exampleFilename = fileNameFormat[threshes["Organelle"]] % threshes currentImage = Image.open(imageDataPath + exampleFilename) asArray = fromimage(currentImage).reshape((numImagePoints, 3)) # port to thresholdNDArray if applyExpertThresholds: expertThresholds = dict(((c, threshes[c]) for c in colorNames)) thresholdNDArray(asArray, expertThresholds) # asArray = fromimage(currentImage).reshape((numImagePoints, 3)) stackArray = np.concatenate((stackArray, asArray)) org = simplifyOrgStain(threshes["Organelle"], threshes["Stain"]) # r = threshes["Series"] - 1 t = timeToIdx(threshes["Time"]) print org, t # convert image stack to counts and add to histograms for c1, c2 in colorPairs: probs = toProbs(stackArray[:, c1], stackArray[:, c2], removeNonresponders=removeNonresponders, removeSaturated=removeSaturated, useLogscaleCounts=useLogscaleCounts) cnd = (org, c1, c2, t) storedProbs[cnd] = probs outputFile = open(outputFile, "wb") cPickle.dump(storedProbs, outputFile, -1)
qDict = {"R8D": qs[R][0], "R9D": qs[R][1], "G8D": qs[G][0], "G9D": qs[G][1], "B8D": qs[B][0], "B9D": qs[B][1]} predThreshes = dict((c, applyCurrentLM(qDict, c)) for c in colorNames) # print ",".join("%5.4f" % t for t in predThresholds.values()) thresholdNDArray(pixels, predThreshes, dropSaturated=True) expArray = np.concatenate((expArray, pixels)) ######################################### # all to here is necessary to get joined series ######################################### org = simplifyOrgStain(cnd["Organelle"], cnd["Stain"]) t = timeToIdx(cnd["Time"]) print org, t # convert image stack to counts and add to histograms for c1, c2 in colorPairs: probs = toProbs(expArray[:,c1], expArray[:,c2], removeNonresponders = removeNonresponders, removeSaturated = removeSaturated, useLogscaleCounts = useLogscaleCounts) cnd = (org, c1, c2, t) storedProbs[cnd] = probs outputFile = open(outputFile, "wb") cPickle.dump(storedProbs, outputFile, -1) outputFile.close()