Example #1
0
                        landweber = Tikhonov(
                            kernel=kernel_transformed,
                            singular_values=spectrum.singular_values,
                            left_singular_functions=spectrum.left_functions,
                            right_singular_functions=spectrum.right_functions,
                            observations=obs,
                            sample_size=s,
                            max_size=max_size,
                            tau=tau,
                            order=order,
                            transformed_measure=True,
                            njobs=-1)
                        landweber.estimate()
                        landweber.oracle(fun)
                        solution = list(
                            landweber.solution(np.linspace(0, 1, 10000)))
                        results['selected_param'].append(
                            landweber.regularization_param)
                        results['oracle_param'].append(landweber.oracle_param)
                        results['oracle_loss'].append(landweber.oracle_loss)
                        results['loss'].append(landweber.residual)
                        results['solution'].append(solution)
                        results['oracle_solution'].append(
                            list(landweber.oracle_solution))
                        landweber.client.close()
                    except:
                        pass
                pd.DataFrame(results).to_csv(
                    'Tikhonov1times_{}_{}_tau_{}.csv'.format(
                        functions_name[i], s, taus_name[j]))
Example #2
0
             kernel=kernel,
             singular_values=spectrum.singular_values,
             left_singular_functions=spectrum.
             left_functions,
             right_singular_functions=spectrum.
             right_functions,
             observations=obs,
             sample_size=s,
             transformed_measure=True,
             max_size=max_size,
             order=order,
             njobs=-1)
         tikhonov.estimate()
         tikhonov.oracle(fun, patience=50)
         solution = list(
             tikhonov.solution(np.linspace(0, 1, 10000)))
         results['selected_param'].append(
             tikhonov.regularization_param)
         results['oracle_param'].append(
             tikhonov.oracle_param)
         results['oracle_loss'].append(tikhonov.oracle_loss)
         results['loss'].append(tikhonov.residual)
         results['solution'].append(solution)
         results['oracle_solution'].append(
             list(tikhonov.oracle_solution))
         tikhonov.client.close()
     except:
         pass
 pd.DataFrame(results).to_csv(
     'Test1_Tikhonov_{}_{}_{}_{}.csv'.format(
         functions_name[i], s, order, taus_name[j]))