        "threshold of pixel error when checking stability: equals root mean square of distances between corresponding pixels from set of found transformations and theirs average transformation, depends linearly on square of radius (parameter ou). units - pixels. (default 0.7)"
    )
    parser.add_option(
        "--indep_run",
        type="int",
        default=4,
        help=
        "level of m-way matching for reproducibility tests: By default, perform full ISAC to 4-way matching. Value indep_run=2 will restrict ISAC to 2-way matching and 3 to 3-way matching.  Note the number of used MPI processes requested in mpirun must be a multiplicity of indep_run. (default 4)"
    )
    parser.add_option("--thld_grp",
                      type="int",
                      default=10,
                      help="minimum size of reproducible class (default 10)")
    parser.add_option(
        "--n_generations",
        type="int",
        default=10,
        help=
        "maximum number of generations: program stops when reaching this total number of generations: (default 10)"
    )
    #parser.add_option("--candidatesexist",action="store_true", default=False,   help="Candidate class averages exist use them (default False)")
    parser.add_option(
        "--rand_seed",
        type="int",
        help=
        "random seed set before calculations: useful for testing purposes. By default, total randomness (type int)"
    )
    parser.add_option("--new",
                      action="store_true",
                      default=False,
                      help="use new code: (default False)")
    parser.add_option("--debug",
                      action="store_true",
                      default=False,
                      help="debug info printout: (default False)")

    # must be switched off in production
    parser.add_option(
        "--use_latest_master_directory",
        action="store_true",
        default=False,
        help=
        "use latest master directory: when active, the program looks for the latest directory that starts with the word 'master', so the user does not need to provide a directory name. (default False)"
    )

    parser.add_option(
        "--restart_section",
        type="string",
        default=' ',
        help=
        "restart section: each generation (iteration) contains three sections: 'restart', 'candidate_class_averages', and 'reproducible_class_averages'. To restart from a particular step, for example, generation 4 and section 'candidate_class_averages' the following option is needed: '--restart_section=candidate_class_averages,4'. The option requires no white space before or after the comma. The default behavior is to restart execution from where it stopped intentionally or unintentionally. For default restart, it is assumed that the name of the directory is provided as argument. Alternatively, the '--use_latest_master_directory' option can be used. (default ' ')"
    )
    parser.add_option(
        "--stop_after_candidates",
        action="store_true",
        default=False,
        help=
        "stop after candidates: stops after the 'candidate_class_averages' section. (default False)"
    )

    ##### XXXXXXXXXXXXXXXXXXXXXX option does not exist in docs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    parser.add_option("--return_options",
                      action="store_true",
                      dest="return_options",
                      default=False,
                      help=SUPPRESS_HELP)
    parser.add_option(
        "--skip_prealignment",
        action="store_true",
        default=False,
        help=
        "skip pre-alignment step: to be used if images are already centered. 2dalignment directory will still be generated but the parameters will be zero. (default False)"
    )

    required_option_list = ['radius']
    (options, args) = parser.parse_args(args)

    if options.return_options:
        return parser

    if len(args) > 2:
        print "usage: " + usage
        print "Please run '" + progname + " -h' for detailed options"
        sys.exit()

    if global_def.CACHE_DISABLE:
        from utilities import disable_bdb_cache
        disable_bdb_cache()
    global_def.BATCH = True

    from isac import iter_isac
    from fundamentals import rot_shift2D, resample
    from utilities import pad, combine_params2

    command_line_provided_stack_filename = args[0]

    main_node = 0
    mpi_init(0, [])
    myid = mpi_comm_rank(MPI_COMM_WORLD)
    nproc = mpi_comm_size(MPI_COMM_WORLD)

    mpi_barrier(MPI_COMM_WORLD)
    if (myid == main_node):
        print "****************************************************************"
        Util.version()
        print "****************************************************************"
        sys.stdout.flush()
    mpi_barrier(MPI_COMM_WORLD)

    # Making sure all required options appeared.
    for required_option in required_option_list:
        if not options.__dict__[required_option]:
            print "\n ==%s== mandatory option is missing.\n" % required_option
            print "Please run '" + progname + " -h' for detailed options"
            return 1

    radi = options.radius
    target_radius = options.target_radius
    target_nx = options.target_nx
    center_method = options.center_method
    if (radi < 1):
        ERROR("Particle radius has to be provided!", "sxisac", 1, myid)

    use_latest_master_directory = options.use_latest_master_directory
    stop_after_candidates = options.stop_after_candidates
    # program_state_stack.restart_location_title_from_command_line = options.restart_section

    from utilities import qw
    program_state_stack.PROGRAM_STATE_VARIABLES = set(
        qw("""
		isac_generation
	"""))

    # create or reuse master directory
    masterdir = ""
    stack_processed_by_ali2d_base__filename = ""
    stack_processed_by_ali2d_base__filename__without_master_dir = ""
    error_status = 0
    if len(args) == 2:
        masterdir = args[1]
    elif len(args) == 1:
        if use_latest_master_directory:
            all_dirs = [d for d in os.listdir(".") if os.path.isdir(d)]
            import re
            r = re.compile("^master.*$")
            all_dirs = filter(r.match, all_dirs)
            if len(all_dirs) > 0:
                # all_dirs = max(all_dirs, key=os.path.getctime)
                masterdir = max(all_dirs, key=os.path.getmtime)

    #Create folder for all results or check if there is one created already
    if (myid == main_node):
        if (masterdir == ""):
            timestring = strftime("%Y_%m_%d__%H_%M_%S" + DIR_DELIM,
                                  localtime())
            masterdir = "master" + timestring
            cmd = "{} {}".format("mkdir", masterdir)
            junk = cmdexecute(cmd)
        elif not os.path.exists(masterdir):
            # os.path.exists(masterdir) does not exist
            masterdir = args[1]
            cmd = "{} {}".format("mkdir", masterdir)
            junk = cmdexecute(cmd)

        if (args[0][:4] == "bdb:"): filename = args[0][4:]
        else: filename = args[0][:-4]
        filename = os.path.basename(filename)
        stack_processed_by_ali2d_base__filename = "bdb:" + os.path.join(
            masterdir, filename)
        stack_processed_by_ali2d_base__filename__without_master_dir = "bdb:" + filename
    if_error_then_all_processes_exit_program(error_status)

    # send masterdir to all processes
    masterdir = send_string_to_all(masterdir)

    if myid == 0:
        if options.restart_section != " ":
            if os.path.exists(os.path.join(masterdir,
                                           NAME_OF_JSON_STATE_FILE)):
                stored_stack, stored_state = restore_program_stack_and_state(
                    os.path.join(masterdir, NAME_OF_JSON_STATE_FILE))
                import re
                if "," in options.restart_section:
                    parsed_restart_section_option = options.restart_section.split(
                        ",")
                    stored_state[-1]["location_in_program"] = re.sub(
                        r"___.*$", "___%s" % parsed_restart_section_option[0],
                        stored_state[-1]["location_in_program"])
                    generation_str_format = parsed_restart_section_option[1]
                    if generation_str_format != "":
                        isac_generation_from_command_line = int(
                            generation_str_format)
                        stored_state[-1][
                            "isac_generation"] = isac_generation_from_command_line
                    else:
                        isac_generation_from_command_line = 1
                        if "isac_generation" in stored_state[-1]:
                            del stored_state[-1]["isac_generation"]
                else:
                    isac_generation_from_command_line = -1
                    stored_state[-1]["location_in_program"] = re.sub(
                        r"___.*$", "___%s" % options.restart_section,
                        stored_state[-1]["location_in_program"])
                    if "isac_generation" in stored_state[-1]:
                        del stored_state[-1]["isac_generation"]
                store_program_state(
                    os.path.join(masterdir, NAME_OF_JSON_STATE_FILE),
                    stored_state, stored_stack)
            else:
                print "Please remove the restart_section option from the command line. The program must be started from the beginning."
                mpi_finalize()
                sys.exit()
        else:
            isac_generation_from_command_line = -1

    program_state_stack(locals(), getframeinfo(currentframe()),
                        os.path.join(masterdir, NAME_OF_JSON_STATE_FILE))

    stack_processed_by_ali2d_base__filename = send_string_to_all(
        stack_processed_by_ali2d_base__filename)
    stack_processed_by_ali2d_base__filename__without_master_dir = \
     send_string_to_all(stack_processed_by_ali2d_base__filename__without_master_dir)

    # previous code 2016-05-05--20-14-12-153
    # #  PARAMETERS OF THE PROCEDURE
    # if( options.xr == -1 ):
    # 	#  Default values
    # 	# target_nx = 76
    # 	# target_radius = 29
    # 	target_xr = 1
    # else:  #  nx//2
    # 	#  Check below!
    # 	target_xr = options.xr
    # 	# target_nx = 76 + target_xr - 1 # subtract one, which is default
    # 	target_nx += target_xr - 1 # subtract one, which is default
    # 	# target_radius = 29

    target_xr = options.xr
    target_nx += target_xr - 1  # subtract one, which is default

    if (options.yr == -1):
        yr = options.xr
    else:
        yr = options.yr

    mpi_barrier(MPI_COMM_WORLD)

    # Initialization of stacks
    if (myid == main_node):
        print "command_line_provided_stack_filename", command_line_provided_stack_filename
        number_of_images_in_stack = EMUtil.get_image_count(
            command_line_provided_stack_filename)
    else:
        number_of_images_in_stack = 0

    number_of_images_in_stack = bcast_number_to_all(number_of_images_in_stack,
                                                    source_node=main_node)

    nxrsteps = 4

    init2dir = os.path.join(masterdir, "2dalignment")

    # from mpi import mpi_finalize
    # mpi_finalize()
    # sys.stdout.flush()
    # sys.exit()

    if not os.path.exists(
            os.path.join(init2dir, "Finished_initial_2d_alignment.txt")):

        if (myid == 0):
            import subprocess
            from logger import Logger, BaseLogger_Files
            #  Create output directory
            log2d = Logger(BaseLogger_Files())
            log2d.prefix = os.path.join(init2dir)
            cmd = "mkdir -p " + log2d.prefix
            outcome = subprocess.call(cmd, shell=True)
            log2d.prefix += "/"
            # outcome = subprocess.call("sxheader.py  "+command_line_provided_stack_filename+"   --params=xform.align2d  --zero", shell=True)
        else:
            outcome = 0
            log2d = None

        if (myid == main_node):
            a = get_im(command_line_provided_stack_filename)
            nnxo = a.get_xsize()
        else:
            nnxo = 0
        nnxo = bcast_number_to_all(nnxo, source_node=main_node)

        image_start, image_end = MPI_start_end(number_of_images_in_stack,
                                               nproc, myid)

        if options.skip_prealignment:
            params2d = [[0.0, 0.0, 0.0, 0]
                        for i in xrange(image_start, image_end)]
        else:

            original_images = EMData.read_images(
                command_line_provided_stack_filename,
                range(image_start, image_end))
            #  We assume the target radius will be 29, and xr = 1.
            shrink_ratio = float(target_radius) / float(radi)

            for im in xrange(len(original_images)):
                if (shrink_ratio != 1.0):
                    original_images[im] = resample(original_images[im],
                                                   shrink_ratio)

            nx = original_images[0].get_xsize()
            # nx = int(nx*shrink_ratio + 0.5)

            txrm = (nx - 2 * (target_radius + 1)) // 2
            if (txrm < 0):
                ERROR(
                    "ERROR!!   Radius of the structure larger than the window data size permits   %d"
                    % (radi), "sxisac", 1, myid)
            if (txrm / nxrsteps > 0):
                tss = ""
                txr = ""
                while (txrm / nxrsteps > 0):
                    tts = txrm / nxrsteps
                    tss += "  %d" % tts
                    txr += "  %d" % (tts * nxrsteps)
                    txrm = txrm // 2
            else:
                tss = "1"
                txr = "%d" % txrm

            # print "nx, txr, txrm, tss", nx, txr, txrm, tss
        # from mpi import mpi_finalize
        # mpi_finalize()
        # sys.stdout.flush()
        # sys.exit()

        # section ali2d_base

            params2d = ali2d_base(original_images, init2dir, None, 1, target_radius, 1, txr, txr, tss, \
             False, 90.0, center_method, 14, options.CTF, 1.0, False, \
             "ref_ali2d", "", log2d, nproc, myid, main_node, MPI_COMM_WORLD, write_headers = False)

            del original_images

            for i in xrange(len(params2d)):
                alpha, sx, sy, mirror = combine_params2(
                    0, params2d[i][1], params2d[i][2], 0, -params2d[i][0], 0,
                    0, 0)
                sx /= shrink_ratio
                sy /= shrink_ratio
                params2d[i][0] = 0.0
                params2d[i][1] = sx
                params2d[i][2] = sy
                params2d[i][3] = 0
                #set_params2D(aligned_images[i],[0.0, sx,sy,0.,1.0])

        mpi_barrier(MPI_COMM_WORLD)
        tmp = params2d[:]
        tmp = wrap_mpi_gatherv(tmp, main_node, MPI_COMM_WORLD)
        if (myid == main_node):
            if options.skip_prealignment:
                print "========================================="
                print "Even though there is no alignment step, '%s' params are set to zero for later use." % os.path.join(
                    init2dir, "initial2Dparams.txt")
                print "========================================="
            write_text_row(tmp, os.path.join(init2dir, "initial2Dparams.txt"))
        del tmp
        mpi_barrier(MPI_COMM_WORLD)

        #  We assume the target image size will be target_nx, radius will be 29, and xr = 1.
        #  Note images can be also padded, in which case shrink_ratio > 1.
        shrink_ratio = float(target_radius) / float(radi)

        aligned_images = EMData.read_images(
            command_line_provided_stack_filename,
            range(image_start, image_end))
        nx = aligned_images[0].get_xsize()
        nima = len(aligned_images)
        newx = int(nx * shrink_ratio + 0.5)

        while not os.path.exists(os.path.join(init2dir,
                                              "initial2Dparams.txt")):
            import time
            time.sleep(1)
        mpi_barrier(MPI_COMM_WORLD)

        params = read_text_row(os.path.join(init2dir, "initial2Dparams.txt"))
        params = params[image_start:image_end]

        msk = model_circle(radi, nx, nx)
        for im in xrange(nima):
            st = Util.infomask(aligned_images[im], msk, False)
            aligned_images[im] -= st[0]
            if options.CTF:
                aligned_images[im] = filt_ctf(
                    aligned_images[im],
                    aligned_images[im].get_attr("ctf"),
                    binary=True)

