def __init__(self, file_location, model_location, gensim_model = None, need_to_create_model = True): self.file_location = file_location self.model_location = model_location self.gensim_maker_obj = GensimMaker(file_location) if (need_to_create_model): self.gensim_maker_obj.generate_model() self.gensim_maker_obj.save_model(model_location) else: self.gensim_maker_obj.load_model(model_location) if gensim_model is None: self.gensim_model = self.gensim_maker_obj.get_model() with open(self.file_location) as file: self.lines = file.readlines() company_name_set = set() # get the maximum number of words in any file in the directory and make a list of company names max_length = float('inf') * -1 for line in self.lines: line_split_list = line.split('\t') company_name = line_split_list[0] text_body = line_split_list[1] length = len(text_body.split()) if length > max_length: max_length = length self.max_num_words = max_length company_name_set.add(company_name) self.one_hot_dict = self.create_one_hot_encoding_dictionary(company_name_set)
def __init__(self, db_name, table_for_retrieving, model_location, table_for_storing_info, gensim_maker_obj=None, need_to_make_table=False, gensim_model=None, need_to_create_models=True): self.db_name = db_name self.model_location = model_location # To protect against injection nonsense self.table_for_retrieving = self.remove_non_alphachars(table_for_retrieving) self.table_for_storing_info = self.remove_non_alphachars(table_for_storing_info) if gensim_maker_obj is None: self.gensim_maker_obj = GensimMaker(db_name, sql_table_name=table_for_retrieving, use_SQL_sentence_maker=True) else: self.gensim_maker_obj = gensim_maker_obj if need_to_create_models: self.gensim_maker_obj.generate_model() self.gensim_maker_obj.save_model(model_location) else: self.gensim_maker_obj.load_model(model_location) if gensim_model is None: self.gensim_model = self.gensim_maker_obj.get_model() if need_to_make_table: conn = sqlite3.connect(self.db_name) conn.execute('''CREATE TABLE ''' + self.table_for_storing_info + ''' (PATENT_ID TEXT NOT NULL, FIELD_DATA TEXT NOT NULL);''') conn.close() self.generate_organized_db() self.word_vector_dimension = self.gensim_maker_obj.get_dimension_of_a_word() self.max_num_words = self.find_max_num_words()
def __init__(self, db_name, table_for_retrieving, model_location, table_for_storing_info, gensim_maker_obj=None, need_to_make_table=False, gensim_model=None, need_to_create_models=True): self.db_name = db_name self.model_location = model_location # To protect against injection nonsense self.table_for_retrieving = self.remove_non_alphachars( table_for_retrieving) self.table_for_storing_info = self.remove_non_alphachars( table_for_storing_info) if gensim_maker_obj is None: self.gensim_maker_obj = GensimMaker( db_name, sql_table_name=table_for_retrieving, use_SQL_sentence_maker=True) else: self.gensim_maker_obj = gensim_maker_obj if need_to_create_models: self.gensim_maker_obj.generate_model() self.gensim_maker_obj.save_model(model_location) else: self.gensim_maker_obj.load_model(model_location) if gensim_model is None: self.gensim_model = self.gensim_maker_obj.get_model() if need_to_make_table: conn = sqlite3.connect(self.db_name) conn.execute( '''CREATE TABLE ''' + self.table_for_storing_info + ''' (PATENT_ID TEXT NOT NULL, FIELD_DATA TEXT NOT NULL);''') conn.close() self.generate_organized_db() self.word_vector_dimension = self.gensim_maker_obj.get_dimension_of_a_word( ) self.max_num_words = self.find_max_num_words()
def __init__(self, db_name, table_name, model_location, column_name, gensim_maker_obj=None, delimiter = '', gensim_model=None, need_to_create_models=True): self.db_name = db_name self.model_location = model_location # To protect against injection nonsense self.table_name = self.remove_non_alphachars(table_name) self.column_name = self.remove_non_alphachars(column_name) self.delimiter = delimiter if gensim_maker_obj is None: self.gensim_maker_obj = GensimMaker(db_name, sql_table_name=table_name, use_SQL_sentence_maker=True) else: self.gensim_maker_obj = gensim_maker_obj if need_to_create_models: self.gensim_maker_obj.generate_model() self.gensim_maker_obj.save_model(model_location) else: self.gensim_maker_obj.load_model(model_location) if gensim_model is None: self.gensim_model = self.gensim_maker_obj.get_model() self.word_vector_dimension = self.gensim_maker_obj.get_dimension_of_a_word() self.max_num_words = self.find_max_num_words()
models = [ '/home/raditya/Documents/Patents/Models/abstracts_model_30.txt', '/home/raditya/Documents/Patents/Models/inventors_model_10.txt', '/home/raditya/Documents/Patents/Models/assignees_model_20.txt' ] output_tables = [ 'organized_abstracts_30', 'organized_inventors_10', 'assignees_model_20' ] make_models = [False, False, False] make_tables = [False, False, False] gensim_makers = [ GensimMaker(db_name, min_to_ignore=4, size=word_length_s1, sql_table_name=input_tables[0], use_SQL_sentence_maker=True, use_SQL_sentence_maker_for_texts=True), GensimMaker(db_name, min_to_ignore=2, size=word_length_s2, sql_table_name=input_tables[1], use_SQL_sentence_maker=True), GensimMaker(db_name, min_to_ignore=4, size=word_length_s3, sql_table_name=input_tables[2], use_SQL_sentence_maker=True, use_SQL_sentence_maker_for_texts=True) ]
