Example #1
0
def jfs(xtrain, ytrain, opts):
    # Parameters
    ub = 1
    lb = 0
    thres = 0.5
    b = 1  # constant

    N = opts['N']
    max_iter = opts['T']
    if 'b' in opts:
        b = opts['b']

    # Dimension
    dim = np.size(xtrain, 1)
    if np.size(lb) == 1:
        ub = ub * np.ones([1, dim], dtype='float')
        lb = lb * np.ones([1, dim], dtype='float')

    # Initialize position
    X = init_position(lb, ub, N, dim)

    # Binary conversion
    Xbin = binary_conversion(X, thres, N, dim)

    # Fitness at first iteration
    fit = np.zeros([N, 1], dtype='float')
    Xgb = np.zeros([1, dim], dtype='float')
    fitG = float('inf')

    for i in range(N):
        fit[i, 0] = Fun(xtrain, ytrain, Xbin[i, :], opts)
        if fit[i, 0] < fitG:
            Xgb[0, :] = X[i, :]
            fitG = fit[i, 0]

    # Pre
    curve = np.zeros([1, max_iter], dtype='float')
    t = 0

    curve[0, t] = fitG.copy()
    print("Generation:", t + 1)
    print("Best (WOA):", curve[0, t])
    t += 1

    while t < max_iter:
        # Define a, linearly decreases from 2 to 0
        a = 2 - t * (2 / max_iter)

        for i in range(N):
            # Parameter A (2.3)
            A = 2 * a * rand() - a
            # Paramater C (2.4)
            C = 2 * rand()
            # Parameter p, random number in [0,1]
            p = rand()
            # Parameter l, random number in [-1,1]
            l = -1 + 2 * rand()
            # Whale position update (2.6)
            if p < 0.5:
                # {1} Encircling prey
                if abs(A) < 1:
                    for d in range(dim):
                        # Compute D (2.1)
                        Dx = abs(C * Xgb[0, d] - X[i, d])
                        # Position update (2.2)
                        X[i, d] = Xgb[0, d] - A * Dx
                        # Boundary
                        X[i, d] = boundary(X[i, d], lb[0, d], ub[0, d])

                # {2} Search for prey
                elif abs(A) >= 1:
                    for d in range(dim):
                        # Select a random whale
                        k = np.random.randint(low=0, high=N)
                        # Compute D (2.7)
                        Dx = abs(C * X[k, d] - X[i, d])
                        # Position update (2.8)
                        X[i, d] = X[k, d] - A * Dx
                        # Boundary
                        X[i, d] = boundary(X[i, d], lb[0, d], ub[0, d])

            # {3} Bubble-net attacking
            elif p >= 0.5:
                for d in range(dim):
                    # Distance of whale to prey
                    dist = abs(Xgb[0, d] - X[i, d])
                    # Position update (2.5)
                    X[i, d] = dist * np.exp(b * l) * np.cos(
                        2 * np.pi * l) + Xgb[0, d]
                    # Boundary
                    X[i, d] = boundary(X[i, d], lb[0, d], ub[0, d])

        # Binary conversion
        Xbin = binary_conversion(X, thres, N, dim)

        # Fitness
        for i in range(N):
            fit[i, 0] = Fun(xtrain, ytrain, Xbin[i, :], opts)
            if fit[i, 0] < fitG:
                Xgb[0, :] = X[i, :]
                fitG = fit[i, 0]

        # Store result
        curve[0, t] = fitG.copy()
        print("Generation:", t + 1)
        print("Best (WOA):", curve[0, t])
        t += 1

    # Best feature subset
    Gbin = binary_conversion(Xgb, thres, 1, dim)
    Gbin = Gbin.reshape(dim)
    pos = np.asarray(range(0, dim))
    sel_index = pos[Gbin == 1]
    num_feat = len(sel_index)
    # Create dictionary
    woa_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}

    return woa_data
def jfs(xtrain, ytrain, opts):
    # Parameters
    ub = 1
    lb = 0
    thres = 0.5
    max_local_iter = 10  # maximum iteration for local search

    N = opts['N']
    max_iter = opts['T']
    if 'maxLt' in opts:
        max_local_iter = opts['maxLt']

    # Dimension
    dim = np.size(xtrain, 1)
    if np.size(lb) == 1:
        ub = ub * np.ones([1, dim], dtype='float')
        lb = lb * np.ones([1, dim], dtype='float')

    # Initialize position
    X = init_position(lb, ub, N, dim)

    # Pre
    fit = np.zeros([N, 1], dtype='float')
    Xf = np.zeros([1, dim], dtype='float')
    fitF = float('inf')

    # Binary conversion
    Xbin = binary_conversion(X, thres, N, dim)

    # Fitness
    for i in range(N):
        fit[i, 0] = Fun(xtrain, ytrain, Xbin[i, :], opts)
        if fit[i, 0] < fitF:
            Xf[0, :] = X[i, :]
            fitF = fit[i, 0]

    #--- Opposition based learning
    Xo = opposition_based_learning(X, lb, ub, thres, N, dim)
    #--- Binary conversion
    Xobin = binary_conversion(Xo, thres, N, dim)

    #--- Fitness
    fitO = np.zeros([N, 1], dtype='float')
    for i in range(N):
        fitO[i, 0] = Fun(xtrain, ytrain, Xobin[i, :], opts)
        if fitO[i, 0] < fitF:
            Xf[0, :] = Xo[i, :]
            fitF = fitO[i, 0]

    #--- Merge opposite & current population, and select best N
    XX = np.concatenate((X, Xo), axis=0)
    FF = np.concatenate((fit, fitO), axis=0)
    #--- Sort in ascending order
    ind = np.argsort(FF, axis=0)
    for i in range(N):
        X[i, :] = XX[ind[i, 0], :]
        fit[i, 0] = FF[ind[i, 0]]

    curve = np.zeros([1, max_iter], dtype='float')
    t = 0

    # Store result
    curve[0, t] = fitF.copy()
    print("Iteration:", t + 1)
    print("Best (ISSA):", curve[0, t])
    t += 1

    while t < max_iter:
        # Compute coefficient, c1 (2)
        c1 = 2 * np.exp(-(4 * t / max_iter)**2)

        for i in range(N):
            # First leader update
            if i == 0:
                for d in range(dim):
                    # Coefficient c2 & c3 [0 ~ 1]
                    c2 = rand()
                    c3 = rand()
                    # Leader update (1)
                    if c3 >= 0.5:
                        X[i, d] = Xf[0, d] + c1 * (
                            (ub[0, d] - lb[0, d]) * c2 + lb[0, d])
                    else:
                        X[i, d] = Xf[0, d] - c1 * (
                            (ub[0, d] - lb[0, d]) * c2 + lb[0, d])

                    # Boundary
                    X[i, d] = boundary(X[i, d], lb[0, d], ub[0, d])

            # Salp update
            elif i >= 1:
                for d in range(dim):
                    # Salp update by following front salp (3)
                    X[i, d] = (X[i, d] + X[i - 1, d]) / 2
                    # Boundary
                    X[i, d] = boundary(X[i, d], lb[0, d], ub[0, d])

        # Binary conversion
        Xbin = binary_conversion(X, thres, N, dim)

        # Fitness
        for i in range(N):
            fit[i, 0] = Fun(xtrain, ytrain, Xbin[i, :], opts)
            if fit[i, 0] < fitF:
                Xf[0, :] = X[i, :]
                fitF = fit[i, 0]

        #--- Local search algorithm
        Lt = 0
        temp = np.zeros([1, dim], dtype='float')
        temp[0, :] = Xf[0, :]

        while Lt < max_local_iter:
            #--- Random three features
            RD = np.random.permutation(dim)
            for d in range(3):
                index = RD[d]
                #--- Flip the selected three features
                if temp[0, index] > thres:
                    temp[0, index] = temp[0, index] - thres
                else:
                    temp[0, index] = temp[0, index] + thres

            #--- Binary conversion
            temp_bin = binary_conversion(temp, thres, 1, dim)

            #--- Fitness
            Fnew = Fun(xtrain, ytrain, temp_bin[0, :], opts)
            if Fnew < fitF:
                fitF = Fnew
                Xf[0, :] = temp[0, :]

            Lt += 1

        # Store result
        curve[0, t] = fitF.copy()
        print("Iteration:", t + 1)
        print("Best (ISSA):", curve[0, t])
        t += 1

