Example #1
0
#!/usr/bin/env python
# http://projecteuler.net/index.php?section=problems&id=21
import math
from EulerLibs import MathLibs

d = []
for i in range(0,10001):
	d.append(MathLibs.sumOfDivisors(i))
	
amicables = []
for i in range(2,10001):
	try:		
		if d[d[i]] == i and d[i] != i:
			amicables.append(i)
	except IndexError:
		pass

answer = sum(amicables)	
print answer
Example #2
0
#!/usr/bin/env python
# http://projecteuler.net/index.php?section=problems&id=27
from EulerLibs import MathLibs

most_primes = { 'a': 1, 'b': 41, 'primes': 40 }

for a in xrange(-999, 1000):
	for b in xrange(-999, 1000):
		n = 0
		prime_count = 0
		while True:
			p = n**2 + (a * n) + b
			if p < 2:
				break
			elif not MathLibs.isPrime(p):
				break
				
			prime_count += 1
			n += 1
			
		values = { 'a': a, 'b': b, 'primes': prime_count }
		
		if values['primes'] > most_primes['primes']:
			most_primes = values
			
answer = most_primes['a'] * most_primes['b']
print answer
Example #3
0
#!/usr/bin/env python
# http://projecteuler.net/index.php?section=problems&id=3
import math
from EulerLibs import MathLibs

answer = 0
for i in MathLibs.factors(600851475143):
	if MathLibs.isPrime(i):
		answer = i
		
print answer
Example #4
0
#!/usr/bin/env python
# http://projecteuler.net/index.php?section=problems&id=7
import math
from EulerLibs import MathLibs

primes = 0
answer = 1;
while (primes < 10001):
	answer += 1
	if (MathLibs.isPrime(answer)):
		primes += 1	
	
print answer
Example #5
0
#!/usr/bin/env python
# http://projecteuler.net/index.php?section=problems&id=12
import math
from EulerLibs import MathLibs

print MathLibs.factorial(500)

factors = 0
cursor = 0
while (factors <= 500):
	cursor += 1
	answer = MathLibs.triangleNumber(cursor)
	factors = len(MathLibs.factors(answer))
	
print answer
Example #6
0
#!/usr/bin/env python
# http://projecteuler.net/index.php?section=problems&id=20
import math
from EulerLibs import MathLibs,StrLibs

f100 = str(MathLibs.factorial(100))
answer = StrLibs.sumDigits(f100)
print answer
Example #7
0
# Find a common denominator of 1 to x
# @return int
def common_denom(x):
	resp = 1
	while x >= 1:
		if resp % x:
			resp *= x
			
		x -= 1
	
	return resp
	
common_factor = common_denom(20)
	
answer = 0
for i in MathLibs.factors(common_factor):
	j = 1
	disproven = False
	while j <= 20 and not disproven:
		if i % j:
			disproven = True
			
		if j == 20:
			answer = i

		j += 1
		
	
	if answer:
		break