def _G0_plot(plot_dir, data_sliced, landscape, fmt): # XXX why is this necessary?? screwing up absolute values previous_JCP = FigureUtil.read_non_peg_landscape(base="../../FigData/") offset_s = np.mean([d.Separation[0] for d in data_sliced]) G_hao = landscape.G0_kcal_per_mol idx_zero = np.where(landscape.q_nm <= 100) G_hao = G_hao - landscape.G0_kcal_per_mol[0] G_JCP = previous_JCP.G0_kcal_per_mol - previous_JCP.G0_kcal_per_mol[0] + 50 offset_jcp_nm = min(previous_JCP.q_nm) landscape_offset_nm = min(landscape.q_nm) q_JCP_nm = previous_JCP.q_nm - offset_jcp_nm + 5 q_Hao_nm = landscape.q_nm - landscape_offset_nm fig = FigureUtil._fig_single(y=6) xlim, ylim = FigureUtil._limits(data_sliced) ax1 = plt.subplot(2, 1, 1) FigureUtil._plot_fec_list(data_sliced, **fmt) FigureUtil._plot_fmt(ax1, **fmt) ax2 = plt.subplot(2, 1, 2) plt.plot(q_Hao_nm, G_hao, label="Aligned, IWT") plt.plot(q_JCP_nm, G_JCP, 'r--', label="JCP landscape") FigureUtil._plot_fmt(ax2, ylabel="G (kcal/mol)", is_bottom=True, xlim=xlim, ylim=[None, None]) PlotUtilities.legend(ax=ax2, handlelength=2) ax2.set_xlim(fmt['xlim']) PlotUtilities.savefig(fig, plot_dir + "FigureSX_LandscapeComparison.png")
def _plot_comparison(plot_dir, heatmap_jcp, iwt_obj, data_sliced_plot): fmt = dict(xlim=[-20, 55], ylim=[-20, 150]) _G0_plot(plot_dir, data_sliced_plot, iwt_obj, fmt=fmt) fig = FigureUtil._fig_single(y=6) ax1 = plt.subplot(2, 1, 1) extent = heatmap_jcp._extent_nm_and_pN(offset_x_nm=0) plt.imshow(heatmap_jcp.heatmap, origin='lower', aspect='auto', extent=extent, cmap=plt.cm.afmhot) FigureUtil._plot_fmt(is_bottom=False, ax=ax1, **fmt) PlotUtilities.title("Top: JCP.\n Bottom: New data, - PEG3400") ax2 = plt.subplot(2, 1, 2) FEC_Plot.heat_map_fec(data_sliced_plot, use_colorbar=False, num_bins=(150, 75), separation_max=fmt['xlim'][1]) FigureUtil._plot_fmt(is_bottom=True, ax=ax2, **fmt) out_name = plot_dir + "FigureSX_jcp_fec_comparison.png" PlotUtilities.savefig(fig, out_name, tight=True)
def _heatmap_alignment(gs, alignment, col_idx): xlim, ylim = FigureUtil._limits(alignment._all_fecs) max_x = xlim[1] bin_step_nm = 1 bin_step_pN = 5 bins_x = np.arange(xlim[0], xlim[1] + bin_step_nm, step=bin_step_nm) bins_y = np.arange(ylim[0], ylim[1] + bin_step_pN, step=bin_step_pN) common_kw = dict(separation_max=max_x, use_colorbar=False, title="", bins=(bins_x, bins_y)) ax1 = plt.subplot(gs[0, col_idx]) FEC_Plot.heat_map_fec(alignment.zeroed.fec_list, **common_kw) FigureUtil._plot_fmt(ax1, xlim, ylim, color=True) ax2 = plt.subplot(gs[1, col_idx]) FEC_Plot.heat_map_fec(alignment.polished.fec_list, **common_kw) FigureUtil._plot_fmt(ax2, xlim, ylim, color=True) title_kw = dict(color='b', y=0.95, loc='left', fontsize=6) downarrow = "$\Downarrow$" title_sub = downarrow + " Subtract $X_{\mathbf{PEG3400}}(F)$ + " + \ "$L_{\mathbf{0,C-term}}$" PlotUtilities.title(title_sub, **title_kw) PlotUtilities.no_x_label(ax=ax2) ax3 = plt.subplot(gs[2, col_idx]) FEC_Plot.heat_map_fec(alignment.blacklisted.fec_list, **common_kw) FigureUtil._plot_fmt(ax3, xlim, ylim, is_bottom=True, color=True) PlotUtilities.title(downarrow + " Remove poorly-fit FECs", **title_kw) return [ax1, ax2, ax3]
def run(): input_dir = "../../../../Data/FECs180307/" out_dir = "./" q_offset_nm = 100 q_interp, energy_list_arr, _ = FigureUtil.