    # Best feature subset
    Gbin = binary_conversion(Xf, thres, 1, dim)
    Gbin = Gbin.reshape(dim)
    pos = np.asarray(range(0, dim))
    sel_index = pos[Gbin == 1]
    num_feat = len(sel_index)
    # Create dictionary
    issa_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}

    return issa_data
def jfs(xtrain, ytrain, opts):
    # Parameters
    ub = 1
    lb = 0
    thres = 0.5
    CR = 0.8  # crossover rate
    MR = 0.01  # mutation rate

    N = opts['N']
    max_iter = opts['T']
    if 'CR' in opts:
        CR = opts['CR']
    if 'MR' in opts:
        MR = opts['MR']

    # Dimension
    dim = np.size(xtrain, 1)
    if np.size(lb) == 1:
        ub = ub * np.ones([1, dim], dtype='float')
        lb = lb * np.ones([1, dim], dtype='float')

    # Initialize position
    X = init_position(lb, ub, N, dim)

    # Binary conversion
    X = binary_conversion(X, thres, N, dim)

    # Fitness at first iteration
    fit = np.zeros([N, 1], dtype='float')
    Xgb = np.zeros([1, dim], dtype='int')
    fitG = float('inf')

    for i in range(N):
        fit[i, 0] = Fun(xtrain, ytrain, X[i, :], opts)
        if fit[i, 0] < fitG:
            Xgb[0, :] = X[i, :]
            fitG = fit[i, 0]

    # Pre
    curve = np.zeros([1, max_iter], dtype='float')
    t = 0

    curve[0, t] = fitG.copy()
    print("Generation:", t + 1)
    print("Best (GA):", curve[0, t])
    t += 1

    while t < max_iter:
        # Probability
        inv_fit = 1 / (1 + fit)
        prob = inv_fit / np.sum(inv_fit)

        # Number of crossovers
        Nc = 0
        for i in range(N):
            if rand() < CR:
                Nc += 1

        x1 = np.zeros([Nc, dim], dtype='int')
        x2 = np.zeros([Nc, dim], dtype='int')
        for i in range(Nc):
            # Parent selection
            k1 = roulette_wheel(prob)
            k2 = roulette_wheel(prob)
            P1 = X[k1, :].copy()
            P2 = X[k2, :].copy()
            # Random one dimension from 1 to dim
            index = np.random.randint(low=1, high=dim - 1)
            # Crossover
            x1[i, :] = np.concatenate((P1[0:index], P2[index:]))
            x2[i, :] = np.concatenate((P2[0:index], P1[index:]))
            # Mutation
            for d in range(dim):
                if rand() < MR:
                    x1[i, d] = 1 - x1[i, d]

                if rand() < MR:
                    x2[i, d] = 1 - x2[i, d]

        # Merge two group into one
        Xnew = np.concatenate((x1, x2), axis=0)

        # Fitness
        Fnew = np.zeros([2 * Nc, 1], dtype='float')
        for i in range(2 * Nc):
            Fnew[i, 0] = Fun(xtrain, ytrain, Xnew[i, :], opts)
            if Fnew[i, 0] < fitG:
                Xgb[0, :] = Xnew[i, :]
                fitG = Fnew[i, 0]

        # Store result
        curve[0, t] = fitG.copy()
        print("Generation:", t + 1)
        print("Best (GA):", curve[0, t])
        t += 1

        # Elitism
        XX = np.concatenate((X, Xnew), axis=0)
        FF = np.concatenate((fit, Fnew), axis=0)
        # Sort in ascending order
        ind = np.argsort(FF, axis=0)
        for i in range(N):
            X[i, :] = XX[ind[i, 0], :]
            fit[i, 0] = FF[ind[i, 0]]

    # Best feature subset
    Gbin = Xgb[0, :]
    Gbin = Gbin.reshape(dim)
    pos = np.asarray(range(0, dim))
    sel_index = pos[Gbin == 1]
    num_feat = len(sel_index)
    # Create dictionary
    ga_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}

    return ga_data
Example #4
0
def jfs(xtrain, ytrain, opts):
    # Parameters
    ub = 1
    lb = 0
    thres = 0.5
    alpha = 1  # constant
    beta0 = 1  # light amplitude
    gamma = 1  # absorbtion coefficient
    theta = 0.97  # control alpha

    N = opts['N']
    max_iter = opts['T']
    if 'alpha' in opts:
        alpha = opts['alpha']
    if 'beta0' in opts:
        beta0 = opts['beta0']
    if 'gamma' in opts:
        gamma = opts['gamma']
    if 'theta' in opts:
        theta = opts['theta']

    # Dimension
    dim = np.size(xtrain, 1)
    if np.size(lb) == 1:
        ub = ub * np.ones([1, dim], dtype='float')
        lb = lb * np.ones([1, dim], dtype='float')

    # Initialize position
    X = init_position(lb, ub, N, dim)

    # Binary conversion
    Xbin = binary_conversion(X, thres, N, dim)

    # Fitness at first iteration
    fit = np.zeros([N, 1], dtype='float')
    Xgb = np.zeros([1, dim], dtype='float')
    fitG = float('inf')

    for i in range(N):
        fit[i, 0] = Fun(xtrain, ytrain, Xbin[i, :], opts)
        if fit[i, 0] < fitG:
            Xgb[0, :] = X[i, :]
            fitG = fit[i, 0]

    # Pre
    curve = np.zeros([1, max_iter], dtype='float')
    t = 0

    curve[0, t] = fitG.copy()
    print("Generation:", t + 1)
    print("Best (FA):", curve[0, t])
    t += 1

    while t < max_iter:
        # Alpha update
        alpha = alpha * theta
        # Rank firefly based on their light intensity
        ind = np.argsort(fit, axis=0)
        FF = fit.copy()
        XX = X.copy()
        for i in range(N):
            fit[i, 0] = FF[ind[i, 0]]
            X[i, :] = XX[ind[i, 0], :]

        for i in range(N):
            # The attractiveness parameter
            for j in range(N):
                # Update moves if firefly j brighter than firefly i
                if fit[i, 0] > fit[j, 0]:
                    # Compute Euclidean distance
                    r = np.sqrt(np.sum((X[i, :] - X[j, :])**2))
                    # Beta (2)
                    beta = beta0 * np.exp(-gamma * r**2)
                    for d in range(dim):
                        # Update position (3)
                        eps = rand() - 0.5
                        X[i,
                          d] = X[i,
                                 d] + beta * (X[j, d] - X[i, d]) + alpha * eps
                        # Boundary
                        X[i, d] = boundary(X[i, d], lb[0, d], ub[0, d])

                    # Binary conversion
                    temp = np.zeros([1, dim], dtype='float')
                    temp[0, :] = X[i, :]
                    Xbin = binary_conversion(temp, thres, 1, dim)

                    # fitness
                    fit[i, 0] = Fun(xtrain, ytrain, Xbin[0, :], opts)

                    # best update
                    if fit[i, 0] < fitG:
                        Xgb[0, :] = X[i, :]
                        fitG = fit[i, 0]

        # Store result
        curve[0, t] = fitG.copy()
        print("Generation:", t + 1)
        print("Best (FA):", curve[0, t])
        t += 1

    # Best feature subset
    Gbin = binary_conversion(Xgb, thres, 1, dim)
    Gbin = Gbin.reshape(dim)
    pos = np.asarray(range(0, dim))
    sel_index = pos[Gbin == 1]
    num_feat = len(sel_index)
    # Create dictionary
    fa_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}

    return fa_data
Example #5
0
def jfs(xtrain, ytrain, opts):
    # Parameters
    ub = 1
    lb = 0
    thres = 0.5
    CR = 0.9  # crossover rate
    F = 0.5  # factor

    N = opts['N']
    max_iter = opts['T']
    if 'CR' in opts:
        CR = opts['CR']
    if 'F' in opts:
        F = opts['F']

    # Dimension
    dim = np.size(xtrain, 1)
    if np.size(lb) == 1:
        ub = ub * np.ones([1, dim], dtype='float')
        lb = lb * np.ones([1, dim], dtype='float')

    # Initialize position
    X = init_position(lb, ub, N, dim)

    # Binary conversion
    Xbin = binary_conversion(X, thres, N, dim)

    # Fitness at first iteration
    fit = np.zeros([N, 1], dtype='float')
    Xgb = np.zeros([1, dim], dtype='float')
    fitG = float('inf')

    for i in range(N):
        fit[i, 0] = Fun(xtrain, ytrain, Xbin[i, :], opts)
        if fit[i, 0] < fitG:
            Xgb[0, :] = X[i, :]
            fitG = fit[i, 0]