        if (shrink_ratio < 1.0):
            if newx > target_nx:
                msk = model_circle(target_radius, target_nx, target_nx)
                for im in xrange(nima):
                    #  Here we should use only shifts
                    #alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
                    #alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
                    #aligned_images[im] = rot_shift2D(aligned_images[im], 0, sx, sy, 0)
                    aligned_images[im] = rot_shift2D(aligned_images[im], 0,
                                                     params[im][1],
                                                     params[im][2], 0)
                    aligned_images[im] = resample(aligned_images[im],
                                                  shrink_ratio)
                    aligned_images[im] = Util.window(aligned_images[im],
                                                     target_nx, target_nx, 1)
                    p = Util.infomask(aligned_images[im], msk, False)
                    aligned_images[im] -= p[0]
                    p = Util.infomask(aligned_images[im], msk, True)
                    aligned_images[im] /= p[1]
            elif newx == target_nx:
                msk = model_circle(target_radius, target_nx, target_nx)
                for im in xrange(nima):
                    #  Here we should use only shifts
                    #alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
                    #alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
                    aligned_images[im] = rot_shift2D(aligned_images[im], 0,
                                                     params[im][1],
                                                     params[im][2], 0)
                    aligned_images[im] = resample(aligned_images[im],
                                                  shrink_ratio)
                    p = Util.infomask(aligned_images[im], msk, False)
                    aligned_images[im] -= p[0]
                    p = Util.infomask(aligned_images[im], msk, True)
                    aligned_images[im] /= p[1]
            elif newx < target_nx:
                msk = model_circle(newx // 2 - 2, newx, newx)
                for im in xrange(nima):
                    #  Here we should use only shifts
                    #alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
                    #alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
                    aligned_images[im] = rot_shift2D(aligned_images[im], 0,
                                                     params[im][1],
                                                     params[im][2], 0)
                    aligned_images[im] = resample(aligned_images[im],
                                                  shrink_ratio)
                    p = Util.infomask(aligned_images[im], msk, False)
                    aligned_images[im] -= p[0]
                    p = Util.infomask(aligned_images[im], msk, True)
                    aligned_images[im] /= p[1]
                    aligned_images[im] = pad(aligned_images[im], target_nx,
                                             target_nx, 1, 0.0)
        elif (shrink_ratio == 1.0):
            if newx > target_nx:
                msk = model_circle(target_radius, target_nx, target_nx)
                for im in xrange(nima):
                    #  Here we should use only shifts
                    #alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
                    #alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
                    aligned_images[im] = rot_shift2D(aligned_images[im], 0,
                                                     params[im][1],
                                                     params[im][2], 0)
                    aligned_images[im] = Util.window(aligned_images[im],
                                                     target_nx, target_nx, 1)
                    p = Util.infomask(aligned_images[im], msk, False)
                    aligned_images[im] -= p[0]
                    p = Util.infomask(aligned_images[im], msk, True)
                    aligned_images[im] /= p[1]
            elif newx == target_nx:
                msk = model_circle(target_radius, target_nx, target_nx)
                for im in xrange(nima):
                    #  Here we should use only shifts
                    #alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
                    #alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
                    aligned_images[im] = rot_shift2D(aligned_images[im], 0,
                                                     params[im][1],
                                                     params[im][2], 0)
                    p = Util.infomask(aligned_images[im], msk, False)
                    aligned_images[im] -= p[0]
                    p = Util.infomask(aligned_images[im], msk, True)
                    aligned_images[im] /= p[1]
            elif newx < target_nx:
                msk = model_circle(newx // 2 - 2, newx, newx)
                for im in xrange(nima):
                    #  Here we should use only shifts
                    #alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
                    #alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
                    aligned_images[im] = rot_shift2D(aligned_images[im], 0,
                                                     params[im][1],
                                                     params[im][2], 0)
                    #aligned_images[im]  = resample(aligned_images[im], shrink_ratio)
                    p = Util.infomask(aligned_images[im], msk, False)
                    aligned_images[im] -= p[0]
                    p = Util.infomask(aligned_images[im], msk, True)
                    aligned_images[im] /= p[1]
                    aligned_images[im] = pad(aligned_images[im], target_nx,
                                             target_nx, 1, 0.0)
        elif (shrink_ratio > 1.0):
            if newx > target_nx:
                msk = model_circle(target_radius, target_nx, target_nx)
                for im in xrange(nima):
                    #  Here we should use only shifts
                    #alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
                    #alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
                    aligned_images[im] = rot_shift2D(aligned_images[im], 0,
                                                     params[im][1],
                                                     params[im][2], 0)
                    aligned_images[im] = resample(aligned_images[im],
                                                  shrink_ratio)
                    aligned_images[im] = Util.window(aligned_images[im],
                                                     target_nx, target_nx, 1)
                    p = Util.infomask(aligned_images[im], msk, False)
                    aligned_images[im] -= p[0]
                    p = Util.infomask(aligned_images[im], msk, True)
                    aligned_images[im] /= p[1]
            elif newx == target_nx:
                msk = model_circle(target_radius, target_nx, target_nx)
                for im in xrange(nima):
                    #  Here we should use only shifts
                    #alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
                    #alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
                    aligned_images[im] = rot_shift2D(aligned_images[im], 0,
                                                     params[im][1],
                                                     params[im][2], 0)
                    aligned_images[im] = resample(aligned_images[im],
                                                  shrink_ratio)
                    p = Util.infomask(aligned_images[im], msk, False)
                    aligned_images[im] -= p[0]
                    p = Util.infomask(aligned_images[im], msk, True)
                    aligned_images[im] /= p[1]
            elif newx < target_nx:
                msk = model_circle(newx // 2 - 2, newx, newx)
                for im in xrange(nima):
                    #  Here we should use only shifts
                    #alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
                    #alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
                    aligned_images[im] = rot_shift2D(aligned_images[im], 0,
                                                     params[im][1],
                                                     params[im][2], 0)
                    aligned_images[im] = resample(aligned_images[im],
                                                  shrink_ratio)
                    p = Util.infomask(aligned_images[im], msk, False)
                    aligned_images[im] -= p[0]
                    p = Util.infomask(aligned_images[im], msk, True)
                    aligned_images[im] /= p[1]
                    aligned_images[im] = pad(aligned_images[im], target_nx,
                                             target_nx, 1, 0.0)
        del msk

        gather_compacted_EMData_to_root(number_of_images_in_stack,
                                        aligned_images, myid)
        number_of_images_in_stack = bcast_number_to_all(
            number_of_images_in_stack, source_node=main_node)

        if (myid == main_node):
            for i in range(number_of_images_in_stack):
                aligned_images[i].write_image(
                    stack_processed_by_ali2d_base__filename, i)
            #  It has to be explicitly closed
            from EMAN2db import db_open_dict
            DB = db_open_dict(stack_processed_by_ali2d_base__filename)
            DB.close()

            fp = open(os.path.join(masterdir, "README_shrink_ratio.txt"), "w")
            output_text = """
			Since, for processing purposes, isac changes the image dimensions,
			adjustment of pixel size needs to be made in subsequent steps, (e.g.
			running sxviper.py). The shrink ratio for this particular isac run is
			--------
			%.5f
			%.5f
			--------
			To get the pixel size for the isac output the user needs to divide
			the original pixel size by the above value. This info is saved in
			the following file: README_shrink_ratio.txt
			""" % (shrink_ratio, radi)
            fp.write(output_text)
            fp.flush()
            fp.close()
            print output_text
            fp = open(
                os.path.join(init2dir, "Finished_initial_2d_alignment.txt"),
                "w")
            fp.flush()
            fp.close()
    else:
        if (myid == main_node):
            print "Skipping 2d alignment since it was already done!"

    mpi_barrier(MPI_COMM_WORLD)

    # from mpi import mpi_finalize
    # mpi_finalize()
    # sys.stdout.flush()
    # sys.exit()

    os.chdir(masterdir)

    if program_state_stack(locals(), getframeinfo(currentframe())):
        # if 1:
        pass
        if (myid == main_node):
            junk = cmdexecute(
                "sxheader.py  --consecutive  --params=originalid   %s" %
                stack_processed_by_ali2d_base__filename__without_master_dir)
            junk = cmdexecute(
                "e2bdb.py %s --makevstack=%s_000" %
                (stack_processed_by_ali2d_base__filename__without_master_dir,
                 stack_processed_by_ali2d_base__filename__without_master_dir))

    if (myid == main_node):
        main_dir_no = get_latest_directory_increment_value("./",
                                                           NAME_OF_MAIN_DIR,
                                                           myformat="%04d")
        print "isac_generation_from_command_line", isac_generation_from_command_line, main_dir_no
        if isac_generation_from_command_line < 0:
            if os.path.exists(NAME_OF_JSON_STATE_FILE):
                stored_stack, stored_state = restore_program_stack_and_state(
                    NAME_OF_JSON_STATE_FILE)
                if "isac_generation" in stored_state[-1]:
                    isac_generation_from_command_line = stored_state[-1][
                        "isac_generation"]
                else:
                    isac_generation_from_command_line = -1
        if isac_generation_from_command_line >= 0 and isac_generation_from_command_line <= main_dir_no:
            for i in xrange(isac_generation_from_command_line + 1,
                            main_dir_no + 1):
                if i == isac_generation_from_command_line + 1:
                    backup_dir_no = get_nonexistent_directory_increment_value(
                        "./", "000_backup", myformat="%05d", start_value=1)
                    junk = cmdexecute("mkdir -p " + "000_backup" +
                                      "%05d" % backup_dir_no)
                junk = cmdexecute("mv  " + NAME_OF_MAIN_DIR + "%04d" % i +
                                  " 000_backup" + "%05d" % backup_dir_no)
                junk = cmdexecute(
                    "rm  " + "EMAN2DB/" +
                    stack_processed_by_ali2d_base__filename__without_master_dir[
                        4:] + "_%03d.bdb" % i)

            # it includes both command line and json file
            my_restart_section = stored_state[-1]["location_in_program"].split(
                "___")[-1]
            if "restart" in my_restart_section:
                if "backup_dir_no" not in locals():
                    backup_dir_no = get_nonexistent_directory_increment_value(
                        "./", "000_backup", myformat="%05d", start_value=1)
                    junk = cmdexecute("mkdir -p " + "000_backup" +
                                      "%05d" % backup_dir_no)
                junk = cmdexecute("mv  " + NAME_OF_MAIN_DIR +
                                  "%04d" % isac_generation_from_command_line +
                                  " 000_backup" + "%05d" % backup_dir_no)
                junk = cmdexecute(
                    "rm  " + "EMAN2DB/" +
                    stack_processed_by_ali2d_base__filename__without_master_dir[
                        4:] + "_%03d.bdb" % isac_generation_from_command_line)
            elif "candidate_class_averages" in my_restart_section:
                if "backup_dir_no" not in locals():
                    backup_dir_no = get_nonexistent_directory_increment_value(
                        "./", "000_backup", myformat="%05d", start_value=1)
                    junk = cmdexecute("mkdir -p " + "000_backup" +
                                      "%05d" % backup_dir_no)
                junk = cmdexecute("mv  " + NAME_OF_MAIN_DIR +
                                  "%04d" % isac_generation_from_command_line +
                                  " 000_backup" + "%05d" % backup_dir_no)
                junk = cmdexecute("mkdir -p " + NAME_OF_MAIN_DIR +
                                  "%04d" % isac_generation_from_command_line)
                # junk = cmdexecute("rm -f " + NAME_OF_MAIN_DIR + "%04d/class_averages_candidate*"%isac_generation_from_command_line)
            elif "reproducible_class_averages" in my_restart_section:
                junk = cmdexecute("rm -rf " + NAME_OF_MAIN_DIR +
                                  "%04d/ali_params_generation_*" %
                                  isac_generation_from_command_line)
                junk = cmdexecute("rm -f " + NAME_OF_MAIN_DIR +
                                  "%04d/class_averages_generation*" %
                                  isac_generation_from_command_line)
        else:
            if os.path.exists(NAME_OF_JSON_STATE_FILE):
                stored_stack, stored_state = restore_program_stack_and_state(
                    NAME_OF_JSON_STATE_FILE)
                if "isac_generation" in stored_state[-1]:
                    isac_generation_from_command_line = stored_state[-1][
                        "isac_generation"]
                else:
                    isac_generation_from_command_line = 1
            else:
                isac_generation_from_command_line = 1
    else:
        isac_generation_from_command_line = 0

    isac_generation_from_command_line = mpi_bcast(
        isac_generation_from_command_line, 1, MPI_INT, 0, MPI_COMM_WORLD)[0]
    isac_generation = isac_generation_from_command_line - 1

    if (myid == main_node):
        if isac_generation == 0:
            junk = cmdexecute("mkdir -p " + NAME_OF_MAIN_DIR +
                              "%04d" % isac_generation)
            write_text_file(
                [1],
                os.path.join(NAME_OF_MAIN_DIR + "%04d" % isac_generation,
                             "generation_%d_accounted.txt" % isac_generation))
            write_text_file(
                range(number_of_images_in_stack),
                os.path.join(NAME_OF_MAIN_DIR + "%04d" % isac_generation,
                             "generation_%d_unaccounted.txt" %
                             isac_generation))

    #  Stopping criterion should be inside the program.
    while True:
        isac_generation += 1
        if isac_generation > options.n_generations:
            break

        data64_stack_current = "bdb:../" + stack_processed_by_ali2d_base__filename__without_master_dir[
            4:] + "_%03d" % isac_generation

        program_state_stack.restart_location_title = "restart"
        if program_state_stack(locals(), getframeinfo(currentframe())):
            if (myid == main_node):
                junk = cmdexecute("mkdir -p " + NAME_OF_MAIN_DIR +
                                  "%04d" % isac_generation)
                # reference the original stack
                list_file = os.path.join(
                    NAME_OF_MAIN_DIR + "%04d" % (isac_generation - 1),
                    "generation_%d_unaccounted.txt" % (isac_generation - 1))
                junk = cmdexecute("e2bdb.py %s --makevstack=%s --list=%s"%(stack_processed_by_ali2d_base__filename__without_master_dir,\
                  stack_processed_by_ali2d_base__filename__without_master_dir + "_%03d"%isac_generation, list_file))
            mpi_barrier(MPI_COMM_WORLD)

        os.chdir(NAME_OF_MAIN_DIR + "%04d" % isac_generation)

        program_state_stack.restart_location_title = "candidate_class_averages"
        if program_state_stack(locals(), getframeinfo(currentframe())):

            iter_isac(data64_stack_current, options.ir, target_radius, options.rs, target_xr, yr, options.ts, options.maxit, False, 1.0,\
             options.dst, options.FL, options.FH, options.FF, options.init_iter, options.main_iter, options.iter_reali, options.match_first, \
             options.max_round, options.match_second, options.stab_ali, options.thld_err, options.indep_run, options.thld_grp, \
             options.img_per_grp, isac_generation, False, random_seed=options.rand_seed, new=False)#options.new)

        # program_state_stack.restart_location_title = "stopped_program1"
        # program_state_stack(locals(), getframeinfo(currentframe()))

        program_state_stack.restart_location_title = "stop_after_candidates"
        program_state_stack(locals(), getframeinfo(currentframe()))
        if stop_after_candidates:
            mpi_finalize()
            sys.exit()

        exit_program = 0
        if (myid == main_node):
            if not os.path.exists(
                    "class_averages_candidate_generation_%d.hdf" %
                    isac_generation):
                print "This generation (%d) no class average candidates were generated! Finishing." % isac_generation
                exit_program = 1
        exit_program = int(
            mpi_bcast(exit_program, 1, MPI_INT, 0, MPI_COMM_WORLD)[0])
        if exit_program:
            os.chdir("..")
            break

        program_state_stack.restart_location_title = "reproducible_class_averages"
        if program_state_stack(locals(), getframeinfo(currentframe())):


            iter_isac(data64_stack_current, options.ir, target_radius, options.rs, target_xr, yr, options.ts, options.maxit, False, 1.0,\
             options.dst, options.FL, options.FH, options.FF, options.init_iter, options.main_iter, options.iter_reali, options.match_first, \
             options.max_round, options.match_second, options.stab_ali, options.thld_err, options.indep_run, options.thld_grp, \
             options.img_per_grp, isac_generation, True, random_seed=options.rand_seed, new=False)#options.new)
            pass

        os.chdir("..")

