def learn(config, data): start = timeit.default_timer() train(config, data) end = timeit.default_timer() print('Time : {0}'.format(end - start)) if __name__ == '__main__': start = timeit.default_timer() path = "/Users/siddharthashankardas/Purdue/Dataset/Karate/" from GNN_configuration import getSettings, load_data_DGL load_config = { "input_path": path, "labeled_only": True, "dataset_name": "karate" } data = load_data_DGL(load_config) print(data) gnn_settings = getSettings(load_config['dataset_name']) gnn_settings['output_path'] = path train(gnn_settings, data) #load_saved(gnn_settings,data) end = timeit.default_timer() print('Time : {0}'.format(end - start))
def learn(): if (LEARNING_data_config['algorithm'] == 'GCN_DGL'): from GNN.GCN_DGL.GCN_DGL_main import learn from GNN_configuration import getSettings, load_data_DGL if LEARNING_data_config["dataset_name"] == "karate": LEARNING_data_config["vectorize"] = "" LEARNING_data_config['input_path'] = dataset_info[LEARNING_data_config[ 'dataset_name']]['path'] + LEARNING_data_config["vectorize"] + "/" data = load_data_DGL(LEARNING_data_config) gnn_settings = getSettings(LEARNING_data_config['dataset_name'], data) gnn_settings['output_path'] = dataset_info[ LEARNING_data_config['dataset_name']]['output_path'] learn(gnn_settings, data) elif (LEARNING_data_config['algorithm'] == 'GSAGE_DGL'): from GNN.GSAGE_DGL.GSAGE_DGL_main import learn from GNN_configuration import getSettings, load_data_DGL if LEARNING_data_config["dataset_name"] == "karate": LEARNING_data_config["vectorize"] = "" LEARNING_data_config['input_path'] = dataset_info[LEARNING_data_config['dataset_name']]['path'] + \ LEARNING_data_config["vectorize"] + "/" data = load_data_DGL(LEARNING_data_config) gnn_settings = getSettings(LEARNING_data_config['dataset_name']) gnn_settings['output_path'] = dataset_info[ LEARNING_data_config['dataset_name']]['output_path'] learn(gnn_settings, data) elif (LEARNING_data_config['algorithm'] == 'GAT_DGL'): from GNN.GAT_DGL.GAT_DGL_main import learn from GNN_configuration import getSettings, load_data_DGL if LEARNING_data_config["dataset_name"] == "karate": LEARNING_data_config["vectorize"] = "" LEARNING_data_config['input_path'] = dataset_info[LEARNING_data_config['dataset_name']]['path'] + \ LEARNING_data_config["vectorize"] + "/" data = load_data_DGL(LEARNING_data_config) gnn_settings = getSettings(LEARNING_data_config['dataset_name']) gnn_settings['output_path'] = dataset_info[ LEARNING_data_config['dataset_name']]['output_path'] learn(gnn_settings, data) elif (LEARNING_data_config['algorithm'] == 'FC'): from GNN.FNN_PT_TF_Keras.FC import learn from GNN_configuration import getSettings, load_data_DGL if LEARNING_data_config["dataset_name"] == "karate": LEARNING_data_config["vectorize"] = "" LEARNING_data_config['input_path'] = dataset_info[LEARNING_data_config['dataset_name']]['path'] + \ LEARNING_data_config["vectorize"] + "/" data = load_data_DGL(LEARNING_data_config) gnn_settings = getSettings(LEARNING_data_config['dataset_name']) gnn_settings['output_path'] = dataset_info[ LEARNING_data_config['dataset_name']]['output_path'] learn(gnn_settings, data) else: print("this GNN is not incorporated yet") sys.exit(0) return