class Preprocessing(object): # file location file_location = '' # the file lines lines = None # Location of gensim model that already has embedding matrix or location to save a new embedding matrix model_location = '' # gensim_model to be used gensim_model = None # Gensim_Maker object to be used gensim_maker_obj = None # the maximum number of words any one company's text is max_num_words = 0 # the dictionary of a word and its one-hot encoding one_hot_dict = dict() def __init__(self, file_location, model_location, gensim_model = None, need_to_create_model = True): self.file_location = file_location self.model_location = model_location self.gensim_maker_obj = GensimMaker(file_location) if (need_to_create_model): self.gensim_maker_obj.generate_model() self.gensim_maker_obj.save_model(model_location) else: self.gensim_maker_obj.load_model(model_location) if gensim_model is None: self.gensim_model = self.gensim_maker_obj.get_model() with open(self.file_location) as file: self.lines = file.readlines() company_name_set = set() # get the maximum number of words in any file in the directory and make a list of company names max_length = float('inf') * -1 for line in self.lines: line_split_list = line.split('\t') company_name = line_split_list[0] text_body = line_split_list[1] length = len(text_body.split()) if length > max_length: max_length = length self.max_num_words = max_length company_name_set.add(company_name) self.one_hot_dict = self.create_one_hot_encoding_dictionary(company_name_set) # Converts line of a file to an array and pad it to a certain length def convert_line_of_file_to_array(self, line_number): num_dim_of_a_word = self.gensim_maker_obj.get_dimension_of_a_word() line = self.lines[line_number] text_body = line.split('\t')[1] big_array = np.zeros((num_dim_of_a_word, self.max_num_words)) word_index = 0 for word in text_body.split(): try: new_word = self.gensim_model[word] # if a word isn't in the model then just leave it as a 0 vector except KeyError: word_index += 1 continue big_array[:, word_index] = new_word word_index += 1 big_array.view('float32') return big_array # creates the input matrix by making an array out of each file and stacking them on top of each other def create_input_matrix(self, list_of_line_numbers): matrix_to_return = np.empty((len(list_of_line_numbers), self.gensim_maker_obj.get_dimension_of_a_word(), self.max_num_words, 1)) matrix_depth_index = 0 for line_number in list_of_line_numbers: matrix_to_add = self.convert_line_of_file_to_array(line_number) matrix_to_return[matrix_depth_index, :, :, 0] = matrix_to_add matrix_depth_index += 1 matrix_to_return.view('float32') return matrix_to_return # creates the correct answer matrix by vertically stacking the word vectors of the input list of answers def create_answer_matrix(self, list_of_line_numbers): matrix_to_return = np.empty((len(list_of_line_numbers), len(self.one_hot_dict))) matrix_row_index = 0 for line_number in list_of_line_numbers: line = self.lines[line_number] company_name = line.split('\t')[0] matrix_to_return[matrix_row_index, :] = self.one_hot_dict[company_name] matrix_row_index += 1 matrix_to_return.view('float32') return matrix_to_return # creates the dictionary for the one hot vectors def create_one_hot_encoding_dictionary(self, list_of_words): vector_length = len(list_of_words) dictionary = dict() index = 0 for name in list_of_words: vector = np.zeros((1, vector_length)) vector.view('float32') vector[0, index] = 1 dictionary[name] = vector index += 1 return dictionary # returns a list of training set, validation set, and test set as 4d numpy arrays as a list in the following order: # training input, training labels, validation input, validation labels, test input, test labels. # input is a list of 3 numbers which are the ratios of the training, validation, and test set, in order def get_data_set(self, ratios_list): num_lines_in_file = len(self.lines) num_lines_for_train_set = int(ratios_list[0] * num_lines_in_file) num_lines_for_valid_set = int(ratios_list[1] * num_lines_in_file) num_lines_for_test_set = num_lines_in_file - num_lines_for_train_set - num_lines_for_valid_set train_set_lines_list = list() valid_set_lines_list = list() test_set_lines_list = list() lines_list = list(range(num_lines_in_file)) for count in range(num_lines_for_train_set): random_line = random.choice(lines_list) train_set_lines_list.append(random_line) lines_list.remove(random_line) for count in range(num_lines_for_valid_set): random_line = random.choice(lines_list) valid_set_lines_list.append(random_line) lines_list.remove(random_line) for count in range(num_lines_for_test_set): random_line = random.choice(lines_list) test_set_lines_list.append(random_line) lines_list.remove(random_line) return [self.create_input_matrix(train_set_lines_list), self.create_answer_matrix(train_set_lines_list), self.create_input_matrix(valid_set_lines_list), self.create_answer_matrix(valid_set_lines_list), self.create_input_matrix(test_set_lines_list), self.create_answer_matrix(test_set_lines_list)] # removes the numbers and extension '.txt' from a string def remove_numbers_and_extension(self, word): output = word.replace('.txt', '') output = re.sub('([0-9]*)', '', output) return output