        if (myid == main_node):
            accounted_images = read_text_file(
                os.path.join(NAME_OF_MAIN_DIR + "%04d" % (isac_generation),
                             "generation_%d_accounted.txt" %
                             (isac_generation)))
            number_of_accounted_images = len(accounted_images)
            un_accounted_images = read_text_file(
                os.path.join(
                    NAME_OF_MAIN_DIR + "%04d" % (isac_generation),
                    "generation_%d_unaccounted.txt" % (isac_generation)))
            number_of_un_accounted_images = len(un_accounted_images)
        else:
            number_of_accounted_images = 0
            number_of_un_accounted_images = 0

        number_of_accounted_images = int(
            mpi_bcast(number_of_accounted_images, 1, MPI_INT, 0,
                      MPI_COMM_WORLD)[0])
        number_of_un_accounted_images = int(
            mpi_bcast(number_of_un_accounted_images, 1, MPI_INT, 0,
                      MPI_COMM_WORLD)[0])

        if number_of_accounted_images == 0:
            if (myid == main_node):
                print "This generation (%d) there are no accounted images! Finishing." % isac_generation
            break

        while (myid == main_node):

            def files_are_missing(isac_generation):
                for i in xrange(1, isac_generation + 1):
                    if not os.path.exists(
                            "generation_%04d/class_averages_generation_%d.hdf"
                            % (i, i)):
                        print "Error: generation_%04d/class_averages_generation_%d.hdf is missing! Exiting." % (
                            i, i)
                        return 1
                return 0

            if files_are_missing(isac_generation):
                break

            junk = cmdexecute("rm -f class_averages.hdf")
            cpy([
                "generation_%04d/class_averages_generation_%d.hdf" % (i, i)
                for i in xrange(1, isac_generation + 1)
            ], "class_averages.hdf")

            break

        if number_of_un_accounted_images == 0:
            if (myid == main_node):
                print "This generation (%d) there are no un accounted images! Finishing." % isac_generation
            break

    program_state_stack(locals(),
                        getframeinfo(currentframe()),
                        last_call="__LastCall")

    mpi_barrier(MPI_COMM_WORLD)
    mpi_finalize()
Example #52
0
def main(args):
	progname = os.path.basename(sys.argv[0])
	usage = ( progname + " stack_file  output_directory --radius=particle_radius --img_per_grp=img_per_grp --CTF --restart_section<The remaining parameters are optional --ir=ir --rs=rs --xr=xr --yr=yr --ts=ts --maxit=maxit --dst=dst --FL=FL --FH=FH --FF=FF --init_iter=init_iter --main_maxit=main_iter" +
			" --iter_reali=iter_reali --match_first=match_first --max_round=max_round --match_second=match_second --stab_ali=stab_ali --thld_err=thld_err --indep_run=indep_run --thld_grp=thld_grp" +
			"  --generation=generation  --rand_seed=rand_seed>" )
	
	parser = OptionParser(usage,version=SPARXVERSION)
	parser.add_option("--radius",                type="int",           help="particle radius: there is no default, a sensible number has to be provided, units - pixels (default required int)")
	parser.add_option("--target_radius",         type="int",           default=29,         help="target particle radius: actual particle radius on which isac will process data. Images will be shrinked/enlarged to achieve this radius (default 29)")
	parser.add_option("--target_nx",             type="int",           default=76,         help="target particle image size: actual image size on which isac will process data. Images will be shrinked/enlarged according to target particle radius and then cut/padded to achieve target_nx size. When xr > 0, the final image size for isac processing is 'target_nx + xr - 1'  (default 76)")
	parser.add_option("--img_per_grp",           type="int",           default=100,        help="number of images per class: in the ideal case (essentially maximum size of class) (default 100)")
	parser.add_option("--CTF",                   action="store_true",  default=False,      help="apply phase-flip for CTF correction: if set the data will be phase-flipped using CTF information included in image headers (default False)")
	parser.add_option("--ir",                    type="int",           default=1,          help="inner ring: of the resampling to polar coordinates. units - pixels (default 1)")
	parser.add_option("--rs",                    type="int",           default=1,          help="ring step: of the resampling to polar coordinates. units - pixels (default 1)")
	parser.add_option("--xr",                    type="int",           default=1,         help="x range: of translational search. By default, set by the program. (default 1)")
	parser.add_option("--yr",                    type="int",           default=-1,         help="y range: of translational search. By default, same as xr. (default -1)")
	parser.add_option("--ts",                    type="float",         default=1.0,        help="search step: of translational search: units - pixels (default 1.0)")
	parser.add_option("--maxit",                 type="int",           default=30,         help="number of iterations for reference-free alignment: (default 30)")
	#parser.add_option("--snr",            type="float",        default=1.0,     help="signal-to-noise ratio (only meaningful when CTF is enabled, currently not supported)")
	parser.add_option("--center_method",         type="int",           default=-1,         help="method for centering: of global 2D average during initial prealignment of data (0 : no centering; -1 : average shift method; please see center_2D in utilities.py for methods 1-7) (default -1)")
	parser.add_option("--dst",                   type="float",         default=90.0,       help="discrete angle used in within group alignment: (default 90.0)")
	parser.add_option("--FL",                    type="float",         default=0.2,        help="lowest stopband: frequency used in the tangent filter (default 0.2)")
	parser.add_option("--FH",                    type="float",         default=0.3,        help="highest stopband: frequency used in the tangent filter (default 0.3)")
	parser.add_option("--FF",                    type="float",         default=0.2,        help="fall-off of the tangent filter: (default 0.2)")
	parser.add_option("--init_iter",             type="int",           default=3,          help="SAC initialization iterations: number of runs of ab-initio within-cluster alignment for stability evaluation in SAC initialization (default 3)")
	parser.add_option("--main_iter",             type="int",           default=3,          help="SAC main iterations: number of runs of ab-initio within-cluster alignment for stability evaluation in SAC (default 3)")
	parser.add_option("--iter_reali",            type="int",           default=1,          help="SAC stability check interval: every iter_reali iterations of SAC stability checking is performed (default 1)")
	parser.add_option("--match_first",           type="int",           default=1,          help="number of iterations to run 2-way matching in the first phase: (default 1)")
	parser.add_option("--max_round",             type="int",           default=20,         help="maximum rounds: of generating candidate class averages in the first phase (default 20)")
	parser.add_option("--match_second",          type="int",           default=5,          help="number of iterations to run 2-way (or 3-way) matching in the second phase: (default 5)")
	parser.add_option("--stab_ali",              type="int",           default=5,          help="number of alignments when checking stability: (default 5)")
	parser.add_option("--thld_err",              type="float",         default=0.7,        help="threshold of pixel error when checking stability: equals root mean square of distances between corresponding pixels from set of found transformations and theirs average transformation, depends linearly on square of radius (parameter ou). units - pixels. (default 0.7)")
	parser.add_option("--indep_run",             type="int",           default=4,          help="level of m-way matching for reproducibility tests: By default, perform full ISAC to 4-way matching. Value indep_run=2 will restrict ISAC to 2-way matching and 3 to 3-way matching.  Note the number of used MPI processes requested in mpirun must be a multiplicity of indep_run. (default 4)")
	parser.add_option("--thld_grp",              type="int",           default=10,         help="minimum size of reproducible class (default 10)")
	parser.add_option("--n_generations",         type="int",           default=100,        help="maximum number of generations: program stops when reaching this total number of generations: (default 100)")
	#parser.add_option("--candidatesexist",action="store_true", default=False,   help="Candidate class averages exist use them (default False)")
	parser.add_option("--rand_seed",             type="int",           help="random seed set before calculations: useful for testing purposes. By default, total randomness (type int)")
	parser.add_option("--new",                   action="store_true",  default=False,      help="use new code: (default False)")
	parser.add_option("--debug",                 action="store_true",  default=False,      help="debug info printout: (default False)")

	# must be switched off in production
	parser.add_option("--use_latest_master_directory",action="store_true",  default=False,      help="use latest master directory: when active, the program looks for the latest directory that starts with the word 'master', so the user does not need to provide a directory name. (default False)")
	
	parser.add_option("--restart_section",       type="string",        default=' ',        help="restart section: each generation (iteration) contains three sections: 'restart', 'candidate_class_averages', and 'reproducible_class_averages'. To restart from a particular step, for example, generation 4 and section 'candidate_class_averages' the following option is needed: '--restart_section=candidate_class_averages,4'. The option requires no white space before or after the comma. The default behavior is to restart execution from where it stopped intentionally or unintentionally. For default restart, it is assumed that the name of the directory is provided as argument. Alternatively, the '--use_latest_master_directory' option can be used. (default ' ')")
	parser.add_option("--stop_after_candidates", action="store_true",  default=False,      help="stop after candidates: stops after the 'candidate_class_averages' section. (default False)")

	##### XXXXXXXXXXXXXXXXXXXXXX option does not exist in docs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	parser.add_option("--return_options",        action="store_true", dest="return_options", default=False, help = SUPPRESS_HELP)
	parser.add_option("--skip_prealignment",     action="store_true",  default=False,      help="skip pre-alignment step: to be used if images are already centered. 2dalignment directory will still be generated but the parameters will be zero. (default False)")

	required_option_list = ['radius']
	(options, args) = parser.parse_args(args)

	if options.return_options:
		return parser
	
	if len(args) > 2:
		print "usage: " + usage
		print "Please run '" + progname + " -h' for detailed options"
		sys.exit()
	
	if global_def.CACHE_DISABLE:
		from utilities import disable_bdb_cache
		disable_bdb_cache()
	global_def.BATCH = True
	
	from isac import iter_isac
	from fundamentals import rot_shift2D, resample
	from utilities import pad, combine_params2

	command_line_provided_stack_filename = args[0]
	
	main_node = 0
	mpi_init(0, [])
	myid = mpi_comm_rank(MPI_COMM_WORLD)
	nproc = mpi_comm_size(MPI_COMM_WORLD)
	
	mpi_barrier(MPI_COMM_WORLD)
	if(myid == main_node):
		print "****************************************************************"
		Util.version()
		print "****************************************************************"
		sys.stdout.flush()
	mpi_barrier(MPI_COMM_WORLD)
	

	# Making sure all required options appeared.
	for required_option in required_option_list:
		if not options.__dict__[required_option]:
			print "\n ==%s== mandatory option is missing.\n"%required_option
			print "Please run '" + progname + " -h' for detailed options"
			return 1

	radi  = options.radius
	target_radius  = options.target_radius
	target_nx  = options.target_nx
	center_method  = options.center_method
	if(radi < 1):  ERROR("Particle radius has to be provided!","sxisac",1,myid)

	
	use_latest_master_directory = options.use_latest_master_directory
	stop_after_candidates = options.stop_after_candidates
	# program_state_stack.restart_location_title_from_command_line = options.restart_section
	
	from utilities import qw
	program_state_stack.PROGRAM_STATE_VARIABLES = set(qw("""
		isac_generation
	"""))

	# create or reuse master directory
	masterdir = ""
	stack_processed_by_ali2d_base__filename = ""
	stack_processed_by_ali2d_base__filename__without_master_dir = ""
	error_status = 0
	if len(args) == 2:
		masterdir = args[1]
	elif len(args) == 1:
		if use_latest_master_directory:
			all_dirs = [d for d in os.listdir(".") if os.path.isdir(d)]
			import re; r = re.compile("^master.*$")
			all_dirs = filter(r.match, all_dirs)
			if len(all_dirs)>0:
				# all_dirs = max(all_dirs, key=os.path.getctime)
				masterdir = max(all_dirs, key=os.path.getmtime)
				
	#Create folder for all results or check if there is one created already
	if(myid == main_node):
		if( masterdir == ""):
			timestring = strftime("%Y_%m_%d__%H_%M_%S" + DIR_DELIM, localtime())
			masterdir = "master"+timestring
			cmd = "{} {}".format("mkdir", masterdir)
			cmdexecute(cmd)
		elif not os.path.exists(masterdir):
			# os.path.exists(masterdir) does not exist
			masterdir = args[1]
			cmd = "{} {}".format("mkdir", masterdir)
			cmdexecute(cmd)

		if(args[0][:4] == "bdb:"): filename = args[0][4:]
		else:                      filename = args[0][:-4]
		filename = os.path.basename(filename)
		stack_processed_by_ali2d_base__filename = "bdb:" + os.path.join(masterdir, filename )
		stack_processed_by_ali2d_base__filename__without_master_dir  = "bdb:" + filename
	if_error_then_all_processes_exit_program(error_status)

	# send masterdir to all processes
	masterdir = send_string_to_all(masterdir)

	if myid == 0:
		if options.restart_section != " ":
			if os.path.exists(os.path.join(masterdir,NAME_OF_JSON_STATE_FILE)):
				stored_stack, stored_state = restore_program_stack_and_state(os.path.join(masterdir,NAME_OF_JSON_STATE_FILE))
				import re
				if "," in options.restart_section:
					parsed_restart_section_option = options.restart_section.split(",")
					stored_state[-1]["location_in_program"] = re.sub(r"___.*$", "___%s"%parsed_restart_section_option[0], stored_state[-1]["location_in_program"])
					generation_str_format = parsed_restart_section_option[1]
					if generation_str_format != "":
						isac_generation_from_command_line = int(generation_str_format)
						stored_state[-1]["isac_generation"] = isac_generation_from_command_line 
					else:
						isac_generation_from_command_line = 1
						if "isac_generation" in stored_state[-1]:
							del stored_state[-1]["isac_generation"]
				else:
					isac_generation_from_command_line = -1
					stored_state[-1]["location_in_program"] = re.sub(r"___.*$", "___%s"%options.restart_section, stored_state[-1]["location_in_program"])
					if "isac_generation" in stored_state[-1]:
						del stored_state[-1]["isac_generation"]
				store_program_state(os.path.join(masterdir,NAME_OF_JSON_STATE_FILE), stored_state, stored_stack)
			else:
				print "Please remove the restart_section option from the command line. The program must be started from the beginning."			
				mpi_finalize()
				sys.exit()
		else:
			isac_generation_from_command_line = -1
	
	program_state_stack(locals(), getframeinfo(currentframe()), os.path.join(masterdir,NAME_OF_JSON_STATE_FILE))
	

	stack_processed_by_ali2d_base__filename = send_string_to_all(stack_processed_by_ali2d_base__filename)
	stack_processed_by_ali2d_base__filename__without_master_dir = \
		send_string_to_all(stack_processed_by_ali2d_base__filename__without_master_dir)

	# previous code 2016-05-05--20-14-12-153
	# #  PARAMETERS OF THE PROCEDURE
	# if( options.xr == -1 ):
	# 	#  Default values
	# 	# target_nx = 76
	# 	# target_radius = 29
	# 	target_xr = 1
	# else:  #  nx//2
	# 	#  Check below!
	# 	target_xr = options.xr
	# 	# target_nx = 76 + target_xr - 1 # subtract one, which is default
	# 	target_nx += target_xr - 1 # subtract one, which is default
	# 	# target_radius = 29

	target_xr = options.xr
	target_nx += target_xr - 1 # subtract one, which is default
	
	if (options.yr == -1):
		yr = options.xr
	else:
		yr = options.yr


	mpi_barrier(MPI_COMM_WORLD)

	# Initialization of stacks
	if(myid == main_node):
		print "command_line_provided_stack_filename", command_line_provided_stack_filename
		number_of_images_in_stack = EMUtil.get_image_count(command_line_provided_stack_filename)
	else:
		number_of_images_in_stack = 0

	number_of_images_in_stack = bcast_number_to_all(number_of_images_in_stack, source_node = main_node)
	
	nxrsteps = 4
	
	init2dir = os.path.join(masterdir,"2dalignment")
	
	# from mpi import mpi_finalize
	# mpi_finalize()
	# sys.stdout.flush()
	# sys.exit()
	
	
	if not os.path.exists(os.path.join(init2dir, "Finished_initial_2d_alignment.txt")):
	
		if(myid == 0):
			import subprocess
			from logger import Logger, BaseLogger_Files
			#  Create output directory
			log2d = Logger(BaseLogger_Files())
			log2d.prefix = os.path.join(init2dir)
			cmd = "mkdir -p "+log2d.prefix
			outcome = subprocess.call(cmd, shell=True)
			log2d.prefix += "/"
			# outcome = subprocess.call("sxheader.py  "+command_line_provided_stack_filename+"   --params=xform.align2d  --zero", shell=True)
		else:
			outcome = 0
			log2d = None

		if(myid == main_node):
			a = get_im(command_line_provided_stack_filename)
			nnxo = a.get_xsize()
		else:
			nnxo = 0
		nnxo = bcast_number_to_all(nnxo, source_node = main_node)

		image_start, image_end = MPI_start_end(number_of_images_in_stack, nproc, myid)

		if options.skip_prealignment:
			params2d = [[0.0,0.0,0.0,0] for i in xrange(image_start, image_end)]
		else:

			original_images = EMData.read_images(command_line_provided_stack_filename, range(image_start,image_end))
			#  We assume the target radius will be 29, and xr = 1.  
			shrink_ratio = float(target_radius)/float(radi)

			for im in xrange(len(original_images)):
				if(shrink_ratio != 1.0):
					original_images[im]  = resample(original_images[im], shrink_ratio)

			nx = original_images[0].get_xsize()
			# nx = int(nx*shrink_ratio + 0.5)

			txrm = (nx - 2*(target_radius+1))//2
			if(txrm < 0):  			ERROR( "ERROR!!   Radius of the structure larger than the window data size permits   %d"%(radi), "sxisac",1, myid)
			if(txrm/nxrsteps>0):
				tss = ""
				txr = ""
				while(txrm/nxrsteps>0):
					tts=txrm/nxrsteps
					tss += "  %d"%tts
					txr += "  %d"%(tts*nxrsteps)
					txrm =txrm//2
			else:
				tss = "1"
				txr = "%d"%txrm
			