    # Pre
    curve = np.zeros([1, max_iter], dtype='float')
    t = 0

    curve[0, t] = fitG.copy()
    print("Generation:", t + 1)
    print("Best (DE):", curve[0, t])
    t += 1

    while t < max_iter:
        V = np.zeros([N, dim], dtype='float')
        U = np.zeros([N, dim], dtype='float')

        for i in range(N):
            # Choose r1, r2, r3 randomly, but not equal to i
            RN = np.random.permutation(N)
            for j in range(N):
                if RN[j] == i:
                    RN = np.delete(RN, j)
                    break

            r1 = RN[0]
            r2 = RN[1]
            r3 = RN[2]
            # mutation (2)
            for d in range(dim):
                V[i, d] = X[r1, d] + F * (X[r2, d] - X[r3, d])
                # Boundary
                V[i, d] = boundary(V[i, d], lb[0, d], ub[0, d])

            # Random one dimension from 1 to dim
            index = np.random.randint(low=0, high=dim)
            # crossover (3-4)
            for d in range(dim):
                if (rand() <= CR) or (d == index):
                    U[i, d] = V[i, d]
                else:
                    U[i, d] = X[i, d]

        # Binary conversion
        Ubin = binary_conversion(U, thres, N, dim)

        # Selection
        for i in range(N):
            fitU = Fun(xtrain, ytrain, Ubin[i, :], opts)
            if fitU <= fit[i, 0]:
                X[i, :] = U[i, :]
                fit[i, 0] = fitU

            if fit[i, 0] < fitG:
                Xgb[0, :] = X[i, :]
                fitG = fit[i, 0]

        # Store result
        curve[0, t] = fitG.copy()
        print("Generation:", t + 1)
        print("Best (DE):", curve[0, t])
        t += 1

    # Best feature subset
    Gbin = binary_conversion(Xgb, thres, 1, dim)
    Gbin = Gbin.reshape(dim)
    pos = np.asarray(range(0, dim))
    sel_index = pos[Gbin == 1]
    num_feat = len(sel_index)
    # Create dictionary
    de_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}

    return de_data
Example #6
0
def jfs(xtrain, ytrain, opts):
    # Parameters
    ub     = 1
    lb     = 0
    thres  = 0.5
    fmax   = 2      # maximum frequency
    fmin   = 0      # minimum frequency
    alpha  = 0.9    # constant
    gamma  = 0.9    # constant
    A_max  = 2      # maximum loudness
    r0_max = 1      # maximum pulse rate
    
    N          = opts['N']
    max_iter   = opts['T']
    if 'fmax' in opts:
        fmax   = opts['fmax'] 
    if 'fmin' in opts:
        fmin   = opts['fmin'] 
    if 'alpha' in opts:
        alpha  = opts['alpha'] 
    if 'gamma' in opts:
        gamma  = opts['gamma'] 
    if 'A' in opts:
        A_max  = opts['A'] 
    if 'r' in opts:
        r0_max = opts['r'] 
        
    # Dimension
    dim = np.size(xtrain, 1)
    if np.size(lb) == 1:
        ub = ub * np.ones([1, dim], dtype='float')
        lb = lb * np.ones([1, dim], dtype='float')
        
    # Initialize position & velocity
    X     = init_position(lb, ub, N, dim)
    V     = np.zeros([N, dim], dtype='float')
    
    # Binary conversion
    Xbin  = binary_conversion(X, thres, N, dim)
    
    # Fitness at first iteration
    fit   = np.zeros([N, 1], dtype='float')
    Xgb   = np.zeros([1, dim], dtype='float')
    fitG  = float('inf')
    
    for i in range(N):
        fit[i,0] = Fun(xtrain, ytrain, Xbin[i,:], opts)
        if fit[i,0] < fitG:
            Xgb[0,:] = X[i,:]
            fitG     = fit[i,0]
    
    # Pre
    curve = np.zeros([1, max_iter], dtype='float') 
    t     = 0
    
    curve[0,t] = fitG.copy()
    print("Generation:", t + 1)
    print("Best (BA):", curve[0,t])
    t += 1
    
    # Initial loudness [1 ~ 2] & pulse rate [0 ~ 1]
    A  = np.random.uniform(1, A_max, N)
    r0 = np.random.uniform(0, r0_max, N)
    r  = r0.copy()
    
    while t < max_iter:  
        Xnew  = np.zeros([N, dim], dtype='float') 
        
        for i in range(N):
            # beta [0 ~1]
            beta = rand()
            # frequency (2)
            freq = fmin + (fmax - fmin) * beta
            for d in range(dim):
                # Velocity update (3)
                V[i,d]    = V[i,d] + (X[i,d] - Xgb[0,d]) * freq 
                # Position update (4)
                Xnew[i,d] = X[i,d] + V[i,d]
                # Boundary
                Xnew[i,d] = boundary(Xnew[i,d], lb[0,d], ub[0,d])
                
            # Generate local solution around best solution
            if rand() > r[i]:
                for d in range (dim):
                    # Epsilon in [-1,1]
                    eps       = -1 + 2 * rand()
                    # Random walk (5)
                    Xnew[i,d] = Xgb[0,d] + eps * np.mean(A)              
                    # Boundary
                    Xnew[i,d] = boundary(Xnew[i,d], lb[0,d], ub[0,d])
            
        # Binary conversion
        Xbin = binary_conversion(Xnew, thres, N, dim)
        
        # Greedy selection
        for i in range(N):
            Fnew = Fun(xtrain, ytrain, Xbin[i,:], opts)
            if (rand() < A[i])  and  (Fnew <= fit[i,0]):
                X[i,:]   = Xnew[i,:]
                fit[i,0] = Fnew
                # Loudness update (6)
                A[i]     = alpha * A[i]
                # Pulse rate update (6)
                r[i]     = r0[i] * (1 - np.exp(-gamma * t))               
                
            if fit[i,0] < fitG:
                Xgb[0,:] = X[i,:]
                fitG     = fit[i,0]
             
        # Store result
        curve[0,t] = fitG.copy()
        print("Generation:", t + 1)
        print("Best (BA):", curve[0,t])
        t += 1            

            
    # Best feature subset
    Gbin       = binary_conversion(Xgb, thres, 1, dim) 
    Gbin       = Gbin.reshape(dim)
    pos        = np.asarray(range(0, dim))    
    sel_index  = pos[Gbin == 1]
    num_feat   = len(sel_index)
    # Create dictionary
    ba_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}
    
    return ba_data  


            
            
                
Example #7
0
def jfs(xtrain, ytrain, opts):
    # Parameters
    ub = 1
    lb = 0
    thres = 0.5

    N = opts['N']
    max_iter = opts['T']

    # Dimension
    dim = np.size(xtrain, 1)
    if np.size(lb) == 1:
        ub = ub * np.ones([1, dim], dtype='float')
        lb = lb * np.ones([1, dim], dtype='float')

    # Initialize position
    X = init_position(lb, ub, N, dim)

    # Pre
    fit = np.zeros([N, 1], dtype='float')
    Xf = np.zeros([1, dim], dtype='float')
    fitF = float('inf')
    curve = np.zeros([1, max_iter], dtype='float')
    t = 0

    while t < max_iter:
        # Binary conversion
        Xbin = binary_conversion(X, thres, N, dim)

        # Fitness
        for i in range(N):
            fit[i, 0] = Fun(xtrain, ytrain, Xbin[i, :], opts)
            if fit[i, 0] < fitF:
                Xf[0, :] = X[i, :]
                fitF = fit[i, 0]

        # Store result
        curve[0, t] = fitF.copy()
        print("Iteration:", t + 1)
        print("Best (ESSA):", curve[0, t])
        t += 1

        for i in range(N):
            # First leader update
            if i == 0:
                for d in range(dim):
                    #--- random number between [0, 50]
                    r1 = 50 * rand()
                    #--- compute c1 (5)
                    c1 = 2 * np.exp(-((4 * r1 * t) / max_iter)**2)
                    # Coefficient c2 & c3 [0 ~ 1]
                    c2 = rand()
                    c3 = rand()
                    # Leader update (1)
                    if c3 >= 0.5:
                        X[i, d] = Xf[0, d] + c1 * (
                            (ub[0, d] - lb[0, d]) * c2 + lb[0, d])
                    else:
                        X[i, d] = Xf[0, d] - c1 * (
                            (ub[0, d] - lb[0, d]) * c2 + lb[0, d])

                    # Boundary
                    X[i, d] = boundary(X[i, d], lb[0, d], ub[0, d])

            # Salp update
            elif i >= 1:
                for d in range(dim):
                    #--- random number between [0, 1]
                    r2 = rand()
                    #--- Salp update by following front salp (6)
                    X[i, d] = r2 * (X[i, d] + X[i - 1, d])
                    # Boundary
                    X[i, d] = boundary(X[i, d], lb[0, d], ub[0, d])