class SQLPreprocessor(object): # database location where data is gotten db_name = '' # name of the table to retrieve patents table_for_retrieving = '' # table where new data is written table_for_storing_info = '' # Location of gensim model that already has embedding matrix or location to save a new embedding matrix model_location = '' # gensim_model to be used gensim_model = None # Gensim_Maker object to be used gensim_maker_obj = None # the maximum number of words any one patent's text is max_num_words = 0 # dimension of any word vector in the model word_vector_dimension = 0 def __init__(self, db_name, table_for_retrieving, model_location, table_for_storing_info, gensim_maker_obj=None, need_to_make_table=False, gensim_model=None, need_to_create_models=True): self.db_name = db_name self.model_location = model_location # To protect against injection nonsense self.table_for_retrieving = self.remove_non_alphachars(table_for_retrieving) self.table_for_storing_info = self.remove_non_alphachars(table_for_storing_info) if gensim_maker_obj is None: self.gensim_maker_obj = GensimMaker(db_name, sql_table_name=table_for_retrieving, use_SQL_sentence_maker=True) else: self.gensim_maker_obj = gensim_maker_obj if need_to_create_models: self.gensim_maker_obj.generate_model() self.gensim_maker_obj.save_model(model_location) else: self.gensim_maker_obj.load_model(model_location) if gensim_model is None: self.gensim_model = self.gensim_maker_obj.get_model() if need_to_make_table: conn = sqlite3.connect(self.db_name) conn.execute('''CREATE TABLE ''' + self.table_for_storing_info + ''' (PATENT_ID TEXT NOT NULL, FIELD_DATA TEXT NOT NULL);''') conn.close() self.generate_organized_db() self.word_vector_dimension = self.gensim_maker_obj.get_dimension_of_a_word() self.max_num_words = self.find_max_num_words() # gets the maximum number of words in any file in the directory and make a list of company names def find_max_num_words(self): max_length = float('inf') * -1 conn = sqlite3.connect(self.db_name) all_patents = conn.execute("SELECT * FROM " + self.table_for_storing_info + ";") for line in all_patents: if '#!%$^&' in str(line[1]): curr_length = len(str(line[1]).split('#!%$^&')) else: curr_length = len(str(line[1]).split()) if curr_length > max_length: max_length = curr_length conn.close() return max_length def remove_non_alphachars(self, string_to_clean): return ''.join(char for char in string_to_clean if char.isalnum()or char is '_') # Takes the db and makes a new one with patents organized by patent name in one column and field value in the other def generate_organized_db(self): conn = sqlite3.connect(self.db_name) all_patents = conn.execute("SELECT * FROM " + self.table_for_retrieving) line_to_write = '' current_patent_id = 'PLACEHOLDER' for line in all_patents: patent_id = str(line[0]) patent_field_value = str(line[1].replace('\n', '')) if current_patent_id == 'PLACEHOLDER': current_patent_id = patent_id line_to_write += patent_field_value continue if patent_id != current_patent_id: params = (current_patent_id, line_to_write) conn.execute("INSERT INTO " + self.table_for_storing_info + " VALUES (?, ?);", params) current_patent_id = patent_id line_to_write = patent_field_value else: current_patent_id = patent_id line_to_write += '#!%$^&' + patent_field_value # so last line is not ignored params = (current_patent_id, line_to_write) conn.execute( "INSERT INTO " + self.table_for_storing_info + " VALUES (?, ?);", params) conn.commit() conn.close() # Converts the row of the generated db to an array and pad it to the maximum length text string in the old table def convert_row_of_db_to_array(self, line_number): num_dim_of_a_word = self.gensim_maker_obj.get_dimension_of_a_word() conn = sqlite3.connect(self.db_name) params = (str(line_number),) query = conn.execute("SELECT * FROM " + self.table_for_storing_info + " LIMIT 1 OFFSET ?;", params) line = '' for row in query: line = str(row[1]) big_array = np.zeros((num_dim_of_a_word, self.max_num_words)) word_index = 0 if '#!%$^&' in line: for word in line.split('#!