			# print "nx, txr, txrm, tss", nx, txr, txrm, tss
		# from mpi import mpi_finalize
		# mpi_finalize()
		# sys.stdout.flush()
		# sys.exit()



			# section ali2d_base

			params2d = ali2d_base(original_images, init2dir, None, 1, target_radius, 1, txr, txr, tss, \
				False, 90.0, center_method, 14, options.CTF, 1.0, False, \
				"ref_ali2d", "", log2d, nproc, myid, main_node, MPI_COMM_WORLD, write_headers = False)
			
			del original_images
			
			for i in xrange(len(params2d)):
				alpha, sx, sy, mirror = combine_params2(0, params2d[i][1],params2d[i][2], 0, -params2d[i][0], 0, 0, 0)
				sx /= shrink_ratio
				sy /= shrink_ratio
				params2d[i][0] = 0.0
				params2d[i][1] = sx
				params2d[i][2] = sy
				params2d[i][3] = 0
				#set_params2D(aligned_images[i],[0.0, sx,sy,0.,1.0])

		mpi_barrier(MPI_COMM_WORLD)
		tmp = params2d[:]
		tmp = wrap_mpi_gatherv(tmp, main_node, MPI_COMM_WORLD)
		if( myid == main_node ):		
			if options.skip_prealignment:
				print "========================================="
				print "Even though there is no alignment step, '%s' params are set to zero for later use."%os.path.join(init2dir, "initial2Dparams.txt")
				print "========================================="
			write_text_row(tmp,os.path.join(init2dir, "initial2Dparams.txt"))
		del tmp
		mpi_barrier(MPI_COMM_WORLD)
	
		#  We assume the target image size will be target_nx, radius will be 29, and xr = 1.  
		#  Note images can be also padded, in which case shrink_ratio > 1.
		shrink_ratio = float(target_radius)/float(radi)
		
		aligned_images = EMData.read_images(command_line_provided_stack_filename, range(image_start,image_end))
		nx = aligned_images[0].get_xsize()
		nima = len(aligned_images)
		newx = int(nx*shrink_ratio + 0.5)


		
		while not os.path.exists(os.path.join(init2dir, "initial2Dparams.txt")):
			import time
			time.sleep(1)
		mpi_barrier(MPI_COMM_WORLD)
		
		params = read_text_row(os.path.join(init2dir, "initial2Dparams.txt"))
		params = params[image_start:image_end]


		msk = model_circle(radi, nx, nx)
		for im in xrange(nima):
			st = Util.infomask(aligned_images[im], msk, False)
			aligned_images[im] -= st[0]
			if options.CTF:
				aligned_images[im] = filt_ctf(aligned_images[im], aligned_images[im].get_attr("ctf"), binary = True)
	
		if(shrink_ratio < 1.0):
			if    newx > target_nx  :
				msk = model_circle(target_radius, target_nx, target_nx)
				for im in xrange(nima):
					#  Here we should use only shifts
					#alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
					#alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
					#aligned_images[im] = rot_shift2D(aligned_images[im], 0, sx, sy, 0)
					aligned_images[im] = rot_shift2D(aligned_images[im], 0, params[im][1], params[im][2], 0)
					aligned_images[im]  = resample(aligned_images[im], shrink_ratio)
					aligned_images[im] = Util.window(aligned_images[im], target_nx, target_nx, 1)
					p = Util.infomask(aligned_images[im], msk, False)
					aligned_images[im] -= p[0]
					p = Util.infomask(aligned_images[im], msk, True)
					aligned_images[im] /= p[1]
			elif  newx == target_nx :
				msk = model_circle(target_radius, target_nx, target_nx)
				for im in xrange(nima):
					#  Here we should use only shifts
					#alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
					#alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
					aligned_images[im] = rot_shift2D(aligned_images[im], 0, params[im][1], params[im][2], 0)
					aligned_images[im]  = resample(aligned_images[im], shrink_ratio)
					p = Util.infomask(aligned_images[im], msk, False)
					aligned_images[im] -= p[0]
					p = Util.infomask(aligned_images[im], msk, True)
					aligned_images[im] /= p[1]
			elif  newx < target_nx  :	
				msk = model_circle(newx//2-2, newx,  newx)
				for im in xrange(nima):
					#  Here we should use only shifts
					#alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
					#alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
					aligned_images[im] = rot_shift2D(aligned_images[im], 0, params[im][1], params[im][2], 0)
					aligned_images[im]  = resample(aligned_images[im], shrink_ratio)
					p = Util.infomask(aligned_images[im], msk, False)
					aligned_images[im] -= p[0]
					p = Util.infomask(aligned_images[im], msk, True)
					aligned_images[im] /= p[1]
					aligned_images[im] = pad(aligned_images[im], target_nx, target_nx, 1, 0.0)
		elif(shrink_ratio == 1.0):
			if    newx > target_nx  :
				msk = model_circle(target_radius, target_nx, target_nx)
				for im in xrange(nima):
					#  Here we should use only shifts
					#alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
					#alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
					aligned_images[im] = rot_shift2D(aligned_images[im], 0, params[im][1], params[im][2], 0)
					aligned_images[im] = Util.window(aligned_images[im], target_nx, target_nx, 1)
					p = Util.infomask(aligned_images[im], msk, False)
					aligned_images[im] -= p[0]
					p = Util.infomask(aligned_images[im], msk, True)
					aligned_images[im] /= p[1]
			elif  newx == target_nx :
				msk = model_circle(target_radius, target_nx, target_nx)
				for im in xrange(nima):
					#  Here we should use only shifts
					#alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
					#alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
					aligned_images[im] = rot_shift2D(aligned_images[im], 0, params[im][1], params[im][2], 0)
					p = Util.infomask(aligned_images[im], msk, False)
					aligned_images[im] -= p[0]
					p = Util.infomask(aligned_images[im], msk, True)
					aligned_images[im] /= p[1]
			elif  newx < target_nx  :			
				msk = model_circle(newx//2-2, newx,  newx)
				for im in xrange(nima):
					#  Here we should use only shifts
					#alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
					#alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
					aligned_images[im] = rot_shift2D(aligned_images[im], 0, params[im][1], params[im][2], 0)
					#aligned_images[im]  = resample(aligned_images[im], shrink_ratio)
					p = Util.infomask(aligned_images[im], msk, False)
					aligned_images[im] -= p[0]
					p = Util.infomask(aligned_images[im], msk, True)
					aligned_images[im] /= p[1]
					aligned_images[im] = pad(aligned_images[im], target_nx, target_nx, 1, 0.0)
		elif(shrink_ratio > 1.0):
			if    newx > target_nx  :
				msk = model_circle(target_radius, target_nx, target_nx)
				for im in xrange(nima):
					#  Here we should use only shifts
					#alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
					#alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
					aligned_images[im] = rot_shift2D(aligned_images[im], 0, params[im][1], params[im][2], 0)
					aligned_images[im]  = resample(aligned_images[im], shrink_ratio)
					aligned_images[im] = Util.window(aligned_images[im], target_nx, target_nx, 1)
					p = Util.infomask(aligned_images[im], msk, False)
					aligned_images[im] -= p[0]
					p = Util.infomask(aligned_images[im], msk, True)
					aligned_images[im] /= p[1]
			elif  newx == target_nx :
				msk = model_circle(target_radius, target_nx, target_nx)
				for im in xrange(nima):
					#  Here we should use only shifts
					#alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
					#alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
					aligned_images[im] = rot_shift2D(aligned_images[im], 0, params[im][1], params[im][2], 0)
					aligned_images[im]  = resample(aligned_images[im], shrink_ratio)
					p = Util.infomask(aligned_images[im], msk, False)
					aligned_images[im] -= p[0]
					p = Util.infomask(aligned_images[im], msk, True)
					aligned_images[im] /= p[1]
			elif  newx < target_nx  :
				msk = model_circle(newx//2-2, newx,  newx)
				for im in xrange(nima):
					#  Here we should use only shifts
					#alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
					#alpha, sx, sy, mirror = combine_params2(0, sx,sy, 0, -alpha, 0, 0, 0)
					aligned_images[im] = rot_shift2D(aligned_images[im], 0, params[im][1], params[im][2], 0)
					aligned_images[im]  = resample(aligned_images[im], shrink_ratio)
					p = Util.infomask(aligned_images[im], msk, False)
					aligned_images[im] -= p[0]
					p = Util.infomask(aligned_images[im], msk, True)
					aligned_images[im] /= p[1]
					aligned_images[im] = pad(aligned_images[im], target_nx, target_nx, 1, 0.0)
		del msk
	
		gather_compacted_EMData_to_root(number_of_images_in_stack, aligned_images, myid)
		number_of_images_in_stack = bcast_number_to_all(number_of_images_in_stack, source_node = main_node)
	
		if( myid == main_node ):
			for i in range(number_of_images_in_stack):  aligned_images[i].write_image(stack_processed_by_ali2d_base__filename,i)
			#  It has to be explicitly closed
			from EMAN2db import db_open_dict
			DB = db_open_dict(stack_processed_by_ali2d_base__filename)
			DB.close()
	
			fp = open(os.path.join(masterdir,"README_shrink_ratio.txt"), "w")
			output_text = """
			Since, for processing purposes, isac changes the image dimensions,
			adjustment of pixel size needs to be made in subsequent steps, (e.g.
			running sxviper.py). The shrink ratio for this particular isac run is
			--------
			%.5f
			%.5f
			--------
			To get the pixel size for the isac output the user needs to divide
			the original pixel size by the above value. This info is saved in
			the following file: README_shrink_ratio.txt
			"""%(shrink_ratio, radi)
			fp.write(output_text); fp.flush() ;fp.close()
			print output_text
			fp = open(os.path.join(init2dir, "Finished_initial_2d_alignment.txt"), "w"); fp.flush() ;fp.close()
	else:
		if( myid == main_node ):
			print "Skipping 2d alignment since it was already done!"

	mpi_barrier(MPI_COMM_WORLD)
	
	
	# from mpi import mpi_finalize
	# mpi_finalize()
	# sys.stdout.flush()
	# sys.exit()
	

	os.chdir(masterdir)
	
	if program_state_stack(locals(), getframeinfo(currentframe())):
	# if 1:
		pass
		if (myid == main_node):
			cmdexecute("sxheader.py  --consecutive  --params=originalid   %s"%stack_processed_by_ali2d_base__filename__without_master_dir)
			cmdexecute("e2bdb.py %s --makevstack=%s_000"%(stack_processed_by_ali2d_base__filename__without_master_dir, stack_processed_by_ali2d_base__filename__without_master_dir))

	if (myid == main_node):
		main_dir_no = get_latest_directory_increment_value("./", NAME_OF_MAIN_DIR, myformat="%04d")
		print "isac_generation_from_command_line", isac_generation_from_command_line, main_dir_no
		if isac_generation_from_command_line < 0:
			if os.path.exists(NAME_OF_JSON_STATE_FILE):
				stored_stack, stored_state = restore_program_stack_and_state(NAME_OF_JSON_STATE_FILE)
				if "isac_generation" in stored_state[-1]:
					isac_generation_from_command_line = stored_state[-1]["isac_generation"]
				else:
					isac_generation_from_command_line = -1
		if isac_generation_from_command_line >= 0 and isac_generation_from_command_line <= main_dir_no: 
			for i in xrange(isac_generation_from_command_line+1, main_dir_no + 1):
				if i == isac_generation_from_command_line+1:
					backup_dir_no = get_nonexistent_directory_increment_value("./", "000_backup", myformat="%05d", start_value=1)
					cmdexecute("mkdir -p " + "000_backup" + "%05d"%backup_dir_no)
				cmdexecute("mv  " + NAME_OF_MAIN_DIR + "%04d"%i +  " 000_backup" + "%05d"%backup_dir_no)
				cmdexecute("rm  " + "EMAN2DB/"+stack_processed_by_ali2d_base__filename__without_master_dir[4:]+"_%03d.bdb"%i)
				
			# it includes both command line and json file
			my_restart_section = stored_state[-1]["location_in_program"].split("___")[-1]
			if "restart" in my_restart_section:
				if "backup_dir_no" not in locals():
					backup_dir_no = get_nonexistent_directory_increment_value("./", "000_backup", myformat="%05d", start_value=1)
					cmdexecute("mkdir -p " + "000_backup" + "%05d"%backup_dir_no)
				cmdexecute("mv  " + NAME_OF_MAIN_DIR + "%04d"%isac_generation_from_command_line +  " 000_backup" + "%05d"%backup_dir_no)
				cmdexecute("rm  " + "EMAN2DB/"+stack_processed_by_ali2d_base__filename__without_master_dir[4:]+"_%03d.bdb"%isac_generation_from_command_line )
			elif "candidate_class_averages" in my_restart_section:
				if "backup_dir_no" not in locals():
					backup_dir_no = get_nonexistent_directory_increment_value("./", "000_backup", myformat="%05d", start_value=1)
					cmdexecute("mkdir -p " + "000_backup" + "%05d"%backup_dir_no)
				cmdexecute("mv  " + NAME_OF_MAIN_DIR + "%04d"%isac_generation_from_command_line +  " 000_backup" + "%05d"%backup_dir_no)
				cmdexecute("mkdir -p " + NAME_OF_MAIN_DIR + "%04d"%isac_generation_from_command_line)
				# cmdexecute("rm -f " + NAME_OF_MAIN_DIR + "%04d/class_averages_candidate*"%isac_generation_from_command_line)
			elif "reproducible_class_averages" in my_restart_section:
				cmdexecute("rm -rf " + NAME_OF_MAIN_DIR + "%04d/ali_params_generation_*"%isac_generation_from_command_line)
				cmdexecute("rm -f " + NAME_OF_MAIN_DIR + "%04d/class_averages_generation*"%isac_generation_from_command_line)
		else:
			if os.path.exists(NAME_OF_JSON_STATE_FILE):
				stored_stack, stored_state = restore_program_stack_and_state(NAME_OF_JSON_STATE_FILE)
				if "isac_generation" in stored_state[-1]:
					isac_generation_from_command_line = stored_state[-1]["isac_generation"]
				else:
					isac_generation_from_command_line = 1
			else:
				isac_generation_from_command_line = 1
	else:
		isac_generation_from_command_line = 0
		
		
		
	isac_generation_from_command_line = mpi_bcast(isac_generation_from_command_line, 1, MPI_INT, 0, MPI_COMM_WORLD)[0]
	isac_generation = isac_generation_from_command_line - 1
	
	if (myid == main_node):
		if isac_generation == 0:
			cmdexecute("mkdir -p " + NAME_OF_MAIN_DIR + "%04d"%isac_generation)
			write_text_file([1], os.path.join(NAME_OF_MAIN_DIR + "%04d"%isac_generation, "generation_%d_accounted.txt"%isac_generation))
			write_text_file(range(number_of_images_in_stack), os.path.join(NAME_OF_MAIN_DIR + "%04d"%isac_generation, "generation_%d_unaccounted.txt"%isac_generation))

	#  Stopping criterion should be inside the program.
	while True:
		isac_generation += 1
		if isac_generation > options.n_generations:
			break

		data64_stack_current = "bdb:../"+stack_processed_by_ali2d_base__filename__without_master_dir[4:]+"_%03d"%isac_generation

		program_state_stack.restart_location_title = "restart"
		if program_state_stack(locals(), getframeinfo(currentframe())):
			if (myid == main_node):
				cmdexecute("mkdir -p " + NAME_OF_MAIN_DIR + "%04d"%isac_generation)
				# reference the original stack
				list_file = os.path.join(NAME_OF_MAIN_DIR + "%04d"%(isac_generation - 1), "generation_%d_unaccounted.txt"%(isac_generation - 1))
				cmdexecute("e2bdb.py %s --makevstack=%s --list=%s"%(stack_processed_by_ali2d_base__filename__without_master_dir,\
						stack_processed_by_ali2d_base__filename__without_master_dir + "_%03d"%isac_generation, list_file))
			mpi_barrier(MPI_COMM_WORLD)

		os.chdir(NAME_OF_MAIN_DIR + "%04d"%isac_generation)

		program_state_stack.restart_location_title = "candidate_class_averages"
		if program_state_stack(locals(), getframeinfo(currentframe())):

			iter_isac(data64_stack_current, options.ir, target_radius, options.rs, target_xr, yr, options.ts, options.maxit, False, 1.0,\
				options.dst, options.FL, options.FH, options.FF, options.init_iter, options.main_iter, options.iter_reali, options.match_first, \
				options.max_round, options.match_second, options.stab_ali, options.thld_err, options.indep_run, options.thld_grp, \
				options.img_per_grp, isac_generation, False, random_seed=options.rand_seed, new=False)#options.new)