    # Best feature subset
    Gbin = binary_conversion(Xf, thres, 1, dim)
    Gbin = Gbin.reshape(dim)
    pos = np.asarray(range(0, dim))
    sel_index = pos[Gbin == 1]
    num_feat = len(sel_index)
    # Create dictionary
    essa_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}

    return essa_data
Example #8
0
def jfs(xtrain, ytrain, opts):
    # Parameters
    ub = 1
    lb = 0
    thres = 0.5
    beta = 1.5  # levy component
    P = 0.8  # switch probability

    N = opts['N']
    max_iter = opts['T']
    if 'P' in opts:
        P = opts['P']
    if 'beta' in opts:
        beta = opts['beta']

    # Dimension
    dim = np.size(xtrain, 1)
    if np.size(lb) == 1:
        ub = ub * np.ones([1, dim], dtype='float')
        lb = lb * np.ones([1, dim], dtype='float')

    # Initialize position
    X = init_position(lb, ub, N, dim)

    # Binary conversion
    Xbin = binary_conversion(X, thres, N, dim)

    # Fitness at first iteration
    fit = np.zeros([N, 1], dtype='float')
    Xgb = np.zeros([1, dim], dtype='float')
    fitG = float('inf')

    for i in range(N):
        fit[i, 0] = Fun(xtrain, ytrain, Xbin[i, :], opts)
        if fit[i, 0] < fitG:
            Xgb[0, :] = X[i, :]
            fitG = fit[i, 0]

    # Pre
    curve = np.zeros([1, max_iter], dtype='float')
    t = 0

    curve[0, t] = fitG.copy()
    print("Generation:", t + 1)
    print("Best (FPA):", curve[0, t])
    t += 1

    while t < max_iter:
        Xnew = np.zeros([N, dim], dtype='float')

        for i in range(N):
            # Global pollination
            if rand() < P:
                # Levy distribution (2)
                L = levy_distribution(beta, dim)
                for d in range(dim):
                    # Global pollination (1)
                    Xnew[i, d] = X[i, d] + L[d] * (X[i, d] - Xgb[0, d])
                    # Boundary
                    Xnew[i, d] = boundary(Xnew[i, d], lb[0, d], ub[0, d])

            # Local pollination
            else:
                # Different flower j, k in same species
                R = np.random.permutation(N)
                J = R[0]
                K = R[1]
                # Epsilon [0 to 1]
                eps = rand()
                for d in range(dim):
                    # Local pollination (3)
                    Xnew[i, d] = X[i, d] + eps * (X[J, d] - X[K, d])
                    # Boundary
                    Xnew[i, d] = boundary(Xnew[i, d], lb[0, d], ub[0, d])

        # Binary conversion
        Xbin = binary_conversion(Xnew, thres, N, dim)

        # Greedy selection
        for i in range(N):
            Fnew = Fun(xtrain, ytrain, Xbin[i, :], opts)
            if Fnew <= fit[i, 0]:
                X[i, :] = Xnew[i, :]
                fit[i, 0] = Fnew

            if fit[i, 0] < fitG:
                Xgb[0, :] = X[i, :]
                fitG = fit[i, 0]

        # Store result
        curve[0, t] = fitG.copy()
        print("Generation:", t + 1)
        print("Best (FPA):", curve[0, t])
        t += 1

    # Best feature subset
    Gbin = binary_conversion(Xgb, thres, 1, dim)
    Gbin = Gbin.reshape(dim)
    pos = np.asarray(range(0, dim))
    sel_index = pos[Gbin == 1]
    num_feat = len(sel_index)
    # Create dictionary
    fpa_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}

    return fpa_data
def jfs(xtrain, ytrain, opts):
    # Parameters
    ub = 1
    lb = 0
    thres = 0.5

    N = opts['N']
    max_iter = opts['T']

    # Dimension
    dim = np.size(xtrain, 1)
    if np.size(lb) == 1:
        ub = ub * np.ones([1, dim], dtype='float')
        lb = lb * np.ones([1, dim], dtype='float')

    # Initialize position
    X = init_position(lb, ub, N, dim)

    # Pre
    fit = np.zeros([N, 1], dtype='float')
    Xgb = np.zeros([1, dim], dtype='float')
    fitG = float('inf')
    Xpb = np.zeros([N, dim], dtype='float')
    fitP = float('inf') * np.ones([N, 1], dtype='float')
    curve = np.zeros([1, max_iter], dtype='float')
    t = 0

    while t < max_iter:
        # Binary conversion
        Xbin = binary_conversion(X, thres, N, dim)

        # Fitness
        for i in range(N):
            fit[i, 0] = Fun(xtrain, ytrain, Xbin[i, :], opts)
            if fit[i, 0] < fitP[i, 0]:
                Xpb[i, :] = X[i, :]
                fitP[i, 0] = fit[i, 0]

            if fitP[i, 0] < fitG:
                Xgb[0, :] = Xpb[i, :]
                fitG = fitP[i, 0]

        # Store result
        curve[0, t] = fitG.copy()
        print("Iteration:", t + 1)
        print("Best (BBPSO):", curve[0, t])
        t += 1

        for i in range(N):
            for d in range(dim):
                #--- Mean
                mu = (Xpb[i, d] + Xgb[0, d]) / 2
                #--- Standard deviation
                sd = abs(Xpb[i, d] - Xgb[0, d])
                #--- Gaussian random number
                X[i, d] = sd * np.random.randn() + mu

    # Best feature subset
    Gbin = binary_conversion(Xgb, thres, 1, dim)
    Gbin = Gbin.reshape(dim)
    pos = np.asarray(range(0, dim))
    sel_index = pos[Gbin == 1]
    num_feat = len(sel_index)
    # Create dictionary
    bbpso_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}

    return bbpso_data
def jfs(xtrain, ytrain, opts):
    # Parameters
    ub     = 1
    lb     = 0
    thres  = 0.5
    
    N          = opts['N']
    max_iter   = opts['T']
        
    # Dimension
    dim = np.size(xtrain, 1)
    if np.size(lb) == 1:
        ub = ub * np.ones([1, dim], dtype='float')
        lb = lb * np.ones([1, dim], dtype='float')
        
    # Initialize position 
    X     = init_position(lb, ub, N, dim)
    
    # Binary conversion
    Xbin  = binary_conversion(X, thres, N, dim)
    
    # Fitness at first iteration
    fit   = np.zeros([N, 1], dtype='float')
    Xgb   = np.zeros([1, dim], dtype='float')
    fitG  = float('inf')
    
    for i in range(N):
        fit[i,0] = Fun(xtrain, ytrain, Xbin[i,:], opts)
        if fit[i,0] < fitG:
            Xgb[0,:] = X[i,:]
            fitG     = fit[i,0]
    
    # Pre
    curve = np.zeros([1, max_iter], dtype='float') 
    t     = 0
    
    curve[0,t] = fitG.copy()
    print("Generation:", t + 1)
    print("Best (JA):", curve[0,t])
    t += 1
    
    while t < max_iter:  
        Xnew  = np.zeros([N, dim], dtype='float') 
        
        # Identify best & worst in population
        idx_max = np.argmax(fit)
        Xw      = X[idx_max,np.newaxis,:].copy()
        idx_min = np.argmin(fit)
        Xb      = X[idx_min,np.newaxis,:].copy()       
          
        for i in range(N):
            for d in range(dim):
                # Random numbers
                r1 = rand();
                r2 = rand();
                # Position update (1)
                Xnew[i,d] = X[i,d] + r1 * (Xb[0,d] - abs(X[i,d])) - r2 * (Xw[0,d] - abs(X[i,d])) 
                # Boundary
                Xnew[i,d] = boundary(Xnew[i,d], lb[0,d], ub[0,d])
                
        # Binary conversion
        Xbin = binary_conversion(Xnew, thres, N, dim)
        
        # Greedy selection
        for i in range(N):
            Fnew = Fun(xtrain, ytrain, Xbin[i,:], opts)
            if Fnew < fit[i,0]:
                X[i,:]   = Xnew[i,:]
                fit[i,0] = Fnew             
                
            if fit[i,0] < fitG:
                Xgb[0,:] = X[i,:]
                fitG     = fit[i,0]
             
        # Store result
        curve[0,t] = fitG.copy()
        print("Generation:", t + 1)
        print("Best (JA):", curve[0,t])
        t += 1            

