# Definition of the Reference Model
Individual.setRefModel(RefModel(inputDataFile))
# Error and Post-Processing
Individual.setErrorMethod("mse")
Individual.setPostProcessing("scalling")

outputList = 'tmp-progress end-pareto end-convergence'


for k in range(inputRunNb):
    # Set the seed
    util.setSeed()
    # Result directory definition
    resultDir = inputDirName+"_"+'{0:03}'.format(k+1)
    os.system("rm -rf "+resultDir+"/*")    
    MyGenAlgBehavior.setResultDir(resultDir)

    # Tmp Dir
    tmpDir = '/tmp/tmpSymReg/'+resultDir.split('/')[-1]
    os.system("rm -rf "+tmpDir+"/*")    
    MyGenAlgBehavior.setTmpDir(tmpDir)

    # Outputs definition
    MyGenAlgBehavior.setOutputList(outputList)

    # Copy of the main & seed files in the result directory
    os.system("cp seed.txt "+resultDir)

    # Create Genetic Algorithm with own individual and behavior
    genAlg = PYGA_GenAlg(Individual, MyGenAlgBehavior)
Example #2
0
# Definition of the list of enable operators
Individual.opListLoad('../inputs/operatorsList.txt')
# Chargement des paramètres de mutation
Individual.mutationParametersLoad("../inputs/MutationParameters_Choice.txt")
# Definition of the Reference Model
Individual.setRefModel(RefModel("../inputs/Model_Davidson1.txt"))
# Error and Post-Processing
Individual.setErrorMethod("mse")
Individual.setPostProcessing("scalling")

for k in range(10):
    # Set the seed
    util.setSeed(k)
    # Definition of the result Directory
    resultDir = "result_" + __file__.replace(".py", "") + "_" + util.getDate()
    MyGenAlgBehavior.setResultDir(resultDir)
    # Definition du niveau de blabla
    MyGenAlgBehavior.setVerboseLevel(3)
    # Copy of the main & seed files in the result directory
    os.system("cp " + __file__ + " " + resultDir)
    os.system("cp seed.txt " + resultDir)

    # Create Genetic Algorithm with own individual and behavior
    genAlg = PYGA_GenAlg(Individual, MyGenAlgBehavior)

    # Set paramaters of the GA
    genAlg.setParameters(pop_size=200,
                         nb_gen=10000,
                         crossrate=25,
                         mutaterate=40,
                         select='best',
import os
import util

# - PYGA imports -
from PYGA_GenAlg import PYGA_GenAlg

# - Local imports -
from RefModel import RefModel
from Individual import Individual
from GenAlgBehavior import MyGenAlgBehavior

# Definition of the list of enable operators
Individual.opListLoad('../inputs/operatorsList.txt')

#Individual.opListLoad('./model_001_0.0225887259063_11.ind')
MyGenAlgBehavior.loadDirectories('.')


# Chargement des paramètres de mutation
Individual.mutationParametersLoad("../inputs/MutationParameters_Full.txt")
# Definition of the Reference Model
Individual.setRefModel(RefModel("Sextic"))
# Error and Post-Processing
Individual.setErrorMethod("mse")
Individual.setPostProcessing("scalling")

outputList = 'info-improvement end-pareto end-convergence'

for k in range(1):
    # Set the seed
    util.setSeed(k)