		# program_state_stack.restart_location_title = "stopped_program1"
		# program_state_stack(locals(), getframeinfo(currentframe()))
		
		program_state_stack.restart_location_title = "stop_after_candidates"
		program_state_stack(locals(), getframeinfo(currentframe()))
		if stop_after_candidates:
			mpi_finalize()
			sys.exit()

		exit_program = 0
		if(myid == main_node):
			if not os.path.exists("class_averages_candidate_generation_%d.hdf"%isac_generation):
				print "This generation (%d) no class average candidates were generated! Finishing."%isac_generation
				exit_program = 1
		exit_program = int(mpi_bcast(exit_program, 1, MPI_INT, 0, MPI_COMM_WORLD)[0])
		if exit_program:
			os.chdir("..")
			break

		program_state_stack.restart_location_title = "reproducible_class_averages"
		if program_state_stack(locals(), getframeinfo(currentframe())):


			iter_isac(data64_stack_current, options.ir, target_radius, options.rs, target_xr, yr, options.ts, options.maxit, False, 1.0,\
				options.dst, options.FL, options.FH, options.FF, options.init_iter, options.main_iter, options.iter_reali, options.match_first, \
				options.max_round, options.match_second, options.stab_ali, options.thld_err, options.indep_run, options.thld_grp, \
				options.img_per_grp, isac_generation, True, random_seed=options.rand_seed, new=False)#options.new)
			pass

		os.chdir("..")

		if(myid == main_node):
			accounted_images = read_text_file(os.path.join(NAME_OF_MAIN_DIR + "%04d"%(isac_generation),"generation_%d_accounted.txt"%(isac_generation)))
			number_of_accounted_images = len(accounted_images)
			un_accounted_images = read_text_file(os.path.join(NAME_OF_MAIN_DIR + "%04d"%(isac_generation),"generation_%d_unaccounted.txt"%(isac_generation)))
			number_of_un_accounted_images = len(un_accounted_images)
		else:
			number_of_accounted_images = 0
			number_of_un_accounted_images = 0

		number_of_accounted_images = int(mpi_bcast(number_of_accounted_images, 1, MPI_INT, 0, MPI_COMM_WORLD)[0])
		number_of_un_accounted_images = int(mpi_bcast(number_of_un_accounted_images, 1, MPI_INT, 0, MPI_COMM_WORLD)[0])
		
		if number_of_accounted_images == 0:
			if(myid == main_node):
				print "This generation (%d) there are no accounted images! Finishing."%isac_generation
			break

		while (myid == main_node):
			def files_are_missing(isac_generation):
				for i in xrange(1, isac_generation + 1):
					if not os.path.exists("generation_%04d/class_averages_generation_%d.hdf"%(i,i)):
						print "Error: generation_%04d/class_averages_generation_%d.hdf is missing! Exiting."%(i,i)
						return 1
				return 0
			
			if files_are_missing(isac_generation):
				break
				
			cmdexecute("rm -f class_averages.hdf")
			cpy(["generation_%04d/class_averages_generation_%d.hdf"%(i,i) for i in xrange(1, isac_generation + 1)], "class_averages.hdf")
			
			break

		if number_of_un_accounted_images == 0:
			if(myid == main_node):
				print "This generation (%d) there are no un accounted images! Finishing."%isac_generation
			break


	program_state_stack(locals(), getframeinfo(currentframe()), last_call="__LastCall")

	mpi_barrier(MPI_COMM_WORLD)
	mpi_finalize()
Example #53
0
def isac_substack(args):
	from utilities import get_im, write_text_file
	from EMAN2db import db_open_dict
	from e2bdb import makerelpath
	
	# To make the execution exit upon fatal error by ERROR in global_def.py
	global_def.BATCH = True 
	
	# Check error conditions
	subcommand_name = 'isac_substack'
	if not os.path.exists(args.input_isac_class_avgs_path):
		ERROR('Input ISAC class average stack file does not exist. Please check the file path and restart the program.', subcommand_name) # action=1 - fatal error, exit
	if os.path.exists(args.output_directory):
		ERROR('Output directory exists. Please change the name and restart the program.', subcommand_name) # action=1 - fatal error, exit
	
	assert(os.path.exists(args.input_isac_class_avgs_path))
	assert(not os.path.exists(args.output_directory))
	
	# Create output directory
	os.mkdir(args.output_directory)
	
	# Retrieve original particle IDs of member particles listed in ISAC class average stack
	n_img_processed = EMUtil.get_image_count(args.input_isac_class_avgs_path)
	isac_substack_particle_id_list = []
	for i_img in xrange(n_img_processed):
		isac_substack_particle_id_list += get_im(args.input_isac_class_avgs_path, i_img).get_attr('members')
	isac_substack_particle_id_list.sort()
	
	# Save the substack particle id list
	isac_substack_particle_id_list_file_path = os.path.join(args.output_directory, 'isac_substack_particle_id_list.txt')
	write_text_file(isac_substack_particle_id_list, isac_substack_particle_id_list_file_path)
	
	# Open the output BDB dictionary
	assert(args.output_directory != '')
	output_virtual_bdb_stack_real_path = 'bdb:%s#isac_substack' % args.output_directory
	output_virtual_bdb_stack = db_open_dict(output_virtual_bdb_stack_real_path)
	
	# Convert an absolute path to the actual output data to a relative path by eliminating any symbolic links 
	output_virtual_bdb_stack_real_path=os.path.realpath(output_virtual_bdb_stack.path)+"/"
		
	# Open the input BDB dictionary
	input_bdb_stack = db_open_dict(args.input_bdb_stack_path, ro=True) # Read only
	
	# Copy the header from input to output BDB dictionary
	n_img_detected = len(isac_substack_particle_id_list)
	print_progress("Detected %d ISAC validated particles in %s"%(n_img_detected, args.input_isac_class_avgs_path))
	print(" ")
	
	# Loop through all ISAC validated particles
	n_img_processed = 0
	for i_img_detected, isac_substack_particle_id in enumerate(isac_substack_particle_id_list):
		# Print progress
		if i_img_detected % 1000 == 0:
			try:
				print_progress("Progress %5.2f%%: Processing %6dth entry (Particle ID %6d)."%(float(i_img_detected)/n_img_detected*100.0, i_img_detected, isac_substack_particle_id))
				sys.stdout.flush()
			except:
				pass
		
		# Read a particle image header from input bdb stack
		try: 
			img_header = input_bdb_stack.get(isac_substack_particle_id, nodata=1).get_attr_dict() # Need only header information
		except:
			ERROR('Failed to read image header of particle #%d from %s. Skipping this image...' % (isac_substack_particle_id, args.input_bdb_stack_path), subcommand_name, action = 0) # action = 0 - non-fatal, print a warning;
			continue
		
		# Convert an absolute path to the actual input data to a relative path by eliminating any symbolic links 
		try:
			input_bdb_stack_real_path = os.path.realpath(input_bdb_stack.get_data_path(isac_substack_particle_id))
			# Conver the path to OS specific format
			if os.name == 'nt':
				output_virtual_bdb_stack_real_path = output_virtual_bdb_stack_real_path.replace("\\", '/')
				input_bdb_stack_real_path = input_bdb_stack_real_path.replace('\\', '/')
			# Takes a pair of paths /a/b/c/d and /a/b/e/f/g and returns a relative path to b from a, ../../e/f/g
			common_relative_path = makerelpath(output_virtual_bdb_stack_real_path, input_bdb_stack_real_path)
		except:
			ERROR('Failure to find common relative data path for particle image #%d. Skipping this image...' % (isac_substack_particle_id), subcommand_name, action = 0) # action = 0 - non-fatal, print a warning;
			continue
		assert(img_header["data_path"] != None)
		
		# Update the image header for output
		img_header["data_path"]    = common_relative_path
		img_header["data_n"]       = isac_substack_particle_id
		img_header["data_source"]  = args.input_bdb_stack_path
		
		# Register the image header to output virtual bdb stack
		output_virtual_bdb_stack[n_img_processed] = img_header
		
		# Increment process image counts
		n_img_processed += 1
	
	# Close input and output bdb stacks
	output_virtual_bdb_stack.close()
	input_bdb_stack.close()

	# Print summary of processing
	print(" ")
	print_progress("Summary of processing...")
	print_progress("Detected  : %6d"%(n_img_detected))
	print_progress("Processed : %6d"%(n_img_processed))
	print(" ")
Example #54
0
def main(args):
    progname = os.path.basename(sys.argv[0])
    usage = (
        progname +
        " stack_file  output_directory --radius=particle_radius --img_per_grp=img_per_grp --CTF --restart_section<The remaining parameters are optional --ir=ir --rs=rs --xr=xr --yr=yr --ts=ts --maxit=maxit --dst=dst --FL=FL --FH=FH --FF=FF --init_iter=init_iter --main_maxit=main_iter"
        +
        " --iter_reali=iter_reali --match_first=match_first --max_round=max_round --match_second=match_second --stab_ali=stab_ali --thld_err=thld_err --indep_run=indep_run --thld_grp=thld_grp"
        + "  --generation=generation  --rand_seed=rand_seed>")

    parser = OptionParser(usage, version=SPARXVERSION)
    parser.add_option("--radius",
                      type="int",
                      default=-1,
                      help="<Particle radius>, it has to be provided.")
    parser.add_option(
        "--img_per_grp",
        type="int",
        default=100,
        help=
        "<number of images per group> in the ideal case (essentially maximum size of class) (100)"
    )
    parser.add_option("--CTF",
                      action="store_true",
                      default=False,
                      help="<CTF flag>, if set the data will be phase-flipped")
    parser.add_option(
        "--ir",
        type="int",
        default=1,
        help="<inner ring> of the resampling to polar coordinates (1)")
    parser.add_option(
        "--rs",
        type="int",
        default=1,
        help="<ring step> of the resampling to polar coordinates (1)")
    parser.add_option(
        "--xr",
        type="int",
        default=-1,
        help=
        "<x range> of translational search (By default set by the program) (advanced)"
    )
    parser.add_option(
        "--yr",
        type="int",
        default=-1,
        help="<y range> of translational search (same as xr) (advanced)")
    parser.add_option("--ts",
                      type="float",
                      default=1.0,
                      help="<search step> of translational search (1.0)")
    parser.add_option(
        "--maxit",
        type="int",
        default=30,
        help="number of iterations for reference-free alignment (30)")
    #parser.add_option("--snr",            type="float",        default=1.0,     help="signal-to-noise ratio (only meaningful when CTF is enabled, currently not supported)")
    parser.add_option(
        "--center_method",
        type="int",
        default=7,
        help=
        "<Method for centering> of global 2D average during initial prealignment of data (default : 7; 0 : no centering; -1 : average shift method; please see center_2D in utilities.py for methods 1-7)"
    )
    parser.add_option("--dst",
                      type="float",
                      default=90.0,
                      help="discrete angle used in within group alignment ")
    parser.add_option(
        "--FL",
        type="float",
        default=0.2,
        help="<lowest stopband> frequency used in the tangent filter (0.2)")
    parser.add_option(
        "--FH",
        type="float",
        default=0.3,
        help="<highest stopband> frequency used in the tangent filter (0.3)")
    parser.add_option("--FF",
                      type="float",
                      default=0.2,
                      help="<fall-off of the tangent> filter (0.2)")
    parser.add_option(
        "--init_iter",
        type="int",
        default=3,
        help=
        "<init_iter> number of iterations of ISAC program in initialization (3)"
    )
    parser.add_option(
        "--main_iter",
        type="int",
        default=3,
        help="<main_iter> number of iterations of ISAC program in main part (3)"
    )
    parser.add_option(
        "--iter_reali",
        type="int",
        default=1,
        help=
        "<iter_reali> number of iterations in ISAC before checking stability (1)"
    )
    parser.add_option(
        "--match_first",
        type="int",
        default=1,
        help="number of iterations to run 2-way matching in the first phase (1)"
    )
    parser.add_option(
        "--max_round",
        type="int",
        default=20,
        help=
        "maximum rounds of generating candidate averages in the first phase (20)"
    )
    parser.add_option(
        "--match_second",
        type="int",
        default=5,
        help=
        "number of iterations to run 2-way (or 3-way) matching in the second phase (5)"
    )
    parser.add_option("--stab_ali",
                      type="int",
                      default=5,
                      help="number of alignments when checking stability (5)")
    parser.add_option(
        "--thld_err",
        type="float",
        default=0.7,
        help="the threshold of pixel error when checking stability (0.7)")
    parser.add_option(
        "--indep_run",
        type="int",
        default=4,
        help=
        "number of independent runs for reproducibility (default=4, only values 2, 3 and 4 are supported (4)"
    )
    parser.add_option("--thld_grp",
                      type="int",
                      default=10,
                      help="minimum size of class (10)")
    parser.add_option(
        "--n_generations",
        type="int",
        default=100,
        help=
        "<n_generations> program stops when reaching this total number of generations (advanced)"
    )
    #parser.add_option("--candidatesexist",action="store_true", default=False,   help="Candidate class averages exist use them (default False)")
    parser.add_option(
        "--rand_seed",
        type="int",
        default=None,
        help=
        "random seed set before calculations, useful for testing purposes (default None - total randomness)"
    )
    parser.add_option("--new",
                      action="store_true",
                      default=False,
                      help="use new code (default = False)")
    parser.add_option("--debug",
                      action="store_true",
                      default=False,
                      help="debug info printout (default = False)")

    # must be switched off in production
    parser.add_option("--use_latest_master_directory",
                      action="store_true",
                      dest="use_latest_master_directory",
                      default=False)

    parser.add_option(
        "--restart_section",
        type="string",
        default="",
        help=
        "<restart section name> (no spaces) followed immediately by comma, followed immediately by generation to restart, example: \n--restart_section=candidate_class_averages,1         (Sections: restart, candidate_class_averages, reproducible_class_averages)"
    )
    parser.add_option(
        "--stop_after_candidates",
        action="store_true",
        default=False,
        help=
        "<stop_after_candidates> stops after the 'candidate_class_averages' section"
    )

    parser.add_option("--return_options",
                      action="store_true",
                      dest="return_options",
                      default=False,
                      help=SUPPRESS_HELP)

    (options, args) = parser.parse_args(args)

    if options.return_options:
        return parser

    if len(args) > 2:
        print "usage: " + usage
        print "Please run '" + progname + " -h' for detailed options"
        sys.exit()

    if global_def.CACHE_DISABLE:
        from utilities import disable_bdb_cache
        disable_bdb_cache()

    from isac import iter_isac
    global_def.BATCH = True

    global_def.BATCH = True

    command_line_provided_stack_filename = args[0]
    global_def.BATCH = True

    main_node = 0
    mpi_init(0, [])
    myid = mpi_comm_rank(MPI_COMM_WORLD)
    nproc = mpi_comm_size(MPI_COMM_WORLD)

    radi = options.radius
    center_method = options.center_method
    if (radi < 1):
        ERROR("Particle radius has to be provided!", "sxisac", 1, myid)

    use_latest_master_directory = options.use_latest_master_directory
    stop_after_candidates = options.stop_after_candidates
    program_state_stack.restart_location_title_from_command_line = options.restart_section

    from utilities import qw
    program_state_stack.PROGRAM_STATE_VARIABLES = set(
        qw("""
		isac_generation
	"""))

    # create or reuse master directory
    masterdir = ""
    stack_processed_by_ali2d_base__filename = ""
    stack_processed_by_ali2d_base__filename__without_master_dir = ""
    error_status = 0
    if len(args) == 2:
        masterdir = args[1]
    elif len(args) == 1:
        if use_latest_master_directory:
            all_dirs = [d for d in os.listdir(".") if os.path.isdir(d)]
            import re
            r = re.compile("^master.*$")
            all_dirs = filter(r.match, all_dirs)
            if len(all_dirs) > 0:
                # all_dirs = max(all_dirs, key=os.path.getctime)
                masterdir = max(all_dirs, key=os.path.getmtime)