            
    # Best feature subset
    Gbin       = binary_conversion(Xgb, thres, 1, dim) 
    Gbin       = Gbin.reshape(dim)
    pos        = np.asarray(range(0, dim))    
    sel_index  = pos[Gbin == 1]
    num_feat   = len(sel_index)
    # Create dictionary
    ja_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}
    
    return ja_data  


            
            
                
def jfs(xtrain, ytrain, opts):
    # Parameters
    ub = 1
    lb = 0
    thres = 0.5

    N = opts['N']
    max_iter = opts['T']

    # Dimension
    dim = np.size(xtrain, 1)
    if np.size(lb) == 1:
        ub = ub * np.ones([1, dim], dtype='float')
        lb = lb * np.ones([1, dim], dtype='float')

    # Initialize position
    X = init_position(lb, ub, N, dim)

    #--- Binary conversion
    X = binary_conversion(X, thres, N, dim)

    # Pre
    fit = np.zeros([N, 1], dtype='float')
    Xf = np.zeros([1, dim], dtype='int')
    fitF = float('inf')
    curve = np.zeros([1, max_iter], dtype='float')
    t = 0

    while t < max_iter:

        # Fitness
        for i in range(N):
            fit[i, 0] = Fun(xtrain, ytrain, X[i, :], opts)
            if fit[i, 0] < fitF:
                Xf[0, :] = X[i, :]
                fitF = fit[i, 0]

        # Store result
        curve[0, t] = fitF.copy()
        print("Iteration:", t + 1)
        print("Best (TVBSSA):", curve[0, t])
        t += 1

        # Compute coefficient, c1 (3)
        c1 = 2 * np.exp(-(4 * t / max_iter)**2)

        #--- update number of leaders (12)
        L = np.ceil(N * (t / (max_iter + 1)))

        for i in range(N):
            #--- leader update
            if i < L:
                for d in range(dim):
                    # Coefficient c2 & c3 [0 ~ 1]
                    c2 = rand()
                    c3 = rand()
                    # Leader update (2)
                    if c3 >= 0.5:
                        Xn = Xf[0, d] + c1 * (
                            (ub[0, d] - lb[0, d]) * c2 + lb[0, d])
                    else:
                        Xn = Xf[0, d] - c1 * (
                            (ub[0, d] - lb[0, d]) * c2 + lb[0, d])

                    #--- transfer function
                    Tx = transfer_function(Xn)
                    #--- binary update (11)
                    if rand() < Tx:
                        X[i, d] = 0
                    else:
                        X[i, d] = 1

            #--- Salp update
            else:
                for d in range(dim):
                    # Salp update by following front salp (4)
                    Xn = (X[i, d] + X[i - 1, d]) / 2
                    # Boundary
                    Xn = boundary(Xn, lb[0, d], ub[0, d])
                    #--- Binary conversion
                    if Xn > thres:
                        X[i, d] = 1
                    else:
                        X[i, d] = 0

    # Best feature subset
    Gbin = Xf[0, :]
    Gbin = Gbin.reshape(dim)
    pos = np.asarray(range(0, dim))
    sel_index = pos[Gbin == 1]
    num_feat = len(sel_index)
    # Create dictionary
    tvbssa_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}

    return tvbssa_data
Example #12
0
def jfs(xtrain, ytrain, opts):
    # Parameters
    ub = 1
    lb = 0
    thres = 0.5
    Mp = 0.5  # mutation probability

    N = opts['N']
    max_iter = opts['T']
    if 'Mp' in opts:
        Mp = opts['Mp']

    # Dimension
    dim = np.size(xtrain, 1)
    if np.size(lb) == 1:
        ub = ub * np.ones([1, dim], dtype='float')
        lb = lb * np.ones([1, dim], dtype='float')

    # Initialize position
    X = init_position(lb, ub, N, dim)

    #--- Binary conversion
    X = binary_conversion(X, thres, N, dim)

    # Fitness at first iteration
    fit = np.zeros([N, 1], dtype='float')
    Xalpha = np.zeros([1, dim], dtype='int')
    Xbeta = np.zeros([1, dim], dtype='int')
    Xdelta = np.zeros([1, dim], dtype='int')
    Falpha = float('inf')
    Fbeta = float('inf')
    Fdelta = float('inf')

    for i in range(N):
        fit[i, 0] = Fun(xtrain, ytrain, X[i, :], opts)
        if fit[i, 0] < Falpha:
            Xalpha[0, :] = X[i, :]
            Falpha = fit[i, 0]
        if fit[i, 0] < Fbeta and fit[i, 0] > Falpha:
            Xbeta[0, :] = X[i, :]
            Fbeta = fit[i, 0]
        if fit[i, 0] < Fdelta and fit[i, 0] > Fbeta and fit[i, 0] > Falpha:
            Xdelta[0, :] = X[i, :]
            Fdelta = fit[i, 0]

    # Pre
    curve = np.zeros([1, max_iter], dtype='float')
    t = 0

    curve[0, t] = Falpha.copy()
    print("Iteration:", t + 1)
    print("Best (TMGWO):", curve[0, t])
    t += 1

    while t < max_iter:
        # Coefficient decreases linearly from 2 to 0 (3.5)
        a = 2 - t * (2 / max_iter)

        for i in range(N):
            for d in range(dim):
                # Parameter C (3.4)
                C1 = 2 * rand()
                C2 = 2 * rand()
                C3 = 2 * rand()
                # Compute Dalpha, Dbeta & Ddelta (3.7 - 3.9)
                Dalpha = abs(C1 * Xalpha[0, d] - X[i, d])
                Dbeta = abs(C2 * Xbeta[0, d] - X[i, d])
                Ddelta = abs(C3 * Xdelta[0, d] - X[i, d])
                # Parameter A (3.3)
                A1 = 2 * a * rand() - a
                A2 = 2 * a * rand() - a
                A3 = 2 * a * rand() - a
                # Compute X1, X2 & X3 (3.7 -3.9)
                X1 = Xalpha[0, d] - A1 * Dalpha
                X2 = Xbeta[0, d] - A2 * Dbeta
                X3 = Xdelta[0, d] - A3 * Ddelta
                # Update wolf (3.6)
                Xn = (X1 + X2 + X3) / 3
                #--- transfer function
                Xs = transfer_function(Xn)
                #--- update position (4.3.2)
                if rand() < Xs:
                    X[i, d] = 0
                else:
                    X[i, d] = 1

        # Fitness
        for i in range(N):
            fit[i, 0] = Fun(xtrain, ytrain, X[i, :], opts)
            if fit[i, 0] < Falpha:
                Xalpha[0, :] = X[i, :]
                Falpha = fit[i, 0]
            if fit[i, 0] < Fbeta and fit[i, 0] > Falpha:
                Xbeta[0, :] = X[i, :]
                Fbeta = fit[i, 0]
            if fit[i, 0] < Fdelta and fit[i, 0] > Fbeta and fit[i, 0] > Falpha:
                Xdelta[0, :] = X[i, :]
                Fdelta = fit[i, 0]

        curve[0, t] = Falpha.copy()
        print("Iteration:", t + 1)
        print("Best (TMGWO):", curve[0, t])
        t += 1

        #--- two phase mutation: first phase
        # find index of 1
        idx = np.where(Xalpha == 1)
        idx1 = idx[1]
        Xmut1 = np.zeros([1, dim], dtype='int')
        Xmut1[0, :] = Xalpha[0, :]
        for d in range(len(idx1)):
            r = rand()
            if r < Mp:
                Xmut1[0, idx1[d]] = 0
                Fnew1 = Fun(xtrain, ytrain, Xmut1[0, :], opts)
                if Fnew1 < Falpha:
                    Falpha = Fnew1
                    Xalpha[0, :] = Xmut1[0, :]

        #--- two phase mutation: second phase
        # find index of 0
        idx = np.where(Xalpha == 0)
        idx0 = idx[1]
        Xmut2 = np.zeros([1, dim], dtype='int')
        Xmut2[0, :] = Xalpha[0, :]
        for d in range(len(idx0)):
            r = rand()
            if r < Mp:
                Xmut2[0, idx0[d]] = 1
                Fnew2 = Fun(xtrain, ytrain, Xmut2[0, :], opts)
                if Fnew2 < Falpha:
                    Falpha = Fnew2
                    Xalpha[0, :] = Xmut2[0, :]

    # Best feature subset
    Gbin = Xalpha[0, :]
    Gbin = Gbin.reshape(dim)
    pos = np.asarray(range(0, dim))
    sel_index = pos[Gbin == 1]
    num_feat = len(sel_index)
    # Create dictionary
    tmgwo_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}

    return tmgwo_data
Example #13
0
def jfs(xtrain, ytrain, opts):
    # Parameters
    ub = 1
    lb = 0
    thres = 0.5

    N = opts['N']
    max_iter = opts['T']

