landweber = Tikhonov( kernel=kernel_transformed, singular_values=spectrum.singular_values, left_singular_functions=spectrum.left_functions, right_singular_functions=spectrum.right_functions, observations=obs, sample_size=s, max_size=max_size, tau=tau, order=order, transformed_measure=True, njobs=-1) landweber.estimate() landweber.oracle(fun) solution = list( landweber.solution(np.linspace(0, 1, 10000))) results['selected_param'].append( landweber.regularization_param) results['oracle_param'].append(landweber.oracle_param) results['oracle_loss'].append(landweber.oracle_loss) results['loss'].append(landweber.residual) results['solution'].append(solution) results['oracle_solution'].append( list(landweber.oracle_solution)) landweber.client.close() except: pass pd.DataFrame(results).to_csv( 'Tikhonov1times_{}_{}_tau_{}.csv'.format( functions_name[i], s, taus_name[j]))
kernel=kernel, singular_values=spectrum.singular_values, left_singular_functions=spectrum. left_functions, right_singular_functions=spectrum. right_functions, observations=obs, sample_size=s, transformed_measure=True, max_size=max_size, order=order, njobs=-1) tikhonov.estimate() tikhonov.oracle(fun, patience=50) solution = list( tikhonov.solution(np.linspace(0, 1, 10000))) results['selected_param'].append( tikhonov.regularization_param) results['oracle_param'].append( tikhonov.oracle_param) results['oracle_loss'].append(tikhonov.oracle_loss) results['loss'].append(tikhonov.residual) results['solution'].append(solution) results['oracle_solution'].append( list(tikhonov.oracle_solution)) tikhonov.client.close() except: pass pd.DataFrame(results).to_csv( 'Test1_Tikhonov_{}_{}_{}_{}.csv'.format( functions_name[i], s, order, taus_name[j]))