    #Create folder for all results or check if there is one created already
    if (myid == main_node):
        if (masterdir == ""):
            timestring = strftime("%Y_%m_%d__%H_%M_%S" + DIR_DELIM,
                                  localtime())
            masterdir = "master" + timestring
            cmd = "{} {}".format("mkdir", masterdir)
            cmdexecute(cmd)
        elif not os.path.exists(masterdir):
            # os.path.exists(masterdir) does not exist
            masterdir = args[1]
            cmd = "{} {}".format("mkdir", masterdir)
            cmdexecute(cmd)

        if (args[0][:4] == "bdb:"): filename = args[0][4:]
        else: filename = args[0][:-4]
        filename = os.path.basename(filename)
        stack_processed_by_ali2d_base__filename = "bdb:" + os.path.join(
            masterdir, filename)
        stack_processed_by_ali2d_base__filename__without_master_dir = "bdb:" + filename
    if_error_all_processes_quit_program(error_status)

    # send masterdir to all processes
    masterdir = send_string_to_all(masterdir)

    if myid == 0:
        if options.restart_section != "":
            if os.path.exists(os.path.join(masterdir,
                                           NAME_OF_JSON_STATE_FILE)):
                stored_stack, stored_state = restore_program_stack_and_state(
                    os.path.join(masterdir, NAME_OF_JSON_STATE_FILE))
                import re
                if "," in options.restart_section:
                    parsed_restart_section_option = options.restart_section.split(
                        ",")
                    stored_state[-1]["location_in_program"] = re.sub(
                        r"___.*$", "___%s" % parsed_restart_section_option[0],
                        stored_state[-1]["location_in_program"])
                    generation_str_format = parsed_restart_section_option[1]
                    if generation_str_format != "":
                        isac_generation_from_command_line = int(
                            generation_str_format)
                        stored_state[-1][
                            "isac_generation"] = isac_generation_from_command_line
                    else:
                        isac_generation_from_command_line = 1
                        if "isac_generation" in stored_state[-1]:
                            del stored_state[-1]["isac_generation"]
                else:
                    isac_generation_from_command_line = -1
                    stored_state[-1]["location_in_program"] = re.sub(
                        r"___.*$", "___%s" % options.restart_section,
                        stored_state[-1]["location_in_program"])
                    if "isac_generation" in stored_state[-1]:
                        del stored_state[-1]["isac_generation"]
                store_program_state(
                    os.path.join(masterdir, NAME_OF_JSON_STATE_FILE),
                    stored_state, stored_stack)
            else:
                print "Please remove the restart_section option from the command line. The program must be started from the beginning."
                mpi_finalize()
                sys.exit()
        else:
            isac_generation_from_command_line = -1

    program_state_stack(locals(), getframeinfo(currentframe()),
                        os.path.join(masterdir, NAME_OF_JSON_STATE_FILE))

    stack_processed_by_ali2d_base__filename = send_string_to_all(
        stack_processed_by_ali2d_base__filename)
    stack_processed_by_ali2d_base__filename__without_master_dir = \
     send_string_to_all(stack_processed_by_ali2d_base__filename__without_master_dir)

    #  PARAMETERS OF THE PROCEDURE
    if (options.xr == -1):
        #  Default values
        target_nx = 76
        target_radius = 29
        target_xr = 1
    else:  #  nx//2
        #  Check below!
        target_xr = options.xr
        target_nx = 76 + target_xr - 1  # subtract one, which is default
        target_radius = 29

    mpi_barrier(MPI_COMM_WORLD)

    # Initialization of stacks
    if (myid == main_node):
        number_of_images_in_stack = EMUtil.get_image_count(
            command_line_provided_stack_filename)
    else:
        number_of_images_in_stack = 0

    number_of_images_in_stack = bcast_number_to_all(number_of_images_in_stack,
                                                    source_node=main_node)

    nxrsteps = 4

    init2dir = os.path.join(masterdir, "2dalignment")

    if (myid == 0):
        import subprocess
        from logger import Logger, BaseLogger_Files
        #  Create output directory
        log2d = Logger(BaseLogger_Files())
        log2d.prefix = os.path.join(init2dir)
        cmd = "mkdir -p " + log2d.prefix
        outcome = subprocess.call(cmd, shell=True)
        log2d.prefix += "/"
        # outcome = subprocess.call("sxheader.py  "+command_line_provided_stack_filename+"   --params=xform.align2d  --zero", shell=True)
    else:
        outcome = 0
        log2d = None

    if (myid == main_node):
        a = get_im(command_line_provided_stack_filename)
        nnxo = a.get_xsize()
    else:
        nnxo = 0
    nnxo = bcast_number_to_all(nnxo, source_node=main_node)

    txrm = (nnxo - 2 * (radi + 1)) // 2
    if (txrm < 0):
        ERROR(
            "ERROR!!   Radius of the structure larger than the window data size permits   %d"
            % (radi), "sxisac", 1, myid)
    if (txrm / nxrsteps > 0):
        tss = ""
        txr = ""
        while (txrm / nxrsteps > 0):
            tts = txrm / nxrsteps
            tss += "  %d" % tts
            txr += "  %d" % (tts * nxrsteps)
            txrm = txrm // 2
    else:
        tss = "1"
        txr = "%d" % txrm

    # section ali2d_base

    #  centering method is set to #7
    params2d, aligned_images = ali2d_base(command_line_provided_stack_filename, init2dir, None, 1, radi, 1, txr, txr, tss, \
       False, 90.0, center_method, 14, options.CTF, 1.0, False, \
       "ref_ali2d", "", log2d, nproc, myid, main_node, MPI_COMM_WORLD, write_headers = False)

    if (myid == main_node):
        write_text_row(params2d, os.path.join(init2dir, "initial2Dparams.txt"))
    del params2d
    mpi_barrier(MPI_COMM_WORLD)

    #  We assume the target image size will be target_nx, radius will be 29, and xr = 1.
    #  Note images can be also padded, in which case shrink_ratio > 1.
    shrink_ratio = float(target_radius) / float(radi)
    nx = aligned_images[0].get_xsize()
    nima = len(aligned_images)
    newx = int(nx * shrink_ratio + 0.5)

    from fundamentals import rot_shift2D, resample
    from utilities import pad, combine_params2
    if (shrink_ratio < 1.0):
        if newx > target_nx:
            msk = model_circle(target_radius, target_nx, target_nx)
            for im in xrange(nima):
                #  Here we should use only shifts
                alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
                alpha, sx, sy, mirror = combine_params2(
                    0, sx, sy, 0, -alpha, 0, 0, 0)
                aligned_images[im] = rot_shift2D(aligned_images[im], 0, sx, sy,
                                                 0)
                aligned_images[im] = resample(aligned_images[im], shrink_ratio)
                aligned_images[im] = Util.window(aligned_images[im], target_nx,
                                                 target_nx, 1)
                p = Util.infomask(aligned_images[im], msk, False)
                aligned_images[im] -= p[0]
                p = Util.infomask(aligned_images[im], msk, True)
                aligned_images[im] /= p[1]
        elif newx == target_nx:
            msk = model_circle(target_radius, target_nx, target_nx)
            for im in xrange(nima):
                #  Here we should use only shifts
                alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
                alpha, sx, sy, mirror = combine_params2(
                    0, sx, sy, 0, -alpha, 0, 0, 0)
                aligned_images[im] = rot_shift2D(aligned_images[im], 0, sx, sy,
                                                 0)
                aligned_images[im] = resample(aligned_images[im], shrink_ratio)
                p = Util.infomask(aligned_images[im], msk, False)
                aligned_images[im] -= p[0]
                p = Util.infomask(aligned_images[im], msk, True)
                aligned_images[im] /= p[1]
        elif newx < target_nx:
            msk = model_circle(nx // 2 - 2, newx, newx)
            for im in xrange(nima):
                #  Here we should use only shifts
                alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
                alpha, sx, sy, mirror = combine_params2(
                    0, sx, sy, 0, -alpha, 0, 0, 0)
                aligned_images[im] = rot_shift2D(aligned_images[im], 0, sx, sy,
                                                 0)
                aligned_images[im] = resample(aligned_images[im], shrink_ratio)
                p = Util.infomask(aligned_images[im], msk, False)
                aligned_images[im] -= p[0]
                p = Util.infomask(aligned_images[im], msk, True)
                aligned_images[im] /= p[1]
                aligned_images[im] = pad(aligned_images[im], target_nx,
                                         target_nx, 1, 0.0)
    elif (shrink_ratio == 1.0):
        if newx > target_nx:
            msk = model_circle(target_radius, target_nx, target_nx)
            for im in xrange(nima):
                #  Here we should use only shifts
                alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
                alpha, sx, sy, mirror = combine_params2(
                    0, sx, sy, 0, -alpha, 0, 0, 0)
                aligned_images[im] = rot_shift2D(aligned_images[im], 0, sx, sy,
                                                 0)
                aligned_images[im] = Util.window(aligned_images[im], target_nx,
                                                 target_nx, 1)
                p = Util.infomask(aligned_images[im], msk, False)
                aligned_images[im] -= p[0]
                p = Util.infomask(aligned_images[im], msk, True)
                aligned_images[im] /= p[1]
        elif newx == target_nx:
            msk = model_circle(target_radius, target_nx, target_nx)
            for im in xrange(nima):
                #  Here we should use only shifts
                alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
                alpha, sx, sy, mirror = combine_params2(
                    0, sx, sy, 0, -alpha, 0, 0, 0)
                aligned_images[im] = rot_shift2D(aligned_images[im], 0, sx, sy,
                                                 0)
                p = Util.infomask(aligned_images[im], msk, False)
                aligned_images[im] -= p[0]
                p = Util.infomask(aligned_images[im], msk, True)
                aligned_images[im] /= p[1]
        elif newx < target_nx:
            msk = model_circle(nx // 2 - 2, newx, newx)
            for im in xrange(nima):
                #  Here we should use only shifts
                alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
                alpha, sx, sy, mirror = combine_params2(
                    0, sx, sy, 0, -alpha, 0, 0, 0)
                aligned_images[im] = rot_shift2D(aligned_images[im], 0, sx, sy,
                                                 0)
                aligned_images[im] = resample(aligned_images[im], shrink_ratio)
                p = Util.infomask(aligned_images[im], msk, False)
                aligned_images[im] -= p[0]
                p = Util.infomask(aligned_images[im], msk, True)
                aligned_images[im] /= p[1]
                aligned_images[im] = pad(aligned_images[im], target_nx,
                                         target_nx, 1, 0.0)
    elif (shrink_ratio > 1.0):
        if newx > target_nx:
            msk = model_circle(target_radius, target_nx, target_nx)
            for im in xrange(nima):
                #  Here we should use only shifts
                alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
                alpha, sx, sy, mirror = combine_params2(
                    0, sx, sy, 0, -alpha, 0, 0, 0)
                aligned_images[im] = rot_shift2D(aligned_images[im], 0, sx, sy,
                                                 0)
                aligned_images[im] = Util.window(aligned_images[im], target_nx,
                                                 target_nx, 1)
                p = Util.infomask(aligned_images[im], msk, False)
                aligned_images[im] -= p[0]
                p = Util.infomask(aligned_images[im], msk, True)
                aligned_images[im] /= p[1]
        elif newx == target_nx:
            msk = model_circle(target_radius, target_nx, target_nx)
            for im in xrange(nima):
                #  Here we should use only shifts
                alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
                alpha, sx, sy, mirror = combine_params2(
                    0, sx, sy, 0, -alpha, 0, 0, 0)
                aligned_images[im] = rot_shift2D(aligned_images[im], 0, sx, sy,
                                                 0)
                p = Util.infomask(aligned_images[im], msk, False)
                aligned_images[im] -= p[0]
                p = Util.infomask(aligned_images[im], msk, True)
                aligned_images[im] /= p[1]
        elif newx < target_nx:
            msk = model_circle(target_radius, nx, nx)
            for im in xrange(nima):
                #  Here we should use only shifts
                alpha, sx, sy, mirror, scale = get_params2D(aligned_images[im])
                alpha, sx, sy, mirror = combine_params2(
                    0, sx, sy, 0, -alpha, 0, 0, 0)
                aligned_images[im] = rot_shift2D(aligned_images[im], 0, sx, sy,
                                                 0)
                p = Util.infomask(aligned_images[im], msk, False)
                aligned_images[im] -= p[0]
                p = Util.infomask(aligned_images[im], msk, True)
                aligned_images[im] /= p[1]
                aligned_images[im] = pad(aligned_images[im], target_nx,
                                         target_nx, 1, 0.0)
    del msk

    gather_compacted_EMData_to_root(number_of_images_in_stack, aligned_images,
                                    myid)
    number_of_images_in_stack = bcast_number_to_all(number_of_images_in_stack,
                                                    source_node=main_node)

    if (myid == main_node):
        for i in range(number_of_images_in_stack):
            aligned_images[i].write_image(
                stack_processed_by_ali2d_base__filename, i)
        #  It has to be explicitly closed
        from EMAN2db import db_open_dict
        DB = db_open_dict(stack_processed_by_ali2d_base__filename)
        DB.close()

    mpi_barrier(MPI_COMM_WORLD)

    global_def.BATCH = True

    os.chdir(masterdir)

    if program_state_stack(locals(), getframeinfo(currentframe())):
        # if 1:
        pass
        if (myid == main_node):
            cmdexecute(
                "sxheader.py  --consecutive  --params=originalid   %s" %
                stack_processed_by_ali2d_base__filename__without_master_dir)
            cmdexecute(
                "e2bdb.py %s --makevstack=%s_000" %
                (stack_processed_by_ali2d_base__filename__without_master_dir,
                 stack_processed_by_ali2d_base__filename__without_master_dir))

    if (myid == main_node):
        main_dir_no = get_latest_directory_increment_value("./",
                                                           NAME_OF_MAIN_DIR,
                                                           myformat="%04d")
        print "isac_generation_from_command_line", isac_generation_from_command_line, main_dir_no
        if isac_generation_from_command_line < 0:
            if os.path.exists(NAME_OF_JSON_STATE_FILE):
                stored_stack, stored_state = restore_program_stack_and_state(
                    NAME_OF_JSON_STATE_FILE)
                if "isac_generation" in stored_state[-1]:
                    isac_generation_from_command_line = stored_state[-1][
                        "isac_generation"]
                else:
                    isac_generation_from_command_line = -1
        if isac_generation_from_command_line >= 0 and isac_generation_from_command_line <= main_dir_no:
            for i in xrange(isac_generation_from_command_line + 1,
                            main_dir_no + 1):
                if i == isac_generation_from_command_line + 1:
                    backup_dir_no = get_nonexistent_directory_increment_value(
                        "./", "000_backup", myformat="%05d", start_value=1)
                    cmdexecute("mkdir -p " + "000_backup" +
                               "%05d" % backup_dir_no)
                cmdexecute("mv  " + NAME_OF_MAIN_DIR + "%04d" % i +
                           " 000_backup" + "%05d" % backup_dir_no)
                cmdexecute(
                    "rm  " + "EMAN2DB/" +
                    stack_processed_by_ali2d_base__filename__without_master_dir[
                        4:] + "_%03d.bdb" % i)