    # Dimension
    dim = np.size(xtrain, 1)
    if np.size(lb) == 1:
        ub = ub * np.ones([1, dim], dtype='float')
        lb = lb * np.ones([1, dim], dtype='float')

    # Initialize position
    X = init_position(lb, ub, N, dim)

    # Binary conversion
    Xbin = binary_conversion(X, thres, N, dim)

    # Fitness at first iteration
    fit = np.zeros([N, 1], dtype='float')
    Xalpha = np.zeros([1, dim], dtype='float')
    Xbeta = np.zeros([1, dim], dtype='float')
    Xdelta = np.zeros([1, dim], dtype='float')
    Falpha = float('inf')
    Fbeta = float('inf')
    Fdelta = float('inf')

    for i in range(N):
        fit[i, 0] = Fun(xtrain, ytrain, Xbin[i, :], opts)
        if fit[i, 0] < Falpha:
            Xalpha[0, :] = X[i, :]
            Falpha = fit[i, 0]

        if fit[i, 0] < Fbeta and fit[i, 0] > Falpha:
            Xbeta[0, :] = X[i, :]
            Fbeta = fit[i, 0]

        if fit[i, 0] < Fdelta and fit[i, 0] > Fbeta and fit[i, 0] > Falpha:
            Xdelta[0, :] = X[i, :]
            Fdelta = fit[i, 0]

    # Pre
    curve = np.zeros([1, max_iter], dtype='float')
    t = 0

    curve[0, t] = Falpha.copy()
    print("Iteration:", t + 1)
    print("Best (GWO):", curve[0, t])
    t += 1

    while t < max_iter:
        # Coefficient decreases linearly from 2 to 0
        a = 2 - t * (2 / max_iter)

        for i in range(N):
            for d in range(dim):
                # Parameter C (3.4)
                C1 = 2 * rand()
                C2 = 2 * rand()
                C3 = 2 * rand()
                # Compute Dalpha, Dbeta & Ddelta (3.5)
                Dalpha = abs(C1 * Xalpha[0, d] - X[i, d])
                Dbeta = abs(C2 * Xbeta[0, d] - X[i, d])
                Ddelta = abs(C3 * Xdelta[0, d] - X[i, d])
                # Parameter A (3.3)
                A1 = 2 * a * rand() - a
                A2 = 2 * a * rand() - a
                A3 = 2 * a * rand() - a
                # Compute X1, X2 & X3 (3.6)
                X1 = Xalpha[0, d] - A1 * Dalpha
                X2 = Xbeta[0, d] - A2 * Dbeta
                X3 = Xdelta[0, d] - A3 * Ddelta
                # Update wolf (3.7)
                X[i, d] = (X1 + X2 + X3) / 3
                # Boundary
                X[i, d] = boundary(X[i, d], lb[0, d], ub[0, d])

        # Binary conversion
        Xbin = binary_conversion(X, thres, N, dim)

        # Fitness
        for i in range(N):
            fit[i, 0] = Fun(xtrain, ytrain, Xbin[i, :], opts)
            if fit[i, 0] < Falpha:
                Xalpha[0, :] = X[i, :]
                Falpha = fit[i, 0]

            if fit[i, 0] < Fbeta and fit[i, 0] > Falpha:
                Xbeta[0, :] = X[i, :]
                Fbeta = fit[i, 0]

            if fit[i, 0] < Fdelta and fit[i, 0] > Fbeta and fit[i, 0] > Falpha:
                Xdelta[0, :] = X[i, :]
                Fdelta = fit[i, 0]

        curve[0, t] = Falpha.copy()
        print("Iteration:", t + 1)
        print("Best (GWO):", curve[0, t])
        t += 1

    # Best feature subset
    Gbin = binary_conversion(Xalpha, thres, 1, dim)
    Gbin = Gbin.reshape(dim)
    pos = np.asarray(range(0, dim))
    sel_index = pos[Gbin == 1]
    num_feat = len(sel_index)
    # Create dictionary
    gwo_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}

    return gwo_data
def jfs(xtrain, ytrain, opts):
    # Parameters
    ub = 1
    lb = 0
    thres = 0.5
    b = 1  # constant

    N = opts['N']
    max_iter = opts['T']
    if 'b' in opts:
        b = opts['b']

    # Dimension
    dim = np.size(xtrain, 1)
    if np.size(lb) == 1:
        ub = ub * np.ones([1, dim], dtype='float')
        lb = lb * np.ones([1, dim], dtype='float')

    # Initialize position
    X = init_position(lb, ub, N, dim)

    # Binary conversion
    Xbin = binary_conversion(X, thres, N, dim)

    # Fitness at first iteration
    fit = np.zeros([N, 1], dtype='float')
    Xgb = np.zeros([1, dim], dtype='float')
    fitG = float('inf')

    for i in range(N):
        fit[i, 0] = Fun(xtrain, ytrain, Xbin[i, :], opts)
        if fit[i, 0] < fitG:
            Xgb[0, :] = X[i, :]
            fitG = fit[i, 0]

    #--- Opposition based learning
    Xo = opposition_based_learning(X, lb, ub, thres, N, dim)
    #--- Binary conversion
    Xobin = binary_conversion(Xo, thres, N, dim)

    #--- Fitness
    fitO = np.zeros([N, 1], dtype='float')
    for i in range(N):
        fitO[i, 0] = Fun(xtrain, ytrain, Xobin[i, :], opts)
        if fitO[i, 0] < fitG:
            Xgb[0, :] = Xo[i, :]
            fitG = fitO[i, 0]

    #--- Merge opposite & current population, and select best N
    XX = np.concatenate((X, Xo), axis=0)
    FF = np.concatenate((fit, fitO), axis=0)
    #--- Sort in ascending order
    ind = np.argsort(FF, axis=0)
    for i in range(N):
        X[i, :] = XX[ind[i, 0], :]
        fit[i, 0] = FF[ind[i, 0]]

    # Pre
    curve = np.zeros([1, max_iter], dtype='float')
    t = 0

    curve[0, t] = fitG.copy()
    print("Generation:", t + 1)
    print("Best (OBWOA):", curve[0, t])
    t += 1

    while t < max_iter:
        # Define a, linearly decreases from 2 to 0 (14)
        a = 2 - t * (2 / max_iter)

        for i in range(N):
            # Parameter A (13)
            A = 2 * a * rand() - a
            # Paramater C (13)
            C = 2 * rand()
            # Parameter r1, random number in [0,1]
            r1 = rand()
            # Parameter l, random number in [-1,1]
            l = -1 + 2 * rand()
            # Whale position update (15)
            if r1 < 0.5:
                # {1} Encircling prey
                if abs(A) < 1:
                    for d in range(dim):
                        # Compute D (12)
                        Dx = abs(C * Xgb[0, d] - X[i, d])
                        # Position update (12)
                        X[i, d] = Xgb[0, d] - A * Dx
                        # Boundary
                        X[i, d] = boundary(X[i, d], lb[0, d], ub[0, d])

                # {2} Search for prey
                elif abs(A) >= 1:
                    for d in range(dim):
                        # Select a random whale
                        k = np.random.randint(low=0, high=N)
                        # Compute D (16)
                        Dx = abs(C * X[k, d] - X[i, d])
                        # Position update (16)
                        X[i, d] = X[k, d] - A * Dx
                        # Boundary
                        X[i, d] = boundary(X[i, d], lb[0, d], ub[0, d])

            # {3} Bubble-net attacking
            elif r1 >= 0.5:
                for d in range(dim):
                    # Distance of whale to prey (11)
                    dist = abs(X[i, d] - Xgb[0, d])
                    # Position update (11)
                    X[i, d] = dist * np.exp(b * l) * np.cos(
                        2 * np.pi * l) + Xgb[0, d]
                    # Boundary
                    X[i, d] = boundary(X[i, d], lb[0, d], ub[0, d])

        # Binary conversion
        Xbin = binary_conversion(X, thres, N, dim)

        # Fitness
        for i in range(N):
            fit[i, 0] = Fun(xtrain, ytrain, Xbin[i, :], opts)
            if fit[i, 0] < fitG:
                Xgb[0, :] = X[i, :]
                fitG = fit[i, 0]

        #--- Opposition based learning
        Xo = opposition_based_learning(X, lb, ub, thres, N, dim)
        #--- Binary conversion
        Xobin = binary_conversion(Xo, thres, N, dim)

        #--- Fitness
        fitO = np.zeros([N, 1], dtype='float')
        for i in range(N):
            fitO[i, 0] = Fun(xtrain, ytrain, Xobin[i, :], opts)
            if fitO[i, 0] < fitG:
                Xgb[0, :] = Xo[i, :]
                fitG = fitO[i, 0]