%$^&'): try: new_word = self.gensim_model[word] # if a word isn't in the model then just leave it as a 0 vector except KeyError: word_index += 1 continue big_array[:, word_index] = new_word word_index += 1 big_array.view('float32') conn.close() return big_array else: for word in line.replace('.', '').split(): try: new_word = self.gensim_model[word] # if a word isn't in the model then just leave it as a 0 vector except KeyError: word_index += 1 continue big_array[:, word_index] = new_word word_index += 1 big_array.view('float32') conn.close() return big_array # creates the input matrix by making an array out of the text at that row in the generated db and stacks them on top of each other def create_input_matrix(self, list_of_line_numbers): matrix_to_return = np.empty((len(list_of_line_numbers), self.gensim_maker_obj.get_dimension_of_a_word(), self.max_num_words, 1)) matrix_depth_index = 0 for line_number in list_of_line_numbers: matrix_to_add = self.convert_row_of_db_to_array(line_number) matrix_to_return[matrix_depth_index, :, :, 0] = matrix_to_add matrix_depth_index += 1 matrix_to_return.view('float32') return matrix_to_return # returns a list of training set, validation set, and test set as 4d numpy arrays as a list in the following order: # training input, validation input, test input. # input is a list of 3 numbers which are the ratios of the training, validation, and test set, in order def get_input_set(self, ratios_list): random_line_numbers_list = self.get_random_line_numbers(ratios_list) return self.get_input_set_given_line_numbers(random_line_numbers_list) def get_input_set_given_line_numbers(self, list_of_line_numbers): train_set_lines_list = list_of_line_numbers[0] valid_set_lines_list = list_of_line_numbers[1] test_set_lines_list = list_of_line_numbers[2] return [self.create_input_matrix(train_set_lines_list), self.create_input_matrix(valid_set_lines_list), self.create_input_matrix(test_set_lines_list)] # given ratios for training, validation, and test data, returns 3 lists each containing random line numbers from # the organized table assuming line 0 is the first row def get_random_line_numbers(self, ratios_list): conn = sqlite3.connect(self.db_name) count_lines_in_file = conn.execute("SELECT COUNT(*) FROM " + self.table_for_storing_info + ";") num_lines_in_file = -1 for num in count_lines_in_file: num_lines_in_file = num[0] num_lines_for_train_set = int(ratios_list[0] * num_lines_in_file) num_lines_for_valid_set = int(ratios_list[1] * num_lines_in_file) num_lines_for_test_set = num_lines_in_file - num_lines_for_train_set - num_lines_for_valid_set train_set_lines_list = list() valid_set_lines_list = list() test_set_lines_list = list() lines_list = list(range(0, num_lines_in_file)) for count in range(num_lines_for_train_set): random_line = random.choice(lines_list) train_set_lines_list.append(random_line) lines_list.remove(random_line) for count in range(num_lines_for_valid_set): random_line = random.choice(lines_list) valid_set_lines_list.append(random_line) lines_list.remove(random_line) for count in range(num_lines_for_test_set): random_line = random.choice(lines_list) test_set_lines_list.append(random_line) lines_list.remove(random_line) conn.close() return [train_set_lines_list, valid_set_lines_list, test_set_lines_list] # returns a list of patent ids given a list of line numbers in the organized patent file, assuming first row is # row 0 def get_patent_ids_from_line_numbers(self, line_numbers_list): conn = sqlite3.connect(self.db_name) patent_id_list = list() for line in line_numbers_list: params = (str(line),) query = conn.execute( "SELECT * FROM " + self.table_for_storing_info + " LIMIT 1 OFFSET ?;", params) for row in query: patent_id_list.append(str(row[0])) conn.close() return patent_id_list
class SQLPreprocessor(object): # database location where data is gotten db_name = '' # name of the table to retrieve patents table_for_retrieving = '' # table where new data is written table_for_storing_info = '' # Location of gensim model that already has embedding matrix or location to save a new embedding matrix model_location = '' # gensim_model to be used gensim_model = None # Gensim_Maker object to be used gensim_maker_obj = None # the maximum number of words any one patent's text is max_num_words = 0 # dimension of any word vector in the model word_vector_dimension = 0 def __init__(self, db_name, table_for_retrieving, model_location, table_for_storing_info, gensim_maker_obj=None, need_to_make_table=False, gensim_model=None, need_to_create_models=True): self.db_name = db_name self.model_location = model_location # To protect against injection nonsense self.table_for_retrieving = self.remove_non_alphachars( table_for_retrieving) self.table_for_storing_info = self.remove_non_alphachars( table_for_storing_info) if gensim_maker_obj is None: self.gensim_maker_obj = GensimMaker( db_name, sql_table_name=table_for_retrieving, use_SQL_sentence_maker=True) else: self.gensim_maker_obj = gensim_maker_obj if need_to_create_models: self.gensim_maker_obj.generate_model() self.gensim_maker_obj.save_model(model_location) else: self.gensim_maker_obj.load_model(model_location) if gensim_model is None: self.gensim_model = self.gensim_maker_obj.get_model() if need_to_make_table: conn = sqlite3.connect(self.db_name) conn.execute( '''CREATE TABLE ''' + self.table_for_storing_info + ''' (PATENT_ID TEXT NOT NULL, FIELD_DATA TEXT NOT NULL);''') conn.close() self.generate_organized_db() self.word_vector_dimension = self.gensim_maker_obj.get_dimension_of_a_word( ) self.max_num_words = self.find_max_num_words() # gets the maximum number of words in any file in the directory and make a list of company names def find_max_num_words(self): max_length = float('inf') * -1 conn = sqlite3.connect(self.db_name) all_patents = conn.execute("SELECT * FROM " + self.table_for_storing_info + ";") for line in all_patents: if '#!