import numpy as np import cv2 import os import sys from FeaturesFile import FeaturesFile from FeaturesLearning import FeaturesLearning from FileManager import FileManager from detectAndExtract import detectAndExtract n_folds = input("Insert the number of folds: ") detectors_descriptors=[["MSER","SIFT"],["HARRIS","SIFT"],["SIFT","SIFT"],["ORB","ORB"],["FAST","SURF"],["FAST","BRIEF"],["SURF","SURF"]] for i in range(0,len(detectors_descriptors)): print "\n######################################" name = detectors_descriptors[i][0] + "-" + detectors_descriptors[i][1] print name ff = FeaturesFile(detectors_descriptors[i][0],detectors_descriptors[i][1]) ff.getFeatures() X_train, y_train,_ = ff.featuresCategories() print "#####################" fl = FeaturesLearning(X_train,y_train,ff) fl.trainModel(n_folds)
["SIFT", "SIFT"], ["ORB", "ORB"], ["FAST", "SURF"], ["FAST", "BRIEF"], ] fm = FileManager() categories = fm.listNoHiddenDir(os.path.dirname(__file__) + os.path.sep + "\\Project_OVA\\imm") for i in range(0, len(categories)): currentCategories = categories[i] print "\n######################################" print "CURRENT CATEGORY: " + currentCategories for x in range(0, len(detectors_descriptors)): print "###########################" print currentCategories print "######################################" print "Features: " + detectors_descriptors[x][0] + " - " + detectors_descriptors[x][1] ff = FeaturesFile(detectors_descriptors[x][0], detectors_descriptors[x][1], currentCategories) X_positive, X_negative = ff.getFeatures(currentCategories) fl = FeaturesLearning(X_positive, X_negative, ff) fl.trainModel(n_folds)