def run_real_quiver(cmpH5, quiverConfig, interval, depthLimit, refSeq, refWindow, seedConsensus): intStart, intEnd = interval subWin = subWindow(refWindow, interval) windowRefSeq = refSeq[intStart:intEnd] rows = readsInWindow(cmpH5, subWin, depthLimit = depthLimit, minMapQV = quiverConfig.minMapQV, strategy = "longest", stratum = None, barcode = None) spanningRows = [row for row in rows if cmpH5[row].spansReferenceRange(intStart, intEnd) ] alns = cmpH5[spanningRows] clippedAlns_ = [ aln.clippedTo(*interval) for aln in alns ] clippedAlns__ = [ aln for aln in clippedAlns_ if aln.alignedLength <= 120] clippedAlns = filterAlns(subWin, clippedAlns__, quiverConfig) consensus = consensusForAlignmentsDisregardPOA(subWin, windowRefSeq, clippedAlns, quiverConfig, "A"*100) print(str(consensus.sequence))
def consensusAndVariantsForWindow(cmpH5, refWindow, referenceContig, depthLimit, quiverConfig): """ High-level routine for calling the consensus for a window of the genome given an alignment file. Identifies the coverage contours of the window in order to identify subintervals where a good consensus can be called. Creates the desired "no evidence consensus" where there is inadequate coverage. """ winId, winStart, winEnd = refWindow logging.info("Quiver operating on %s" % reference.windowToString(refWindow)) if options.fancyChunking: # 1) identify the intervals with adequate coverage for quiver # consensus; restrict to intervals of length > 10 alnHits = U.readsInWindow(cmpH5, refWindow, depthLimit=20000, minMapQV=quiverConfig.minMapQV, strategy="long-and-strand-balanced", stratum=options.readStratum, barcode=options.barcode) starts = np.fromiter((hit.tStart for hit in alnHits), np.int) ends = np.fromiter((hit.tEnd for hit in alnHits), np.int) intervals = kSpannedIntervals(refWindow, quiverConfig.minPoaCoverage, starts, ends, minLength=10) coverageGaps = holes(refWindow, intervals) allIntervals = sorted(intervals + coverageGaps) if len(allIntervals) > 1: logging.info("Usable coverage in %s: %r" % (reference.windowToString(refWindow), intervals)) else: allIntervals = [ (winStart, winEnd) ] # 2) pull out the reads we will use for each interval # 3) call consensusForAlignments on the interval subConsensi = [] variants = [] for interval in allIntervals: intStart, intEnd = interval intRefSeq = referenceContig[intStart:intEnd] subWin = subWindow(refWindow, interval) windowRefSeq = referenceContig[intStart:intEnd] alns = U.readsInWindow(cmpH5, subWin, depthLimit=depthLimit, minMapQV=quiverConfig.minMapQV, strategy="long-and-strand-balanced", stratum=options.readStratum, barcode=options.barcode) clippedAlns_ = [ aln.clippedTo(*interval) for aln in alns ] clippedAlns = U.filterAlns(subWin, clippedAlns_, quiverConfig) if len([ a for a in clippedAlns if a.spansReferenceRange(*interval) ]) >= quiverConfig.minPoaCoverage: logging.debug("%s: Reads being used: %s" % (reference.windowToString(subWin), " ".join([str(hit.readName) for hit in alns]))) css = U.consensusForAlignments(subWin, intRefSeq, clippedAlns, quiverConfig) siteCoverage = U.coverageInWindow(subWin, alns) if options.diploid: variants_ = diploid.variantsFromConsensus(subWin, windowRefSeq, css.sequence, css.confidence, siteCoverage, options.aligner, css.mms) else: variants_ = U.variantsFromConsensus(subWin, windowRefSeq, css.sequence, css.confidence, siteCoverage, options.aligner, mms=None) filteredVars = filterVariants(options.minCoverage, options.minConfidence, variants_) # Annotate? if options.annotateGFF: annotateVariants(filteredVars, clippedAlns) variants += filteredVars # Dump? shouldDumpEvidence = \ ((options.dumpEvidence == "all") or (options.dumpEvidence == "variants") and (len(variants) > 0)) if shouldDumpEvidence: dumpEvidence(options.evidenceDirectory, subWin, windowRefSeq, clippedAlns, css) else: css = QuiverConsensus.noCallConsensus(quiverConfig.noEvidenceConsensus, subWin, intRefSeq) subConsensi.append(css) # 4) glue the subwindow consensus objects together to form the # full window consensus css = join(subConsensi) # 5) Return return css, variants