        # Store result
        curve[0, t] = fitG.copy()
        print("Generation:", t + 1)
        print("Best (OBWOA):", curve[0, t])
        t += 1

        #--- Merge opposite & current population, and select best N
        XX = np.concatenate((X, Xo), axis=0)
        FF = np.concatenate((fit, fitO), axis=0)
        #--- Sort in ascending order
        ind = np.argsort(FF, axis=0)
        for i in range(N):
            X[i, :] = XX[ind[i, 0], :]
            fit[i, 0] = FF[ind[i, 0]]

    # Best feature subset
    Gbin = binary_conversion(Xgb, thres, 1, dim)
    Gbin = Gbin.reshape(dim)
    pos = np.asarray(range(0, dim))
    sel_index = pos[Gbin == 1]
    num_feat = len(sel_index)
    # Create dictionary
    obwoa_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}

    return obwoa_data
def jfs(xtrain, ytrain, opts):
    # Parameters
    ub    = 1
    lb    = 0
    thres = 0.5
    w     = 0.9    # inertia weight
    c1    = 2      # acceleration factor
    c2    = 2      # acceleration factor
    
    N        = opts['N']
    max_iter = opts['T']
    if 'w' in opts:
        w    = opts['w']
    if 'c1' in opts:
        c1   = opts['c1']
    if 'c2' in opts:
        c2   = opts['c2'] 
    
    # Dimension
    dim = np.size(xtrain, 1)
    if np.size(lb) == 1:
        ub = ub * np.ones([1, dim], dtype='float')
        lb = lb * np.ones([1, dim], dtype='float')
        
    # Initialize position & velocity
    X             = init_position(lb, ub, N, dim)
    V, Vmax, Vmin = init_velocity(lb, ub, N, dim) 
    
    # Pre
    fit   = np.zeros([N, 1], dtype='float')
    Xgb   = np.zeros([1, dim], dtype='float')
    fitG  = float('inf')
    Xpb   = np.zeros([N, dim], dtype='float')
    fitP  = float('inf') * np.ones([N, 1], dtype='float')
    curve = np.zeros([1, max_iter], dtype='float') 
    t     = 0
    
    while t < max_iter:
        # Binary conversion
        Xbin = binary_conversion(X, thres, N, dim)
        
        # Fitness
        for i in range(N):
            fit[i,0] = Fun(xtrain, ytrain, Xbin[i,:], opts)
            if fit[i,0] < fitP[i,0]:
                Xpb[i,:]  = X[i,:]
                fitP[i,0] = fit[i,0]
            if fitP[i,0] < fitG:
                Xgb[0,:]  = Xpb[i,:]
                fitG      = fitP[i,0]
        
        # Store result
        curve[0,t] = fitG.copy()
        print("Iteration:", t + 1)
        print("Best (PSO):", curve[0,t])
        t += 1
        
        for i in range(N):
            for d in range(dim):
                # Update velocity
                r1     = rand()
                r2     = rand()
                V[i,d] = w * V[i,d] + c1 * r1 * (Xpb[i,d] - X[i,d]) + c2 * r2 * (Xgb[0,d] - X[i,d]) 
                # Boundary
                V[i,d] = boundary(V[i,d], Vmin[0,d], Vmax[0,d])
                # Update position
                X[i,d] = X[i,d] + V[i,d]
                # Boundary
                X[i,d] = boundary(X[i,d], lb[0,d], ub[0,d])
    
                
    # Best feature subset
    Gbin       = binary_conversion(Xgb, thres, 1, dim) 
    Gbin       = Gbin.reshape(dim)
    pos        = np.asarray(range(0, dim))    
    sel_index  = pos[Gbin == 1]
    num_feat   = len(sel_index)
    # Create dictionary
    pso_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}
    
    return pso_data    
Example #16
0
def jfs(xtrain, ytrain, opts):
    # Parameters
    ub = 1
    lb = 0
    thres = 0.5
    alpha = 2  # constant

    N = opts['N']
    max_iter = opts['T']
    if 'alpha' in opts:
        alpha = opts['alpha']

    # Dimension
    dim = np.size(xtrain, 1)
    if np.size(lb) == 1:
        ub = ub * np.ones([1, dim], dtype='float')
        lb = lb * np.ones([1, dim], dtype='float')

    # Initialize position
    X = init_position(lb, ub, N, dim)

    # Pre
    fit = np.zeros([N, 1], dtype='float')
    Xdb = np.zeros([1, dim], dtype='float')
    fitD = float('inf')
    curve = np.zeros([1, max_iter], dtype='float')
    t = 0

    while t < max_iter:
        # Binary conversion
        Xbin = binary_conversion(X, thres, N, dim)

        # Fitness
        for i in range(N):
            fit[i, 0] = Fun(xtrain, ytrain, Xbin[i, :], opts)
            if fit[i, 0] < fitD:
                Xdb[0, :] = X[i, :]
                fitD = fit[i, 0]

        # Store result
        curve[0, t] = fitD.copy()
        print("Iteration:", t + 1)
        print("Best (SCA):", curve[0, t])
        t += 1

        # Parameter r1, decreases linearly from alpha to 0 (3.4)
        r1 = alpha - t * (alpha / max_iter)

        for i in range(N):
            for d in range(dim):
                # Random parameter r2 & r3 & r4
                r2 = (2 * np.pi) * rand()
                r3 = 2 * rand()
                r4 = rand()
                # Position update (3.3)
                if r4 < 0.5:
                    # Sine update (3.1)
                    X[i, d] = X[i, d] + r1 * np.sin(r2) * abs(r3 * Xdb[0, d] -
                                                              X[i, d])
                else:
                    # Cosine update (3.2)
                    X[i, d] = X[i, d] + r1 * np.cos(r2) * abs(r3 * Xdb[0, d] -
                                                              X[i, d])

                # Boundary
                X[i, d] = boundary(X[i, d], lb[0, d], ub[0, d])

    # Best feature subset
    Gbin = binary_conversion(Xdb, thres, 1, dim)
    Gbin = Gbin.reshape(dim)
    pos = np.asarray(range(0, dim))
    sel_index = pos[Gbin == 1]
    num_feat = len(sel_index)
    # Create dictionary
    sca_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}

    return sca_data
Example #17
0
def jfs(xtrain, ytrain, opts):
    # Parameters
    ub = 1
    lb = 0
    thres = 0.5
    Pa = 0.25  # discovery rate
    alpha = 1  # constant
    beta = 1.5  # levy component

    N = opts['N']
    max_iter = opts['T']
    if 'Pa' in opts:
        Pa = opts['Pa']
    if 'alpha' in opts:
        alpha = opts['alpha']
    if 'beta' in opts:
        beta = opts['beta']

    # Dimension
    dim = np.size(xtrain, 1)
    if np.size(lb) == 1:
        ub = ub * np.ones([1, dim], dtype='float')
        lb = lb * np.ones([1, dim], dtype='float')

    # Initialize position
    X = init_position(lb, ub, N, dim)

    # Binary conversion
    Xbin = binary_conversion(X, thres, N, dim)

    # Fitness at first iteration
    fit = np.zeros([N, 1], dtype='float')
    Xgb = np.zeros([1, dim], dtype='float')
    fitG = float('inf')

    for i in range(N):
        fit[i, 0] = Fun(xtrain, ytrain, Xbin[i, :], opts)
        if fit[i, 0] < fitG:
            Xgb[0, :] = X[i, :]
            fitG = fit[i, 0]

    # Pre
    curve = np.zeros([1, max_iter], dtype='float')
    t = 0

    curve[0, t] = fitG.copy()
    print("Generation:", t + 1)
    print("Best (CS):", curve[0, t])
    t += 1

    while t < max_iter:
        Xnew = np.zeros([N, dim], dtype='float')

        # {1} Random walk/Levy flight phase
        for i in range(N):
            # Levy distribution
            L = levy_distribution(beta, dim)
            for d in range(dim):
                # Levy flight (1)
                Xnew[i, d] = X[i, d] + alpha * L[d] * (X[i, d] - Xgb[0, d])
                # Boundary
                Xnew[i, d] = boundary(Xnew[i, d], lb[0, d], ub[0, d])

        # Binary conversion
        Xbin = binary_conversion(Xnew, thres, N, dim)

        # Greedy selection
        for i in range(N):
            Fnew = Fun(xtrain, ytrain, Xbin[i, :], opts)
            if Fnew <= fit[i, 0]:
                X[i, :] = Xnew[i, :]
                fit[i, 0] = Fnew

            if fit[i, 0] < fitG:
                Xgb[0, :] = X[i, :]
                fitG = fit[i, 0]

