def onclick(event): plt.close('all') point_x, point_y = event.xdata, event.ydata data_points.append(point_x) data_targets.append(point_y) x_tr = np.array(data_points).reshape(-1)[None, :] y_tr = np.array(data_targets) new_gp = GPR(model_covariance_obj, method=method) # new_gp.fit(x_tr, y_tr, max_iter=max_iter) print(new_gp.covariance_obj.get_params()) predicted_y_test, high, low = new_gp.predict(x_test, x_tr, y_tr) fig = plt.figure() gp_plot_reg_data(x_tr, y_tr, 'yo') gp_plot_reg_data(x_test, predicted_y_test, 'b') gp_plot_reg_data(x_test, means_y_test, '--b') gp_plot_reg_data(means_inducing_points, means_mean, 'bo', markersize=12) gp_plot_reg_data(x_test, means_low, '--g') gp_plot_reg_data(x_test, means_high, '--r') gp_plot_reg_data(x_test, low, 'g-') gp_plot_reg_data(x_test, high, 'r-') gp_plot_reg_data(x_test, y_test, 'y-') fig.canvas.mpl_connect('button_press_event', onclick) plt.ylim(-2, 2) plt.xlim(0, 1) plt.show()
np.random.seed(seed) x_tr = np.random.rand(dim, num) if dim == 1: x_test = np.linspace(0, 1, test_num) x_test = x_test.reshape(1, test_num) else: x_test = np.random.rand(dim, test_num) y_tr, y_test = gp.generate_data(x_tr, x_test, seed=seed) data_points = [] data_targets = [] fig = plt.figure() gp_plot_reg_data(x_test, y_test, 'y-') means_gp = GPR(model_covariance_obj, method='means') means_gp.fit(x_tr, y_tr, num_inputs=ind_inputs_num, optimizer_options=lbfgsb_options) print(model_covariance_obj.get_params()) means_inducing_points, means_mean, means_cov = means_gp.inducing_inputs means_y_test, means_high, means_low = means_gp.predict(x_test) def onclick(event): plt.close('all') point_x, point_y = event.xdata, event.ydata data_points.append(point_x) data_targets.append(point_y) x_tr = np.array(data_points).reshape(-1)[None, :]