            # it includes both command line and json file
            my_restart_section = stored_state[-1]["location_in_program"].split(
                "___")[-1]
            if "restart" in my_restart_section:
                if "backup_dir_no" not in locals():
                    backup_dir_no = get_nonexistent_directory_increment_value(
                        "./", "000_backup", myformat="%05d", start_value=1)
                    cmdexecute("mkdir -p " + "000_backup" +
                               "%05d" % backup_dir_no)
                cmdexecute("mv  " + NAME_OF_MAIN_DIR +
                           "%04d" % isac_generation_from_command_line +
                           " 000_backup" + "%05d" % backup_dir_no)
                cmdexecute(
                    "rm  " + "EMAN2DB/" +
                    stack_processed_by_ali2d_base__filename__without_master_dir[
                        4:] + "_%03d.bdb" % isac_generation_from_command_line)
            elif "candidate_class_averages" in my_restart_section:
                if "backup_dir_no" not in locals():
                    backup_dir_no = get_nonexistent_directory_increment_value(
                        "./", "000_backup", myformat="%05d", start_value=1)
                    cmdexecute("mkdir -p " + "000_backup" +
                               "%05d" % backup_dir_no)
                cmdexecute("mv  " + NAME_OF_MAIN_DIR +
                           "%04d" % isac_generation_from_command_line +
                           " 000_backup" + "%05d" % backup_dir_no)
                cmdexecute("mkdir -p " + NAME_OF_MAIN_DIR +
                           "%04d" % isac_generation_from_command_line)
                # cmdexecute("rm -f " + NAME_OF_MAIN_DIR + "%04d/class_averages_candidate*"%isac_generation_from_command_line)
            elif "reproducible_class_averages" in my_restart_section:
                cmdexecute("rm -rf " + NAME_OF_MAIN_DIR +
                           "%04d/ali_params_generation_*" %
                           isac_generation_from_command_line)
                cmdexecute("rm -f " + NAME_OF_MAIN_DIR +
                           "%04d/class_averages_generation*" %
                           isac_generation_from_command_line)
        else:
            if os.path.exists(NAME_OF_JSON_STATE_FILE):
                stored_stack, stored_state = restore_program_stack_and_state(
                    NAME_OF_JSON_STATE_FILE)
                if "isac_generation" in stored_state[-1]:
                    isac_generation_from_command_line = stored_state[-1][
                        "isac_generation"]
                else:
                    isac_generation_from_command_line = 1
            else:
                isac_generation_from_command_line = 1
    else:
        isac_generation_from_command_line = 0

    isac_generation_from_command_line = mpi_bcast(
        isac_generation_from_command_line, 1, MPI_INT, 0, MPI_COMM_WORLD)[0]
    isac_generation = isac_generation_from_command_line - 1

    if (myid == main_node):
        if isac_generation == 0:
            cmdexecute("mkdir -p " + NAME_OF_MAIN_DIR +
                       "%04d" % isac_generation)
            write_text_file(
                [1],
                os.path.join(NAME_OF_MAIN_DIR + "%04d" % isac_generation,
                             "generation_%d_accounted.txt" % isac_generation))
            write_text_file(
                range(number_of_images_in_stack),
                os.path.join(NAME_OF_MAIN_DIR + "%04d" % isac_generation,
                             "generation_%d_unaccounted.txt" %
                             isac_generation))

    #  Stopping criterion should be inside the program.
    while True:
        isac_generation += 1
        if isac_generation > options.n_generations:
            break

        data64_stack_current = "bdb:../" + stack_processed_by_ali2d_base__filename__without_master_dir[
            4:] + "_%03d" % isac_generation

        if (myid == main_node):
            accounted_images = read_text_file(
                os.path.join(
                    NAME_OF_MAIN_DIR + "%04d" % (isac_generation - 1),
                    "generation_%d_accounted.txt" % (isac_generation - 1)))
            number_of_accounted_images = len(accounted_images)
            # unaccounted_images = read_text_file(os.path.join(NAME_OF_MAIN_DIR + "%04d"%(isac_generation - 1),"generation_%d_unaccounted.txt"%(isac_generation - 1)))
            # number_of_unaccounted_images = len(unaccounted_images)
        else:
            number_of_accounted_images = 0

        number_of_accounted_images = int(
            mpi_bcast(number_of_accounted_images, 1, MPI_INT, 0,
                      MPI_COMM_WORLD)[0])
        if number_of_accounted_images == 0:
            os.chdir("..")
            break

        program_state_stack.restart_location_title = "restart"
        if program_state_stack(locals(), getframeinfo(currentframe())):
            if (myid == main_node):
                cmdexecute("mkdir -p " + NAME_OF_MAIN_DIR +
                           "%04d" % isac_generation)
                # reference the original stack
                list_file = os.path.join(
                    NAME_OF_MAIN_DIR + "%04d" % (isac_generation - 1),
                    "generation_%d_unaccounted.txt" % (isac_generation - 1))
                cmdexecute("e2bdb.py %s --makevstack=%s --list=%s"%(stack_processed_by_ali2d_base__filename__without_master_dir,\
                  stack_processed_by_ali2d_base__filename__without_master_dir + "_%03d"%isac_generation, list_file))
            mpi_barrier(MPI_COMM_WORLD)

        os.chdir(NAME_OF_MAIN_DIR + "%04d" % isac_generation)

        program_state_stack.restart_location_title = "candidate_class_averages"
        if program_state_stack(locals(), getframeinfo(currentframe())):

            iter_isac(data64_stack_current, options.ir, target_radius, options.rs, target_xr, target_xr, options.ts, options.maxit, False, 1.0,\
             options.dst, options.FL, options.FH, options.FF, options.init_iter, options.main_iter, options.iter_reali, options.match_first, \
             options.max_round, options.match_second, options.stab_ali, options.thld_err, options.indep_run, options.thld_grp, \
             options.img_per_grp, isac_generation, False, random_seed=options.rand_seed, new=False)#options.new)

        # program_state_stack.restart_location_title = "stopped_program1"
        # program_state_stack(locals(), getframeinfo(currentframe()))

        program_state_stack.restart_location_title = "stop_after_candidates"
        program_state_stack(locals(), getframeinfo(currentframe()))
        if stop_after_candidates:
            mpi_finalize()
            sys.exit()

        exit_program = 0
        if (myid == main_node):
            if not os.path.exists(
                    "class_averages_candidate_generation_%d.hdf" %
                    isac_generation):
                print "This generation (%d) no class averages were generated!" % isac_generation
                exit_program = 1
        exit_program = int(
            mpi_bcast(exit_program, 1, MPI_INT, 0, MPI_COMM_WORLD)[0])
        if exit_program:
            os.chdir("..")
            break

        program_state_stack.restart_location_title = "reproducible_class_averages"
        if program_state_stack(locals(), getframeinfo(currentframe())):


            iter_isac(data64_stack_current, options.ir, target_radius, options.rs, target_xr, target_xr, options.ts, options.maxit, False, 1.0,\
             options.dst, options.FL, options.FH, options.FF, options.init_iter, options.main_iter, options.iter_reali, options.match_first, \
             options.max_round, options.match_second, options.stab_ali, options.thld_err, options.indep_run, options.thld_grp, \
             options.img_per_grp, isac_generation, True, random_seed=options.rand_seed, new=False)#options.new)
            pass

        os.chdir("..")

        if (myid == main_node):
            cmdexecute("rm -f class_averages.hdf")
            cpy([
                "generation_%04d/class_averages_generation_%d.hdf" % (i, i)
                for i in xrange(1, isac_generation)
            ], "class_averages.hdf")

        # program_state_stack.restart_location_title = "stopped_program2"
        # program_state_stack(locals(), getframeinfo(currentframe()))

    program_state_stack(locals(),
                        getframeinfo(currentframe()),
                        last_call="__LastCall")

    mpi_finalize()
Example #55
0
def shiftali_MPI(stack,
                 maskfile=None,
                 maxit=100,
                 CTF=False,
                 snr=1.0,
                 Fourvar=False,
                 search_rng=-1,
                 oneDx=False,
                 search_rng_y=-1):

    number_of_proc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD)
    myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD)
    main_node = 0

    ftp = file_type(stack)

    if myid == main_node:
        print_begin_msg("shiftali_MPI")

    max_iter = int(maxit)

    if myid == main_node:
        if ftp == "bdb":
            from EMAN2db import db_open_dict
            dummy = db_open_dict(stack, True)
        nima = EMUtil.get_image_count(stack)
    else:
        nima = 0
    nima = bcast_number_to_all(nima, source_node=main_node)
    list_of_particles = list(range(nima))

    image_start, image_end = MPI_start_end(nima, number_of_proc, myid)
    list_of_particles = list_of_particles[image_start:image_end]

    # read nx and ctf_app (if CTF) and broadcast to all nodes
    if myid == main_node:
        ima = EMData()
        ima.read_image(stack, list_of_particles[0], True)
        nx = ima.get_xsize()
        ny = ima.get_ysize()
        if CTF: ctf_app = ima.get_attr_default('ctf_applied', 2)
        del ima
    else:
        nx = 0
        ny = 0
        if CTF: ctf_app = 0
    nx = bcast_number_to_all(nx, source_node=main_node)
    ny = bcast_number_to_all(ny, source_node=main_node)
    if CTF:
        ctf_app = bcast_number_to_all(ctf_app, source_node=main_node)
        if ctf_app > 0:
            ERROR("data cannot be ctf-applied", myid=myid)

    if maskfile == None:
        mrad = min(nx, ny)
        mask = model_circle(mrad // 2 - 2, nx, ny)
    else:
        mask = get_im(maskfile)

    if CTF:
        from sp_filter import filt_ctf
        from sp_morphology import ctf_img
        ctf_abs_sum = EMData(nx, ny, 1, False)
        ctf_2_sum = EMData(nx, ny, 1, False)
    else:
        ctf_2_sum = None

    from sp_global_def import CACHE_DISABLE
    if CACHE_DISABLE:
        data = EMData.read_images(stack, list_of_particles)
    else:
        for i in range(number_of_proc):
            if myid == i:
                data = EMData.read_images(stack, list_of_particles)
            if ftp == "bdb": mpi.mpi_barrier(mpi.MPI_COMM_WORLD)

    for im in range(len(data)):
        data[im].set_attr('ID', list_of_particles[im])
        st = Util.infomask(data[im], mask, False)
        data[im] -= st[0]
        if CTF:
            ctf_params = data[im].get_attr("ctf")
            ctfimg = ctf_img(nx, ctf_params, ny=ny)
            Util.add_img2(ctf_2_sum, ctfimg)
            Util.add_img_abs(ctf_abs_sum, ctfimg)

    if CTF:
        reduce_EMData_to_root(ctf_2_sum, myid, main_node)
        reduce_EMData_to_root(ctf_abs_sum, myid, main_node)
    else:
        ctf_2_sum = None
    if CTF:
        if myid != main_node:
            del ctf_2_sum
            del ctf_abs_sum
        else:
            temp = EMData(nx, ny, 1, False)
            for i in range(0, nx, 2):
                for j in range(ny):
                    temp.set_value_at(i, j, snr)
            Util.add_img(ctf_2_sum, temp)
            del temp

    total_iter = 0

    # apply initial xform.align2d parameters stored in header
    init_params = []
    for im in range(len(data)):
        t = data[im].get_attr('xform.align2d')
        init_params.append(t)
        p = t.get_params("2d")
        data[im] = rot_shift2D(data[im],
                               p['alpha'],
                               sx=p['tx'],
                               sy=p['ty'],
                               mirror=p['mirror'],
                               scale=p['scale'])

    # fourier transform all images, and apply ctf if CTF
    for im in range(len(data)):
        if CTF:
            ctf_params = data[im].get_attr("ctf")
            data[im] = filt_ctf(fft(data[im]), ctf_params)
        else:
            data[im] = fft(data[im])

    sx_sum = 0
    sy_sum = 0
    sx_sum_total = 0
    sy_sum_total = 0
    shift_x = [0.0] * len(data)
    shift_y = [0.0] * len(data)
    ishift_x = [0.0] * len(data)
    ishift_y = [0.0] * len(data)

    for Iter in range(max_iter):
        if myid == main_node:
            start_time = time()
            print_msg("Iteration #%4d\n" % (total_iter))
        total_iter += 1
        avg = EMData(nx, ny, 1, False)
        for im in data:
            Util.add_img(avg, im)

        reduce_EMData_to_root(avg, myid, main_node)

        if myid == main_node:
            if CTF:
                tavg = Util.divn_filter(avg, ctf_2_sum)
            else:
                tavg = Util.mult_scalar(avg, 1.0 / float(nima))
        else:
            tavg = EMData(nx, ny, 1, False)

        if Fourvar:
            bcast_EMData_to_all(tavg, myid, main_node)
            vav, rvar = varf2d_MPI(myid, data, tavg, mask, "a", CTF)

        if myid == main_node:
            if Fourvar:
                tavg = fft(Util.divn_img(fft(tavg), vav))
                vav_r = Util.pack_complex_to_real(vav)

            # normalize and mask tavg in real space
            tavg = fft(tavg)
            stat = Util.infomask(tavg, mask, False)
            tavg -= stat[0]
            Util.mul_img(tavg, mask)
            # For testing purposes: shift tavg to some random place and see if the centering is still correct
            #tavg = rot_shift3D(tavg,sx=3,sy=-4)
            tavg = fft(tavg)

        if Fourvar: del vav
        bcast_EMData_to_all(tavg, myid, main_node)

        sx_sum = 0
        sy_sum = 0
        if search_rng > 0: nwx = 2 * search_rng + 1
        else: nwx = nx

        if search_rng_y > 0: nwy = 2 * search_rng_y + 1
        else: nwy = ny

        not_zero = 0
        for im in range(len(data)):
            if oneDx:
                ctx = Util.window(ccf(data[im], tavg), nwx, 1)
                p1 = peak_search(ctx)
                p1_x = -int(p1[0][3])
                ishift_x[im] = p1_x
                sx_sum += p1_x
            else:
                p1 = peak_search(Util.window(ccf(data[im], tavg), nwx, nwy))
                p1_x = -int(p1[0][4])
                p1_y = -int(p1[0][5])
                ishift_x[im] = p1_x
                ishift_y[im] = p1_y
                sx_sum += p1_x
                sy_sum += p1_y

            if not_zero == 0:
                if (not (ishift_x[im] == 0.0)) or (not (ishift_y[im] == 0.0)):
                    not_zero = 1

        sx_sum = mpi.mpi_reduce(sx_sum, 1, mpi.MPI_INT, mpi.MPI_SUM, main_node,
                                mpi.MPI_COMM_WORLD)

        if not oneDx:
            sy_sum = mpi.mpi_reduce(sy_sum, 1, mpi.MPI_INT, mpi.MPI_SUM,
                                    main_node, mpi.MPI_COMM_WORLD)

        if myid == main_node:
            sx_sum_total = int(sx_sum[0])
            if not oneDx:
                sy_sum_total = int(sy_sum[0])
        else:
            sx_sum_total = 0
            sy_sum_total = 0

        sx_sum_total = bcast_number_to_all(sx_sum_total, source_node=main_node)

        if not oneDx:
            sy_sum_total = bcast_number_to_all(sy_sum_total,
                                               source_node=main_node)

        sx_ave = round(float(sx_sum_total) / nima)
        sy_ave = round(float(sy_sum_total) / nima)
        for im in range(len(data)):
            p1_x = ishift_x[im] - sx_ave
            p1_y = ishift_y[im] - sy_ave
            params2 = {
                "filter_type": Processor.fourier_filter_types.SHIFT,
                "x_shift": p1_x,
                "y_shift": p1_y,
                "z_shift": 0.0
            }
            data[im] = Processor.EMFourierFilter(data[im], params2)
            shift_x[im] += p1_x
            shift_y[im] += p1_y
        # stop if all shifts are zero
        not_zero = mpi.mpi_reduce(not_zero, 1, mpi.MPI_INT, mpi.MPI_SUM,
                                  main_node, mpi.MPI_COMM_WORLD)
        if myid == main_node:
            not_zero_all = int(not_zero[0])
        else:
            not_zero_all = 0
        not_zero_all = bcast_number_to_all(not_zero_all, source_node=main_node)

        if myid == main_node:
            print_msg("Time of iteration = %12.2f\n" % (time() - start_time))
            start_time = time()

        if not_zero_all == 0: break

    #for im in xrange(len(data)): data[im] = fft(data[im])  This should not be required as only header information is used
    # combine shifts found with the original parameters
    for im in range(len(data)):
        t0 = init_params[im]
        t1 = Transform()
        t1.set_params({
            "type": "2D",
            "alpha": 0,
            "scale": t0.get_scale(),
            "mirror": 0,
            "tx": shift_x[im],
            "ty": shift_y[im]
        })
        # combine t0 and t1
        tt = t1 * t0
        data[im].set_attr("xform.align2d", tt)

    # write out headers and STOP, under MPI writing has to be done sequentially
    mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
    par_str = ["xform.align2d", "ID"]
    if myid == main_node:
        from sp_utilities import file_type
        if (file_type(stack) == "bdb"):
            from sp_utilities import recv_attr_dict_bdb
            recv_attr_dict_bdb(main_node, stack, data, par_str, image_start,
                               image_end, number_of_proc)
        else:
            from sp_utilities import recv_attr_dict
            recv_attr_dict(main_node, stack, data, par_str, image_start,
                           image_end, number_of_proc)

    else:
        send_attr_dict(main_node, data, par_str, image_start, image_end)
    if myid == main_node: print_end_msg("shiftali_MPI")
Example #56
0
def main():
	global debug
	progname = os.path.basename(sys.argv[0])
	usage = """prog [options] <path or db> ...
	
