#### END OF CONFIGURATION OPTION  ####
                        y_train_values = [item for sublist in y_train_values for item in sublist]
                        y_train_predicted_values = [item for sublist in y_train_predicted_values for item in sublist]

                        # remove the -1 values (the ones that are censored)
                        tmp = [i for i in zip(y_train_values, y_train_predicted_values) if int(i[0]) != -1]
                        y_train_values = [i[0] for i in tmp]
                        y_train_predicted_values = [i[1] for i in tmp]


                        y_test_values = [item for sublist in y_test_values for item in sublist]
                        y_test_predicted_values = [item for sublist in y_test_predicted_values for item in sublist]

                        current_train_res, current_test_res = calc_results_and_plot(y_train_values, y_train_predicted_values,
                                                                                    y_test_values,
                                                                                    y_test_predicted_values, algo_name='NeuralNetwork',
                                                                                    visualize=PLOT,
                                                                                    title=f'Epochs: {epochs}, Validation iterations: {number_iterations}',
                                                                                    show=False)

                        # print(current_train_res)
                        # print(current_test_res)
                        if RECORD:
                            GRID_SEARCH_DIRECTORY = 'GridSearch_my_loss_factor_layers_neurons'
                            if not os.path.exists(GRID_SEARCH_DIRECTORY):
                                os.mkdir(GRID_SEARCH_DIRECTORY)
                            if not os.path.exists(GRID_SEARCH_DIRECTORY+'/'+current_configuration_str):
                                os.mkdir(GRID_SEARCH_DIRECTORY+'/'+current_configuration_str)
                            np.save(GRID_SEARCH_DIRECTORY+'/'+current_configuration_str+'/y_train_values.npy', y_train_values)
                            np.save(GRID_SEARCH_DIRECTORY+'/'+current_configuration_str+'/y_train_predicted_values.npy', y_train_predicted_values)
                            np.save(GRID_SEARCH_DIRECTORY+'/'+current_configuration_str+'/y_test_values.npy', y_test_values)
                            np.save(GRID_SEARCH_DIRECTORY+'/'+current_configuration_str+'/y_test_predicted_values.npy', y_test_predicted_values)
Example #2
0
y_train_predicted_values = y_train_dict[
    'alpha=0.01|n_estimators=20|min_child_weight=20|reg_lambda=20|max_depth=5'][
        'y_train_predicted_values']
y_train_values = y_train_dict[
    'alpha=0.01|n_estimators=20|min_child_weight=20|reg_lambda=20|max_depth=5'][
        'y_train_values']
y_test_values = y_test_dict[
    'alpha=0.01|n_estimators=20|min_child_weight=20|reg_lambda=20|max_depth=5'][
        'y_test_values']
y_test_predicted_values = y_test_dict[
    'alpha=0.01|n_estimators=20|min_child_weight=20|reg_lambda=20|max_depth=5'][
        'y_test_predicted_values']
calc_results_and_plot(
    y_train_values,
    y_train_predicted_values,
    y_test_values,
    y_test_predicted_values,
    'NewAlg\n alpha=0.01|n_estimators=20|min_child_weight=20|reg_lambda=20|max_depth=5',
    visualize=True,
    title='NewAlg')
print('**************\n')
print(betas_values)
print(removed_rows)

# betas_as_x = []
# y_train_rho = []
# y_test_rho = []
# for beta, value in betas_values.items():
#     betas_as_x.append(beta)
#     train = value[0]
#     test = value[1]
#     y_train_rho.append(
def calc_full_rho(configuration_stats,
                  epoch_to_use=None,
                  verbose_per_cv=False):
    total_test_values = []
    total_test_predicted_values = []
    total_train_values = []
    total_train_predicted_values = []

    total_train_rho = []
    total_train_mse = []
    totral_train_pearson_rho = []
    total_test_rho = []
    total_test_mse = []
    total_test_pearson_rho = []

    for idx, (test_iter_cv_iter,
              value) in enumerate(configuration_stats.items()):
        print(test_iter_cv_iter)
        test_real, test_predicted, train_real, train_predicted = get_data_from_last_epoch(
            test_iter_cv_iter, value['epoch_list'], -10)
        total_test_values += test_real.tolist()
        total_test_predicted_values += test_predicted.tolist()
        total_train_values += train_real.tolist()
        total_train_predicted_values += train_predicted.tolist()

        current_train, current_test = calc_results_and_plot(
            train_real,
            train_predicted,
            test_real,
            test_predicted,
            algo_name='XGBoost',
            visualize=False,
            title='',
            show=False)
        total_train_rho.append(value['train_rho']['rho']['mean'])
        total_train_mse.append(value['train_mse']['mse']['mean'])
        totral_train_pearson_rho.append(
            value['train_pearson_rho']['rho']['mean'])
        total_test_rho.append(value['test_rho']['rho']['mean'])
        total_test_mse.append(value['test_mse']['mse']['mean'])
        total_test_pearson_rho.append(value['test_pearson_rho']['rho']['mean'])

        if verbose_per_cv:
            print(f'\tTrain\n\t\t{current_train}')

        if (idx + 1) % len(configuration_stats) == 0:
            current_train_res, current_test_res = calc_results_and_plot(
                total_train_values,
                total_train_predicted_values,
                total_test_values,
                total_test_predicted_values,
                algo_name='XGBoost',
                visualize=False,
                title='',
                show=False)
            print(f'Total RHO')
            print(f'\tTrain\n\t\t{current_train_res}')
            print(f'\tTest\n\t\t{current_test_res}')
            total_test_values = []
            total_test_predicted_values = []
            total_train_values = []
            total_train_predicted_values = []
            if verbose_per_cv:
                print(f'\n\tTrain\n\t\t')
                print(f'rho: {get_stats_for_array(np.array(total_train_rho))}')
                print(f'mse: {get_stats_for_array(np.array(total_train_mse))}')
                print(
                    f'pearson: {get_stats_for_array(np.array(totral_train_pearson_rho))}'
                )

                print(f'\tTest\n\t\t')
                print(f'rho: {get_stats_for_array(np.array(total_test_rho))}')
                print(f'mse: {get_stats_for_array(np.array(total_test_mse))}')
                print(
                    f'pearson: {get_stats_for_array(np.array(total_test_pearson_rho))}'
                )
                print(f'\n')