        # {2} Discovery and abandon worse nests phase
        J = np.random.permutation(N)
        K = np.random.permutation(N)
        Xj = np.zeros([N, dim], dtype='float')
        Xk = np.zeros([N, dim], dtype='float')
        for i in range(N):
            Xj[i, :] = X[J[i], :]
            Xk[i, :] = X[K[i], :]

        Xnew = np.zeros([N, dim], dtype='float')

        for i in range(N):
            Xnew[i, :] = X[i, :]
            r = rand()
            for d in range(dim):
                # A fraction of worse nest is discovered with a probability
                if rand() < Pa:
                    Xnew[i, d] = X[i, d] + r * (Xj[i, d] - Xk[i, d])

                # Boundary
                Xnew[i, d] = boundary(Xnew[i, d], lb[0, d], ub[0, d])

        # Binary conversion
        Xbin = binary_conversion(Xnew, thres, N, dim)

        # Greedy selection
        for i in range(N):
            Fnew = Fun(xtrain, ytrain, Xbin[i, :], opts)
            if Fnew <= fit[i, 0]:
                X[i, :] = Xnew[i, :]
                fit[i, 0] = Fnew

            if fit[i, 0] < fitG:
                Xgb[0, :] = X[i, :]
                fitG = fit[i, 0]

        # Store result
        curve[0, t] = fitG.copy()
        print("Generation:", t + 1)
        print("Best (CS):", curve[0, t])
        t += 1

    # Best feature subset
    Gbin = binary_conversion(Xgb, thres, 1, dim)
    Gbin = Gbin.reshape(dim)
    pos = np.asarray(range(0, dim))
    sel_index = pos[Gbin == 1]
    num_feat = len(sel_index)
    # Create dictionary
    cs_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}

    return cs_data
def jfs(xtrain, ytrain, opts):
    # Parameters
    ub = 1
    lb = 0
    thres = 0.5
    beta = 1.5  # levy component

    N = opts['N']
    max_iter = opts['T']
    if 'beta' in opts:
        beta = opts['beta']

    # Dimension
    dim = np.size(xtrain, 1)
    if np.size(lb) == 1:
        ub = ub * np.ones([1, dim], dtype='float')
        lb = lb * np.ones([1, dim], dtype='float')

    # Initialize position
    X = init_position(lb, ub, N, dim)

    # Pre
    fit = np.zeros([N, 1], dtype='float')
    Xrb = np.zeros([1, dim], dtype='float')
    fitR = float('inf')

    curve = np.zeros([1, max_iter], dtype='float')
    t = 0

    while t < max_iter:
        # Binary conversion
        Xbin = binary_conversion(X, thres, N, dim)

        # Fitness
        for i in range(N):
            fit[i, 0] = Fun(xtrain, ytrain, Xbin[i, :], opts)
            if fit[i, 0] < fitR:
                Xrb[0, :] = X[i, :]
                fitR = fit[i, 0]

        # Store result
        curve[0, t] = fitR.copy()
        print("Iteration:", t + 1)
        print("Best (HHO):", curve[0, t])
        t += 1

        # Mean position of hawk (2)
        X_mu = np.zeros([1, dim], dtype='float')
        X_mu[0, :] = np.mean(X, axis=0)

        for i in range(N):
            # Random number in [-1,1]
            E0 = -1 + 2 * rand()
            # Escaping energy of rabbit (3)
            E = 2 * E0 * (1 - (t / max_iter))
            # Exploration phase
            if abs(E) >= 1:
                # Define q in [0,1]
                q = rand()
                if q >= 0.5:
                    # Random select a hawk k
                    k = np.random.randint(low=0, high=N)
                    r1 = rand()
                    r2 = rand()
                    for d in range(dim):
                        # Position update (1)
                        X[i,
                          d] = X[k, d] - r1 * abs(X[k, d] - 2 * r2 * X[i, d])
                        # Boundary
                        X[i, d] = boundary(X[i, d], lb[0, d], ub[0, d])

                elif q < 0.5:
                    r3 = rand()
                    r4 = rand()
                    for d in range(dim):
                        # Update Hawk (1)
                        X[i, d] = (Xrb[0, d] -
                                   X_mu[0, d]) - r3 * (lb[0, d] + r4 *
                                                       (ub[0, d] - lb[0, d]))
                        # Boundary
                        X[i, d] = boundary(X[i, d], lb[0, d], ub[0, d])

            # Exploitation phase
            elif abs(E) < 1:
                # Jump strength
                J = 2 * (1 - rand())
                r = rand()
                # {1} Soft besiege
                if r >= 0.5 and abs(E) >= 0.5:
                    for d in range(dim):
                        # Delta X (5)
                        DX = Xrb[0, d] - X[i, d]
                        # Position update (4)
                        X[i, d] = DX - E * abs(J * Xrb[0, d] - X[i, d])
                        # Boundary
                        X[i, d] = boundary(X[i, d], lb[0, d], ub[0, d])

                # {2} hard besiege
                elif r >= 0.5 and abs(E) < 0.5:
                    for d in range(dim):
                        # Delta X (5)
                        DX = Xrb[0, d] - X[i, d]
                        # Position update (6)
                        X[i, d] = Xrb[0, d] - E * abs(DX)
                        # Boundary
                        X[i, d] = boundary(X[i, d], lb[0, d], ub[0, d])

                # {3} Soft besiege with progressive rapid dives
                elif r < 0.5 and abs(E) >= 0.5:
                    # Levy distribution (9)
                    LF = levy_distribution(beta, dim)
                    Y = np.zeros([1, dim], dtype='float')
                    Z = np.zeros([1, dim], dtype='float')

                    for d in range(dim):
                        # Compute Y (7)
                        Y[0, d] = Xrb[0, d] - E * abs(J * Xrb[0, d] - X[i, d])
                        # Boundary
                        Y[0, d] = boundary(Y[0, d], lb[0, d], ub[0, d])

                    for d in range(dim):
                        # Compute Z (8)
                        Z[0, d] = Y[0, d] + rand() * LF[d]
                        # Boundary
                        Z[0, d] = boundary(Z[0, d], lb[0, d], ub[0, d])

                    # Binary conversion
                    Ybin = binary_conversion(Y, thres, 1, dim)
                    Zbin = binary_conversion(Z, thres, 1, dim)
                    # fitness
                    fitY = Fun(xtrain, ytrain, Ybin[0, :], opts)
                    fitZ = Fun(xtrain, ytrain, Zbin[0, :], opts)
                    # Greedy selection (10)
                    if fitY < fit[i, 0]:
                        fit[i, 0] = fitY
                        X[i, :] = Y[0, :]
                    if fitZ < fit[i, 0]:
                        fit[i, 0] = fitZ
                        X[i, :] = Z[0, :]

                # {4} Hard besiege with progressive rapid dives
                elif r < 0.5 and abs(E) < 0.5:
                    # Levy distribution (9)
                    LF = levy_distribution(beta, dim)
                    Y = np.zeros([1, dim], dtype='float')
                    Z = np.zeros([1, dim], dtype='float')

                    for d in range(dim):
                        # Compute Y (12)
                        Y[0,
                          d] = Xrb[0, d] - E * abs(J * Xrb[0, d] - X_mu[0, d])
                        # Boundary
                        Y[0, d] = boundary(Y[0, d], lb[0, d], ub[0, d])

                    for d in range(dim):
                        # Compute Z (13)
                        Z[0, d] = Y[0, d] + rand() * LF[d]
                        # Boundary
                        Z[0, d] = boundary(Z[0, d], lb[0, d], ub[0, d])

                    # Binary conversion
                    Ybin = binary_conversion(Y, thres, 1, dim)
                    Zbin = binary_conversion(Z, thres, 1, dim)
                    # fitness
                    fitY = Fun(xtrain, ytrain, Ybin[0, :], opts)
                    fitZ = Fun(xtrain, ytrain, Zbin[0, :], opts)
                    # Greedy selection (10)
                    if fitY < fit[i, 0]:
                        fit[i, 0] = fitY
                        X[i, :] = Y[0, :]
                    if fitZ < fit[i, 0]:
                        fit[i, 0] = fitZ
                        X[i, :] = Z[0, :]

    # Best feature subset
    Gbin = binary_conversion(Xrb, thres, 1, dim)
    Gbin = Gbin.reshape(dim)
    pos = np.asarray(range(0, dim))
    sel_index = pos[Gbin == 1]
    num_feat = len(sel_index)
    # Create dictionary
    hho_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}

    return hho_data