Various utilities related to BDB databases.

examples :
e2bdb.py -c   Is perhaps the most critical function, as it cleans up the database cache. See the Wiki for more.
e2bdb.py <path> -s    will list the contents of the database in a directory in bdb: notation
e2bdb.py <path> -l    Will give useful summary info about stacks in a directory
e2bdb.py <database> --dump    Gives a mechanism to dump all of the metadata in a database, even if the database contains no images
"""

	parser = EMArgumentParser(usage=usage,version=EMANVERSION)

	parser.add_argument("--cleanup","-c",action="store_true",default=False,help="This option will clean up the database cache so files can safely be moved or accessed on another computer via NFS.")
	parser.add_argument("--force","-F",action="store_true",default=False,help="This will force an action that would normally fail due to failed checks.")
	parser.add_argument("--delete",action="store_true",default=False,help="This will delete (or at least empty) the named database(s)")
	parser.add_argument("--all","-a",action="store_true",help="List per-particle info",default=False)
	parser.add_argument("--long","-l",action="store_true",help="Long listing",default=False)
	parser.add_argument("--short","-s",action="store_true",help="Dense listing of names only",default=False)
	parser.add_argument("--filt",type=str,help="Only include dictionary names containing the specified string",default=None)
	parser.add_argument("--filtexclude",type=str,help="Exclude dictionary names containing the specified string",default=None)
	parser.add_argument("--match",type=str,help="Only include dictionaries matching the provided Python regular expression",default=None)
	parser.add_argument("--exclude",type=str,help="The name of a database containing a list of exclusion keys",default=None)
	parser.add_argument("--dump","-D",action="store_true",help="List contents of an entire database, eg 'e2bdb.py -D refine_01#register",default=False)
	parser.add_argument("--smalldump",action="store_true",help="Lists contents of an entire database, but only list 2 items per dictionary to better see headers",default=False)
	parser.add_argument("--extractplots",action="store_true",help="If a database contains sets of plots, such as bdb:refine_xx#convergence.results, this will extract the plots as text files.")
	parser.add_argument("--check",action="store_true",help="Check for self-consistency and errors in the structure of specified databases",default=False)
	parser.add_argument("--nocache",action="store_true",help="Don't use the database cache for this operation",default=False)
	parser.add_argument("--merge",action="store_true",help="This will merge the contents of BDB 2-N into BDB 1 (including BDB 1's contents)",default=False)


	parser.add_argument("--makevstack",type=str,help="Creates a 'virtual' BDB stack with its own metadata, but the binary data taken from the (filtered) list of stacks",default=None)
	parser.add_argument("--appendvstack",type=str,help="Appends to/creates a 'virtual' BDB stack with its own metadata, but the binary data taken from the (filtered) list of stacks",default=None)
	parser.add_argument("--verbose", "-v", dest="verbose", action="store", metavar="n", type=int, default=0, help="verbose level [0-9], higher number means higher level of verboseness")
	parser.add_argument("--list",type=str,help="Specify the name of a file with a list of images to use in creation of virtual stacks. Please see source for details.",default=None)
	parser.add_argument("--exlist",type=str,help="Specify the name of a file with a list of images to exclude in creation of virtual stacks. Please see source for details.",default=None)
	parser.add_argument("--restore",type=str,help="Write changes in the derived virtual stack back to the original stack",default=None)
	parser.add_argument("--ppid", type=int, help="Set the PID of the parent process, used for cross platform PPID",default=-1)
	parser.add_argument("--checkctf",action="store_true",help="Verfies that all images in the file contain CTF information, and gives some basic statistics",default=False)

	parser.add_argument("--step",type=str,default="0,1",help="Specify <init>,<step>[,<max>]. Processes only a subset of the input data. For example, 0,2 would process only the even numbered particles")
	(options, args) = parser.parse_args()

	if options.nocache : EMAN2db.BDB_CACHE_DISABLE=True

	if options.cleanup : 
		db_cleanup(options.force)
		sys.exit(0)

	try : options.step=int(options.step.split(",")[0]),int(options.step.split(",")[1]),int(options.step.split(",")[2])		# convert strings to tuple
	except:
		try:
			options.step=int(options.step.split(",")[0]),int(options.step.split(",")[1])
		except:
			print "Invalid --step specification"
			sys.exit(1)

	if options.all : options.long=1
	if len(args)==0 : args.append("bdb:.")
	
	logid=0
	if options.makevstack : 
		logid=E2init(sys.argv)
		vstack=db_open_dict(options.makevstack)
		vstackn=0
	elif options.appendvstack :
		logid=E2init(sys.argv)
		vstack=db_open_dict(options.appendvstack)
		vstackn=len(vstack)
	else : vstack=None
		
	if options.merge :
		print "WARNING: Merge mode\nCombining contents of: ",", ".join(args[1:])
		print "into ",args[0]
		
		if raw_input("Proceed (y/n) :").lower() != "y" :
			print "Aborting"
			sys.exit(1)
		
		
		for i,path in enumerate(args):
			if path.lower()[:4]=="bdb:" and not "#" in path : path="bdb:.#"+path[4:]
			if path.lower()[:4]!="bdb:" : path="bdb:"+path
			
			if i==0 :
				outdb=db_open_dict(path)
				continue
			
			indb=db_open_dict(path,True)
			for k in indb.keys():
				outdb[k]=indb[k]
				
		print "Merging complete"
		sys.exit(0)
	
	for path in args:
		if path.lower()[:4]=="bdb:" and not "#" in path :
			uu = os.path.split(path)
			if(uu[0] == ''):    path="bdb:.#"+path[4:]
			else:               path=uu[0]+"#"+uu[1]
		if path.lower()[:4]!="bdb:" : path="bdb:"+path
		if '#' in path :
			if len(args)>1 : print "\n",path,":"
			path,dbs=path.rsplit("#",1)
			path+="#"
			dbs=[dbs]
		else:
			if not '#' in path and path[-1]!='/' : path+='#'			
			if len(args)>1 : print "\n",path[:-1],":"
			dbs=db_list_dicts(path)
			

		dbs.sort()
		if options.filt:
			dbs=[db for db in dbs if options.filt in db]
			
		if options.filtexclude:
			dbs=[db for db in dbs if options.filtexclude not in db]

		if options.match!=None:
			dbs=[db for db in dbs if re.match(options.match,db)]
		
		
		if options.list :
			if options.makevstack==None and options.appendvstack==None :
				print "ERROR, this option is used for virtual stack creation, please add makevstack or appendvstack options, and restart"
				sys.exit(1)
			vdata=open(options.list,'r').readlines()
			n=len(vdata[0].split())
			slist=[]
			for line in vdata:
				line=line.split()
				for i in xrange(n):
					val=int(line[i])
					slist.append(val)     		
			del n,val,vdata
		
		if options.exlist :
			if options.makevstack==None:
				print "ERROR, this option is used for virtual stack creation, please add makevstack or appendvstack options, and restart"
				sys.exit(1)
			vdata=open(options.exlist,'r').readlines()
			n=len(vdata[0].split())
			slist=[]
			for line in vdata:
				line=line.split()
				for i in xrange(n):
					val=int(line[i])
					slist.append(val)     
			n = EMUtil.get_image_count(args[0])
			good = set(range(n)) - set(slist)
			slist = [i for i in good]
			slist.sort()
			del n,val,vdata,good
			
		if options.makevstack!=None or options.appendvstack!=None :
			
			vspath=os.path.realpath(vstack.path)+"/"
			if options.verbose>2 : print "vspath: ",vspath
			for db in dbs:
				dct,keys=db_open_dict(path+db,ro=True,with_keys=True)
				if dct==vstack : continue
				if len(options.step)==2 :
					if keys == None: vals = xrange(options.step[0],len(dct),options.step[1])
					else: vals = keys[options.step[0]::options.step[1]]		# we apply --step even if we have a list of keys
				else:
					if keys == None: vals = xrange(options.step[0],options.step[2],options.step[1])
					else: vals = keys[options.step[0]:options.step[2]:options.step[1]]		# we apply --step even if we have a list of keys

				if options.list !=None or options.exlist != None: vals=slist
				for n in vals:
					try: d=dct.get(n,nodata=1).get_attr_dict()
					except:
						traceback.print_exc()
						print "---\nerror reading ",db,n 
						continue
					# This block converts an absolute path to the actual data to a relative path
					try:
						dpath=os.path.realpath(dct.get_data_path(n))
						if options.verbose>2 : print "dpath: ",dpath
						if os.name == 'nt':
							vspath=vspath.replace("\\", '/')
							dpath=dpath.replace('\\', '/')
						rpath=makerelpath(vspath,dpath)
						if options.verbose>2 : print "rpath: ",rpath
					except:
						print "error with data_path ",db,n
						continue
					d["data_path"]=rpath
					d["data_n"]=n
					d["data_source"]= path+db
					if d["data_path"]==None :
						print "error with data_path ",db,n
						continue
					vstack[vstackn]=d
					vstackn+=1
					if vstackn%100==0:
						try:
							print "\r  ",vstackn,"     ",
							sys.stdout.flush()
						except: pass	
				print "\r  ",vstackn,"     "
				dct.close()

		try: maxname=max([len(s) for s in dbs])
		except:
			print "Error reading ",path

		if options.restore :
			nima = EMUtil.get_image_count(options.restore)
			IB = db_open_dict(options.restore)
			source_old = None
			if len(options.step)==3 : nima=min(options.step[2],nima)
			for i in xrange(options.step[0],nima,options.step[1]):
				source = IB.get_header(i)
				source_path = source["source_path"]
				ID = source["source_n"]
				if( source_old != source_path):
					if( source_old != None):  DB.close()
					DB = db_open_dict(source_path,ro=True)
					source_old = source_path
				target = DB.get_header( ID )
				try:
					source["data_path"] = target["data_path"]
					source["data_n"]    = target["data_n"]
					source["source_path"] = target["source_path"]
					source["source_n"]    = target["source_n"]
				except:
					#  top level does not have data_path
					del source['data_path']
					del source['data_n']
					source["source_path"] = target["source_path"]
					source["source_n"]    = target["source_n"]
				DB.set_header(ID, source)
			DB.close()

		if options.extractplots :
			for db in dbs:
				print "####  Extracting plots from ",db
				dct=db_open_dict(path+db,ro=True)
				
				#### Dump
				keys=dct.keys()
				keys.sort()
				for k in keys:
					v=dct[k]
					try :
						ns=[len(i) for i in v]
						fsp=db+"-"+k+".txt"
						print "%s  (%d columns)"%(fsp,len(ns))
						out=file(fsp,"w")
						for i in range(ns[0]):
							for j in range(len(ns)):
								out.write(str(v[j][i]))
								if j<len(ns)-1 : out.write("\t")
							out.write("\n")
						out.close()
					except: continue
				dct.close()
			
		if options.smalldump :
			for db in dbs:
				print "##### ",db
				dct=db_open_dict(path+db,ro=True)
				
				#### Dump
				keys=dct.keys()
				keys.sort()
				if len(options.step)==3 : keys=keys[:options.step[2]]
				for k in keys[options.step[0]::options.step[1]]:
					v=dct[k]
					print "%s : "%k,
					if isinstance (v,list) or isinstance(v,tuple)  :
						for i in v: print "\n\t%s"%str(i),
						print ""
					elif isinstance(v,dict) :
						ks2=v.keys()
						ks2.sort()
						kc=0
						for i in ks2:
							if kc>=2 :
								print "..."
								break
							print "\n\t%s : %s"%(i,v[i]),
							kc+=1
						print ""
					else : print str(v)
				dct.close()
		if options.checkctf:
			for db in dbs:
				print "##### CTF -> ",db
				dct=db_open_dict(path+db,ro=True)
				keys=dct.keys()
				if len(options.step)==3 : keys=keys[:options.step[2]]
				defocus=set()
				for k in keys[options.step[0]::options.step[1]]:
					v=dct.get_header(k)
					try:
						ctf=v["ctf"]
					except:
						if k!="maxrec" : print "CTF missing on image %s"%k
						continue
					
					defocus.add(ctf.defocus)

				defocus=list(defocus)
				print "Defocuses found: ",
				for i in defocus: print "%1.3f, "%i,
				print "\n\nRange: %1.3f - %1.3f  (%d unique values)"%(min(defocus),max(defocus),len(defocus))

					

		if options.dump :
			for db in dbs:
				print "##### ",db
				dct=db_open_dict(path+db,ro=True)
				
				#### Dump
				keys=dct.keys()
				if len(options.step)==3 : keys=keys[:options.step[2]]
				keys.sort()
				for k in keys[options.step[0]::options.step[1]]:
					v=dct[k]
					print "%s : "%k,
					if isinstance (v,list) or isinstance(v,tuple)  :
						for i in v: print "\n\t%s"%str(i),
						print ""
					elif isinstance(v,dict) :
						ks2=v.keys()
						ks2.sort()
						for i in ks2:
							print "\n\t%s : %s"%(i,v[i]),
						print ""
					else : print str(v)
				dct.close()
			
		# long listing, one db per line
		elif options.long :
			width=maxname+3
			fmt="%%-%ds %%-07d %%14s  %%s"%width
			fmt2="%%-%ds (not an image stack)"%width
			total=[0,0]
			for db in dbs:
				dct=db_open_dict(path+db,True)
								
				### Info on all particles
				if options.all :
					mx=len(dct)
					if len(options.step)==3 : mx=min(mx,options.step[2])
					for i in range(options.step[0],mx,options.step[1]):
						try: 
							im=dct[i]
							if im==None : raise Exception
						except: continue
						print "%d. %d x %d x %d\tA/pix=%1.2f\tM=%1.4f\tS=%1.4f\tSk=%1.4f"%(i,im["nx"],im["ny"],im["nz"],im["apix_x"],im["mean"],im["sigma"],im["skewness"]),
						try: print "\t%s"%str(im["model_id"])
						except: pass
						try:
							print "\tdf=%1.3f\tB=%1.1f"%(im["ctf"].defocus,im["ctf"].bfactor)
						except: print " "

				first=EMData()
				try: 
					first.read_image(path+db,0,True)
					size=first.get_xsize()*first.get_ysize()*first.get_zsize()*len(dct)*4;
					total[0]+=len(dct)
					total[1]+=size
					print fmt%(db,len(dct),"%dx%dx%d   apix: %1.2f"%(first.get_xsize(),first.get_ysize(),first.get_zsize(),first["apix_x"]),human_size(size)),
				except:
					print fmt2%db
				try: print "\tdf: %1.3f\tB: %1.0f"%(first["ctf"].defocus,first["ctf"].bfactor)
				except: print ""
				dct.close()
			print fmt%("TOTAL",total[0],"",human_size(total[1]))
		elif options.check :
			from cPickle import loads
			for db in dbs:
				dct=db_open_dict(path+db,ro=True)
				dct.realopen()
				keys=dct.bdb.keys()
				allkvp={}
				for k in keys:
					s1,s2=k.split("\x80",1)		# start of a pickled string. 
					s2=loads("\x80"+s2)			# the pickled part
					if len(s1)>0 :				# If anything unpickled, then it is an axbxc prefix identifying the location of a binary
						st=allkvp.setdefault(s1,set()) # set of all positions seen so far
						v=loads(dct.bdb.get(k))	# position in binary file
						if v in st : print "Error: value %d seen multiple times in %s (%s,%s)"%(v,db,s1,s2)
						st.add(v)
				print "%s : "%db,
				for i in allkvp.keys(): 
					if options.verbose>0 : print "%s %d/%d\t"%(i,len(allkvp[i]),int(max(allkvp[i]))+1),
					if len(allkvp[i])!=int(max(allkvp[i])+1) : print "\nMismatch found in %s. Could be normal if file has been rewritten multiple times, but is unusual"%db
				if options.verbose>0 : print ""
				else : print " done"
				dct.close()

		elif options.short :
			for db in dbs:
				print path+db,
			print " "