%$^&' in str(line[1]): curr_length = len(str(line[1]).split('#!%$^&')) else: curr_length = len(str(line[1]).split()) if curr_length > max_length: max_length = curr_length conn.close() return max_length def remove_non_alphachars(self, string_to_clean): return ''.join(char for char in string_to_clean if char.isalnum() or char is '_') # Takes the db and makes a new one with patents organized by patent name in one column and field value in the other def generate_organized_db(self): conn = sqlite3.connect(self.db_name) all_patents = conn.execute("SELECT * FROM " + self.table_for_retrieving) line_to_write = '' current_patent_id = 'PLACEHOLDER' for line in all_patents: patent_id = str(line[0]) patent_field_value = str(line[1].replace('\n', '')) if current_patent_id == 'PLACEHOLDER': current_patent_id = patent_id line_to_write += patent_field_value continue if patent_id != current_patent_id: params = (current_patent_id, line_to_write) conn.execute( "INSERT INTO " + self.table_for_storing_info + " VALUES (?, ?);", params) current_patent_id = patent_id line_to_write = patent_field_value else: current_patent_id = patent_id line_to_write += '#!%$^&' + patent_field_value # so last line is not ignored params = (current_patent_id, line_to_write) conn.execute( "INSERT INTO " + self.table_for_storing_info + " VALUES (?, ?);", params) conn.commit() conn.close() # Converts the row of the generated db to an array and pad it to the maximum length text string in the old table def convert_row_of_db_to_array(self, line_number): num_dim_of_a_word = self.gensim_maker_obj.get_dimension_of_a_word() conn = sqlite3.connect(self.db_name) params = (str(line_number), ) query = conn.execute( "SELECT * FROM " + self.table_for_storing_info + " LIMIT 1 OFFSET ?;", params) line = '' for row in query: line = str(row[1]) big_array = np.zeros((num_dim_of_a_word, self.max_num_words)) word_index = 0 if '#!%$^&' in line: for word in line.split('#!%$^&'): try: new_word = self.gensim_model[word] # if a word isn't in the model then just leave it as a 0 vector except KeyError: word_index += 1 continue big_array[:, word_index] = new_word word_index += 1 big_array.view('float32') conn.close() return big_array else: for word in line.replace('.', '').split(): try: new_word = self.gensim_model[word] # if a word isn't in the model then just leave it as a 0 vector except KeyError: word_index += 1 continue big_array[:, word_index] = new_word word_index += 1 big_array.view('float32') conn.close() return big_array # creates the input matrix by making an array out of the text at that row in the generated db and stacks them on top of each other def create_input_matrix(self, list_of_line_numbers): matrix_to_return = np.empty( (len(list_of_line_numbers), self.gensim_maker_obj.get_dimension_of_a_word(), self.max_num_words, 1)) matrix_depth_index = 0 for line_number in list_of_line_numbers: matrix_to_add = self.convert_row_of_db_to_array(line_number) matrix_to_return[matrix_depth_index, :, :, 0] = matrix_to_add matrix_depth_index += 1 matrix_to_return.view('float32') return matrix_to_return # returns a list of training set, validation set, and test set as 4d numpy arrays as a list in the following order: # training input, validation input, test input. # input is a list of 3 numbers which are the ratios of the training, validation, and test set, in order def get_input_set(self, ratios_list): random_line_numbers_list = self.get_random_line_numbers(ratios_list) return self.get_input_set_given_line_numbers(random_line_numbers_list) def get_input_set_given_line_numbers(self, list_of_line_numbers): train_set_lines_list = list_of_line_numbers[0] valid_set_lines_list = list_of_line_numbers[1] test_set_lines_list = list_of_line_numbers[2] return [ self.create_input_matrix(train_set_lines_list), self.create_input_matrix(valid_set_lines_list), self.create_input_matrix(test_set_lines_list) ] # given ratios for training, validation, and test data, returns 3 lists each containing random line numbers from # the organized table assuming line 0 is the first row def get_random_line_numbers(self, ratios_list): conn = sqlite3.connect(self.db_name) count_lines_in_file = conn.execute("SELECT COUNT(*) FROM " + self.table_for_storing_info + ";") num_lines_in_file = -1 for num in count_lines_in_file: num_lines_in_file = num[0] num_lines_for_train_set = int(ratios_list[0] * num_lines_in_file) num_lines_for_valid_set = int(ratios_list[1] * num_lines_in_file) num_lines_for_test_set = num_lines_in_file - num_lines_for_train_set - num_lines_for_valid_set train_set_lines_list = list() valid_set_lines_list = list() test_set_lines_list = list() lines_list = list(range(0, num_lines_in_file)) for count in range(num_lines_for_train_set): random_line = random.choice(lines_list) train_set_lines_list.append(random_line) lines_list.remove(random_line) for count in range(num_lines_for_valid_set): random_line = random.choice(lines_list) valid_set_lines_list.append(random_line) lines_list.remove(random_line) for count in range(num_lines_for_test_set): random_line = random.choice(lines_list) test_set_lines_list.append(random_line) lines_list.remove(random_line) conn.close() return [ train_set_lines_list, valid_set_lines_list, test_set_lines_list ] # returns a list of patent ids given a list of line numbers in the organized patent file, assuming first row is # row 0 def get_patent_ids_from_line_numbers(self, line_numbers_list): conn = sqlite3.connect(self.db_name) patent_id_list = list() for line in line_numbers_list: params = (str(line), ) query = conn.execute( "SELECT * FROM " + self.table_for_storing_info + " LIMIT 1 OFFSET ?;", params) for row in query: patent_id_list.append(str(row[0])) conn.close() return patent_id_list
columns = ['abstract', 'inventors', 'assignee'] models = [ '/home/raditya/Documents/Patents/Models/abstracts_model_50.txt', '/home/raditya/Documents/Patents/Models/inventors_model_20.txt', '/home/raditya/Documents/Patents/Models/assignees_model_30.txt' ] make_models = [True, True, True] ratios = [0.05, 0.02, 0.02] gensim_makers = [ GensimMaker(db_name, min_to_ignore=4, size=word_length_s1, sql_table_name=table_name, column_name=columns[0], delimiter=delimiter, use_SQL_sentence_maker=True, use_SQL_sentence_maker_for_texts=True), GensimMaker(db_name, min_to_ignore=2, size=word_length_s2, sql_table_name=table_name, column_name=columns[1], delimiter=delimiter, use_SQL_sentence_maker=True, use_SQL_sentence_maker_for_texts=False), GensimMaker(db_name, min_to_ignore=4, size=word_length_s3, sql_table_name=table_name,
class Preprocessor(object): # file location file_location = '' # the file lines lines = None # Location of gensim model that already has embedding matrix or location to save a new embedding matrix model_location = '' # gensim_model to be used gensim_model = None # Gensim_Maker object to be used gensim_maker_obj = None # the maximum number of words any one company's text is max_num_words = 0 # the dictionary of a word and its one-hot encoding one_hot_dict = dict() def __init__(self, file_location, model_location, gensim_model = None, need_to_create_model = True): self.file_location = file_location self.model_location = model_location self.gensim_maker_obj = GensimMaker(file_location) if (need_to_create_model): self.gensim_maker_obj.generate_model() self.gensim_maker_obj.save_model(model_location) else: self.gensim_maker_obj.load_model(model_location) if gensim_model is None: self.gensim_model = self.gensim_maker_obj.get_model() with open(self.file_location) as file: self.lines = file.readlines() company_name_set = set() # get the maximum number of words in any file in the directory and make a list of company names max_length = float('inf') * -1 for line in self.lines: line_split_list = line.split('\t') company_name = line_split_list[0] text_body = line_split_list[1] length = len(text_body.split()) if length > max_length: max_length = length self.max_num_words = max_length company_name_set.add(company_name) self.one_hot_dict = self.create_one_hot_encoding_dictionary(company_name_set) # Converts line of a file to an array and pad it to a certain length def convert_line_of_file_to_array(self, line_number): num_dim_of_a_word = self.gensim_maker_obj.get_dimension_of_a_word() line = self.lines[line_number] text_body = line.split('\t')[1] big_array = np.zeros((num_dim_of_a_word, self.max_num_words)) word_index = 0 for word in text_body.split(): try: new_word = self.gensim_model[word] # if a word isn't in the model then just leave it as a 0 vector except KeyError: word_index += 1 continue big_array[:, word_index] = new_word word_index += 1 big_array.view('float32') return big_array # creates the input matrix by making an array out of each file and stacking them on top of each other def create_input_matrix(self, list_of_line_numbers): matrix_to_return = np.empty((len(list_of_line_numbers), self.gensim_maker_obj.get_dimension_of_a_word(), self.max_num_words, 1)) matrix_depth_index = 0 for line_number in list_of_line_numbers: matrix_to_add = self.convert_line_of_file_to_array(line_number) matrix_to_return[matrix_depth_index, :, :, 0] = matrix_to_add matrix_depth_index += 1 matrix_to_return.view('float32') return matrix_to_return # creates the correct answer matrix by vertically stacking the word vectors of the input list of answers def create_answer_matrix(self, list_of_line_numbers): matrix_to_return = np.empty((len(list_of_line_numbers), len(self.one_hot_dict))) matrix_row_index = 0 for line_number in list_of_line_numbers: line = self.lines[line_number] company_name = line.split('\t')[0] matrix_to_return[matrix_row_index, :] = self.one_hot_dict[company_name] matrix_row_index += 1 matrix_to_return.view('float32') return matrix_to_return # creates the dictionary for the one hot vectors def create_one_hot_encoding_dictionary(self, list_of_words): vector_length = len(list_of_words) dictionary = dict() index = 0 for name in list_of_words: vector = np.zeros((1, vector_length)) vector.view('float32') vector[0, index] = 1 dictionary[name] = vector index += 1 return dictionary # returns a list of training set, validation set, and test set as 4d numpy arrays as a list in the following order: # training input, training labels, validation input, validation labels, test input, test labels. # input is a list of 3 numbers which are the ratios of the training, validation, and test set, in order def get_data_set(self, ratios_list): num_lines_in_file = len(self.lines) num_lines_for_train_set = int(ratios_list[0] * num_lines_in_file) num_lines_for_valid_set = int(ratios_list[1] * num_lines_in_file) num_lines_for_test_set = num_lines_in_file - num_lines_for_train_set - num_lines_for_valid_set train_set_lines_list = list() valid_set_lines_list = list() test_set_lines_list = list() lines_list = list(range(num_lines_in_file)) for count in range(num_lines_for_train_set): random_line = random.choice(lines_list) train_set_lines_list.append(random_line) lines_list.remove(random_line) for count in range(num_lines_for_valid_set): random_line = random.choice(lines_list) valid_set_lines_list.append(random_line) lines_list.remove(random_line) for count in range(num_lines_for_test_set): random_line = random.choice(lines_list) test_set_lines_list.append(random_line) lines_list.remove(random_line) return [self.create_input_matrix(train_set_lines_list), self.create_answer_matrix(train_set_lines_list), self.create_input_matrix(valid_set_lines_list), self.create_answer_matrix(valid_set_lines_list), self.create_input_matrix(test_set_lines_list), self.create_answer_matrix(test_set_lines_list)] def get_data_set_given_line_numbers(self, list_of_line_numbers): train_set_lines_list = list_of_line_numbers[0] valid_set_lines_list = list_of_line_numbers[1] test_set_lines_list = list_of_line_numbers[2] return [self.create_input_matrix(train_set_lines_list), self.create_answer_matrix(train_set_lines_list), self.create_input_matrix(valid_set_lines_list), self.create_answer_matrix(valid_set_lines_list), self.create_input_matrix(test_set_lines_list), self.create_answer_matrix(test_set_lines_list)] def get_random_line_numbers(self, ratios_list): num_lines_in_file = len(self.lines) num_lines_for_train_set = int(ratios_list[0] * num_lines_in_file) num_lines_for_valid_set = int(ratios_list[1] * num_lines_in_file) num_lines_for_test_set = num_lines_in_file - num_lines_for_train_set - num_lines_for_valid_set train_set_lines_list = list() valid_set_lines_list = list() test_set_lines_list = list() lines_list = list(range(num_lines_in_file)) for count in range(num_lines_for_train_set): random_line = random.choice(lines_list) train_set_lines_list.append(random_line) lines_list.remove(random_line) for count in range(num_lines_for_valid_set): random_line = random.choice(lines_list) valid_set_lines_list.append(random_line) lines_list.remove(random_line) for count in range(num_lines_for_test_set): random_line = random.choice(lines_list) test_set_lines_list.append(random_line) lines_list.remove(random_line) return [train_set_lines_list, valid_set_lines_list, test_set_lines_list] # removes the numbers and extension '.txt' from a string def remove_numbers_and_extension(self, word): output = word.replace('.txt', '') output = re.sub('([0-9]*)', '', output) return output
class SQLPreprocessorVersion2(object): # database location where data is gotten db_name = '' # name of the table where data is kept table_name = '' # the name of the column where the data is stored column_name = '' # location of gensim model that already has embedding matrix or location to save a new embedding matrix model_location = '' # the delimiter used delimiter = '' # gensim_model to be used gensim_model = None # Gensim_Maker object to be used gensim_maker_obj = None # the maximum number of words any one patent's text is max_num_words = 0 # dimension of any word vector in the model word_vector_dimension = 0 def __init__(self, db_name, table_name, model_location, column_name, gensim_maker_obj=None, delimiter = '', gensim_model=None, need_to_create_models=True): self.db_name = db_name self.model_location = model_location # To protect against injection nonsense self.table_name = self.remove_non_alphachars(table_name) self.column_name = self.remove_non_alphachars(column_name) self.delimiter = delimiter if gensim_maker_obj is None: self.gensim_maker_obj = GensimMaker(db_name, sql_table_name=table_name, use_SQL_sentence_maker=True) else: self.gensim_maker_obj = gensim_maker_obj if need_to_create_models: self.gensim_maker_obj.generate_model() self.gensim_maker_obj.save_model(model_location) else: self.gensim_maker_obj.load_model(model_location) if gensim_model is None: self.gensim_model = self.gensim_maker_obj.get_model() self.word_vector_dimension = self.gensim_maker_obj.get_dimension_of_a_word() self.max_num_words = self.find_max_num_words() # gets the maximum number of words in any file in the directory and make a list of company names def find_max_num_words(self): max_length = float('inf') * -1 conn = sqlite3.connect(self.db_name) all_patents = conn.execute("SELECT " + self.column_name + " FROM " + self.table_name + ";") for line in all_patents: if self.delimiter in str(line[0]): curr_length = len(str(line[0]).split(self.delimiter)) else: curr_length = len(str(line[0]).split()) if curr_length > max_length: max_length = curr_length conn.close() return max_length def remove_non_alphachars(self, string_to_clean): return ''.join(char for char in string_to_clean if char.isalnum()or char is '_') # Converts the patent to an array and pad it to the maximum length text string of any patent's data def convert_patent_to_array(self, patent_id): num_dim_of_a_word = self.gensim_maker_obj.get_dimension_of_a_word() conn = sqlite3.connect(self.db_name) query = conn.execute("SELECT " + self.column_name + " FROM " + self.table_name + " WHERE patent_id =\"" + patent_id + "\"") line = '' for row in query: line = str(row[0]) big_array = np.zeros((num_dim_of_a_word, self.max_num_words)) word_index = 0 if self.delimiter in line: for word in line.split(self.delimiter): try: new_word = self.gensim_model[word] # if a word isn't in the model then just leave it as a 0 vector except KeyError: word_index += 1 continue big_array[:, word_index] = new_word word_index += 1 big_array.view('float32') conn.close() return big_array else: for word in line.replace('.', '').split(): try: new_word = self.gensim_model[word] # if a word isn't in the model then just leave it as a 0 vector except KeyError: word_index += 1 continue big_array[:, word_index] = new_word word_index += 1 big_array.view('float32') conn.close() return big_array # creates the input matrix by making an array out of the text at that row in the generated db and stacks them on top of each other def create_input_matrix(self, list_of_patent_ids): matrix_to_return = np.empty((len(list_of_patent_ids), self.gensim_maker_obj.get_dimension_of_a_word(), self.max_num_words, 1)) matrix_depth_index = 0 for patent in list_of_patent_ids: matrix_to_add = self.convert_patent_to_array(patent) matrix_to_return[matrix_depth_index, :, :, 0] = matrix_to_add matrix_depth_index += 1 matrix_to_return.view('float32') return matrix_to_return # returns a list of training set, validation set, and test set as 4d numpy arrays as a list in the following order: # training input, validation input, test input. # input is a list of 3 numbers which are the ratios of the training, validation, and test set, in order def get_input_set(self, ratios_list): random_patents_lists = self.get_random_patent_ids(ratios_list) return self.get_input_set_given_patent_ids(random_patents_lists) def get_input_set_given_patent_ids(self, list_of_patent_ids): train_set_patent_list = list_of_patent_ids[0] valid_set_patent_list = list_of_patent_ids[1] test_set_patent_list = list_of_patent_ids[2] return [self.create_input_matrix(train_set_patent_list), self.create_input_matrix(valid_set_patent_list), self.create_input_matrix(test_set_patent_list)] # given ratios for training, validation, and test data, returns 3 lists each containing random patent ids def get_random_patent_ids(self, ratios_list): conn = sqlite3.connect(self.db_name) query = conn.execute("SELECT * FROM " + self.table_name + ";") patent_id_list = list() for row in query: patent_id_list.append(str(row[0])) num_patents_in_file = len(patent_id_list) num_patents_for_train_set = int(ratios_list[0] * num_patents_in_file) num_patents_for_valid_set = int(ratios_list[1] * num_patents_in_file) if (ratios_list[0] + ratios_list[1] + ratios_list[2] == 1): num_patents_for_test_set = num_patents_in_file - num_patents_for_train_set - num_patents_for_valid_set else: num_patents_for_test_set = int(ratios_list[2] * num_patents_in_file) train_set_patents_list = list() valid_set_patents_list = list() test_set_patents_list = list() for count in range(num_patents_for_train_set): random_patent = random.choice(patent_id_list) train_set_patents_list.append(random_patent) patent_id_list.remove(random_patent) for count in range(num_patents_for_valid_set): random_patent = random.choice(patent_id_list) valid_set_patents_list.append(random_patent) patent_id_list.remove(random_patent) for count in range(num_patents_for_test_set): random_patent = random.choice(patent_id_list) test_set_patents_list.append(random_patent) patent_id_list.remove(random_patent) conn.close() return [train_set_patents_list, valid_set_patents_list, test_set_patents_list]