\ _read_energy_list_and_q_interp(input_dir, q_offset=q_offset_nm, min_fecs=9) # read in some example data base_dir_BR = input_dir + "BR+Retinal/" names_BR = ["/BR+Retinal/3000nms/170503FEC/landscape_"] PEG600 = FigureUtil._read_samples(base_dir_BR,names_BR)[0] # read in the FECs fecs = FigureUtil._snapsnot(PEG600.base_dir, step=Pipeline.Step.REDUCED).fec_list args_mean = (energy_list_arr, q_interp) mean_A = mean_A_jarzynski(*args_mean) mean_G = mean_G_iwt(*args_mean) mean_F_from_dot = mean_A_dot_iwt(*args_mean)[0] ex = fecs[0] q = q_interp * 1e-9 # xxx offset q and z... probably a little off! z = ex.ZFunc(ex) + q[0] k = ex.SpringConstant beta = ex.Beta A = mean_A[0] G = mean_G[0] n_iters = 5000 force =True kw_lr = dict(G0=G, A=A, q=q, z=z, k=k, beta=beta,n_iters=n_iters) lr = CheckpointUtilities.getCheckpoint("./lr_deconv.pkl", _deconvoled_lr,force,**kw_lr) diff_kT = np.array(lr.mean_diffs) * beta min_idx = np.argmin(diff_kT) idx_search = np.logspace(start=3,stop=np.floor(np.log2(min_idx)), endpoint=True,num=10,base=2) idx_to_use = [int(i) for i in idx_search] # fit a spline to the converged G to get the mean restoring force fig = PlotUtilities.figure((4,6)) xlim = [min(q_interp)-5, max(q_interp)] fmt_kw = dict(xlim=xlim,ylim=[None,None]) ax1 = plt.subplot(3,1,1) plt.plot(diff_kT) plt.axvline(min_idx) FigureUtil._plot_fmt(ax1,is_bottom=True,xlabel="iter #", ylabel="diff G (kT)",xlim=[None,None],ylim=[None,None]) ax2 = plt.subplot(3,1,2) plt.plot(q_interp,lr._G0_initial_lr.G0_kT,color='b',linewidth=3) plt.plot(q_interp,lr.G0_kT,color='r',linewidth=3) FigureUtil._plot_fmt(ax2,is_bottom=False,ylabel="G (kT)",**fmt_kw) ax1 = plt.subplot(3,1,3) FigureUtil._plot_fec_list(fecs, xlim, ylim=[None,None]) for i in idx_to_use: _plot_f_at_iter_idx(lr, i) _plot_f_at_iter_idx(lr, 0,label="F from G0",linewidth=4) plt.plot(q_interp,mean_F_from_dot*1e12,label="F from A_z_dot",linewidth=2) # also plot the force we expect from the original A_z_dot FigureUtil._plot_fmt(ax1,is_bottom=True,xlim=xlim,ylim=[None,None]) PlotUtilities.legend() PlotUtilities.savefig(fig,"FigureS_A_z.png") pass
def _ensemble_alignment(gs, alignment, col_idx): xlim, ylim = FigureUtil._limits(alignment._all_fecs) common_kw = dict(xlim=xlim, ylim=ylim) kw_fmt = dict(color=False, is_left=(col_idx == 0), **common_kw) ax1 = plt.subplot(gs[0, col_idx]) FigureUtil._plot_fec_list(alignment.zeroed.fec_list, **common_kw) FigureUtil._plot_fmt(ax1, **kw_fmt) ax2 = plt.subplot(gs[1, col_idx]) FigureUtil._plot_fec_list(alignment.polished.fec_list, **common_kw) FigureUtil._plot_fmt(ax2, **kw_fmt) PlotUtilities.no_x_label(ax=ax2) ax3 = plt.subplot(gs[2, col_idx]) FigureUtil._plot_fec_list(alignment.blacklisted.fec_list, **common_kw) FigureUtil._plot_fmt(ax3, is_bottom=True, **kw_fmt)
def _make_work_plot(fec_list,x_arr,works_kcal,gs,col,color,title): # get the interpolated work x_interp, mean_W, std_W = _mean_work(x_arr, works_kcal) # use Davids function shift_david_nm_plot = 10 L0_david = 11e-9 max_david = L0_david * 0.95 x_david = np.linspace(0,max_david,num=100) style_david = dict(color='b',linestyle='--',label="David") legend_kw = dict(handlelength=1.5,handletextpad=0.3,fontsize=6) david_F = _f_david(kbT=4.1e-21, L0=L0_david, Lp=0.4e-9, x=x_david) david_W = _single_work(x=x_david,f=david_F) x_david_plot = x_david * 1e9 - shift_david_nm_plot W_david_plot = david_W * kcal_per_mol_per_J() f_david_plot = david_F * 1e12 is_left = (col == 0) fmt_kw = dict(is_left=is_left) label_work = "$W$ (kcal/mol)" # interpolate each work onto a grid xlim, ylim, ylim_work = xlim_ylim() fudge_work = max(std_W) ax1 = plt.subplot(gs[0,col]) FigureUtil._plot_fec_list(fec_list,xlim,ylim) plt.plot(x_david_plot,f_david_plot,**style_david) if is_left: PlotUtilities.legend(**legend_kw) FigureUtil._plot_fmt(ax1, xlim, ylim,**fmt_kw) PlotUtilities.title(title,color=color) ax2 = plt.subplot(gs[1,col]) for x,w in zip(x_arr,works_kcal): plt.plot(x * 1e9,w,linewidth=0.75) FigureUtil._plot_fmt(ax2, xlim, ylim_work,ylabel=label_work,**fmt_kw) ax3 = plt.subplot(gs[2,col]) _plot_mean_works(x_interp, mean_W, std_W, color, title) style_lower_david = dict(**style_david) if (not is_left): style_lower_david['label'] = None plt.plot(x_david_plot,W_david_plot,'b--',zorder=5,**style_lower_david) PlotUtilities.legend(**legend_kw) FigureUtil._plot_fmt(ax3, xlim, ylim_work,is_bottom=True, ylabel=label_work,**fmt_kw)