Example #1
0
    def modifiedCrankNicolson(getU0=None,
                              fDeriv=fZero,
                              scheme=None,
                              T=10,
                              k=1,
                              shape=None,
                              isNeumannFunc=None,
                              schemeNeumannFunc=None,
                              g=gDefault):
        Amatrix, Finterior, Fboundary, geometry = FiniteDifference.getSystem(
            shape=shape,
            f=fZero,
            g=gOne,
            scheme=scheme,
            isNeumannFunc=isNeumannFunc,
            schemeNeumannFunc=schemeNeumannFunc,
            interior=True)
        if shape.dim == 1:

            def getBoundaryVals(t):
                return Shape.getVectorLattice(g(Shape.getMeshGrid(shape), t),
                                              shape)

            U_0 = Shape.getVectorLattice(getU0(Shape.getMeshGrid(shape)),
                                         shape)

        else:

            def getBoundaryVals(t):
                return Shape.getVectorLattice(g(*Shape.getMeshGrid(shape), t),
                                              shape)

            U_0 = Shape.getVectorLattice(getU0(*Shape.getMeshGrid(shape)),
                                         shape)

        return ModifiedCrankNicolson.modifiedCrankNicolsonSolver(
            U_0,
            fDeriv,
            T=T,
            k=k,
            diffOperator=Amatrix,
            boundaryCoeffs=-Fboundary,
            g=getBoundaryVals,
            geometry=geometry)
Example #2
0
    def getDiseaseModelF(getBeta, getGamma, shape):
        # currying
        if shape.dim == 1:
            betaLattice = getBeta(Shape.getMeshGrid(shape))
            gammaLattice = getGamma(Shape.getMeshGrid(shape))
        else:
            betaLattice = getBeta(*Shape.getMeshGrid(shape))
            gammaLattice = getGamma(*Shape.getMeshGrid(shape))

        if np.size(betaLattice) == 1:
            beta = betaLattice
        else:
            beta = Shape.getVectorLattice(betaLattice, shape)

        if np.size(gammaLattice) == 1:
            gamma = gammaLattice
        else:
            gamma = Shape.getVectorLattice(gammaLattice, shape)

        def F(U):
            S, I = np.split(U, 2)
            return np.concatenate((-beta * S * I, beta * S * I - gamma * I))

        return F
Example #3
0
 def getBoundaryVals(t):
     return Shape.getVectorLattice(g(*Shape.getMeshGrid(shape), t),
                                   shape)
Example #4
0
    def __init__(self,
                 getU0_S,
                 getU0_I,
                 muS,
                 muI,
                 schemeS,
                 getBeta,
                 getGamma,
                 T=10,
                 k=1,
                 N=4,
                 isBoundaryFunction=None,
                 dim=2,
                 length=1,
                 origin=0,
                 isNeumannFunc=None,
                 schemeNeumannFunc=None,
                 g=gDefault):
        """
        :param scheme: function returning array of coefficients.
        :param f: function returning time derivative.
        :param g: function  returning boundry conditions.
        :param isBoundaryFunction: return true if point is on boundary
        :param isBoundaryFunction:
        :param length: length of sides
        :param origin: for plotting
        :param isNeumannFunc: Function Returning true if point has Neumann conditions
        :param schemeNeumannFunc: Scheme for Neumann conditions on that point.
        """
        self.T, self.k = T, k
        self.shapeObject = Shape(N=N,
                                 isBoundaryFunc=isBoundaryFunction,
                                 dim=dim,
                                 length=length,
                                 origin=origin)

        AmatrixS, FinternalS, FboundaryS, self.geometryS = FiniteDifference.getSystem(
            shape=self.shapeObject,
            f=fZero,
            g=gOne,
            scheme=schemeS,
            isNeumannFunc=isNeumannFunc,
            schemeNeumannFunc=schemeNeumannFunc,
            interior=True)

        self.geometryI = self.geometryS
        self.Fboundary = np.concatenate((muS * FboundaryS, muI * FboundaryS))

        self.diffOperator = sparse.bmat(
            [[AmatrixS * muS, None], [None, AmatrixS * muI]], format="csc")

        geometrySI = np.concatenate((self.geometryS, self.geometryI), axis=1)
        domainGeometrySI = FiniteDifference.getDomainGeometry(geometrySI)
        self.domainSize = len(domainGeometrySI[0])

        # Assuming R = 0 at t = 0
        if self.shapeObject.dim == 1:
            I_0 = Shape.getVectorLattice(
                getU0_I(Shape.getMeshGrid(self.shapeObject)), self.shapeObject)
            S_0 = Shape.getVectorLattice(
                getU0_S(Shape.getMeshGrid(self.shapeObject)), self.shapeObject)
        else:
            I_0 = Shape.getVectorLattice(
                getU0_I(*Shape.getMeshGrid(self.shapeObject)),
                self.shapeObject)
            S_0 = Shape.getVectorLattice(
                getU0_S(*Shape.getMeshGrid(self.shapeObject)),
                self.shapeObject)
        self.U_0 = np.concatenate(
            (S_0, I_0))[np.logical_or(geometrySI[0], geometrySI[1])]

        diseaseModelF = DiseaseModel.getDiseaseModelF(getBeta, getGamma,
                                                      self.shapeObject)

        self.UList, self.times = ModifiedCrankNicolson.modifiedCrankNicolsonSolver(
            self.U_0,
            f=diseaseModelF,
            T=T,
            k=k,
            diffOperator=self.diffOperator,
            boundaryCoeffs=-self.Fboundary,
            geometry=geometrySI,
            g=gDefault)