Example #1
0
    def post_solve(self):
        self.solution_fast = deepcopy(self.solution)

        if self.cycles == 0:
            cycles = 1
        else:
            cycles = self.cycles
            self.solution[-1] = self.solution_terminal_cs

        for i in range(cycles):
            for j in range(self.T_cycle):
                solution = self.solution[i * self.T_cycle + j]

                # Define the borrowing constraint (limiting consumption function)
                cFuncNowCnst = LinearInterp(
                    np.array([solution.mNrmMin, solution.mNrmMin + 1]),
                    np.array([0.0, 1.0]),
                )

                """
                Constructs a basic solution for this period, including the consumption
                function and marginal value function.
                """

                if self.CubicBool:
                    # Makes a cubic spline interpolation of the unconstrained consumption
                    # function for this period.
                    cFuncNowUnc = CubicInterp(
                        solution.mNrm,
                        solution.cNrm,
                        solution.MPC,
                        solution.cFuncLimitIntercept,
                        solution.cFuncLimitSlope,
                    )
                else:
                    # Makes a linear interpolation to represent the (unconstrained) consumption function.
                    # Construct the unconstrained consumption function
                    cFuncNowUnc = LinearInterp(
                        solution.mNrm,
                        solution.cNrm,
                        solution.cFuncLimitIntercept,
                        solution.cFuncLimitSlope,
                    )

                # Combine the constrained and unconstrained functions into the true consumption function
                cFuncNow = LowerEnvelope(cFuncNowUnc, cFuncNowCnst)

                # Make the marginal value function and the marginal marginal value function
                vPfuncNow = MargValueFuncCRRA(cFuncNow, self.CRRA)

                # Pack up the solution and return it
                consumer_solution = ConsumerSolution(
                    cFunc=cFuncNow,
                    vPfunc=vPfuncNow,
                    mNrmMin=solution.mNrmMin,
                    hNrm=solution.hNrm,
                    MPCmin=solution.MPCmin,
                    MPCmax=solution.MPCmax,
                )

                if self.vFuncBool:
                    vNvrsFuncNow = CubicInterp(
                        solution.mNrmGrid,
                        solution.vNvrs,
                        solution.vNvrsP,
                        solution.MPCminNvrs * solution.hNrm,
                        solution.MPCminNvrs,
                    )
                    vFuncNow = ValueFuncCRRA(vNvrsFuncNow, self.CRRA)

                    consumer_solution.vFunc = vFuncNow

                if self.CubicBool or self.vFuncBool:
                    _searchFunc = (
                        _find_mNrmStECubic if self.CubicBool else _find_mNrmStELinear
                    )
                    # Add mNrmStE to the solution and return it
                    consumer_solution.mNrmStE = _add_mNrmStEIndNumba(
                        self.PermGroFac[j],
                        self.Rfree,
                        solution.Ex_IncNext,
                        solution.mNrmMin,
                        solution.mNrm,
                        solution.cNrm,
                        solution.MPC,
                        solution.MPCmin,
                        solution.hNrm,
                        _searchFunc,
                    )

                self.solution[i * self.T_cycle + j] = consumer_solution
Example #2
0
    def makeSolution(self,cNrm,mNrm):
        '''
        Construct an object representing the solution to this period's problem.

        Parameters
        ----------
        cNrm : np.array
            Array of normalized consumption values for interpolation.  Each row
            corresponds to a Markov state for this period.
        mNrm : np.array
            Array of normalized market resource values for interpolation.  Each
            row corresponds to a Markov state for this period.

        Returns
        -------
        solution : ConsumerSolution
            The solution to the single period consumption-saving problem. Includes
            a consumption function cFunc (using cubic or linear splines), a marg-
            inal value function vPfunc, a minimum acceptable level of normalized
            market resources mNrmMin, normalized human wealth hNrm, and bounding
            MPCs MPCmin and MPCmax.  It might also have a value function vFunc
            and marginal marginal value function vPPfunc.  All of these attributes
            are lists or arrays, with elements corresponding to the current
            Markov state.  E.g. solution.cFunc[0] is the consumption function
            when in the i=0 Markov state this period.
        '''
        solution = ConsumerSolution() # An empty solution to which we'll add state-conditional solutions
        # Calculate the MPC at each market resource gridpoint in each state (if desired)
        if self.CubicBool:
            dcda          = self.EndOfPrdvPP/self.uPP(np.array(self.cNrmNow))
            MPC           = dcda/(dcda+1.0)
            self.MPC_temp = np.hstack((np.reshape(self.MPCmaxNow,(self.StateCount,1)),MPC))
            interpfunc    = self.makeCubiccFunc
        else:
            interpfunc    = self.makeLinearcFunc

        # Loop through each current period state and add its solution to the overall solution
        for i in range(self.StateCount):
            # Set current-period-conditional human wealth and MPC bounds
            self.hNrmNow_j   = self.hNrmNow[i]
            self.MPCminNow_j = self.MPCminNow[i]
            if self.CubicBool:
                self.MPC_temp_j  = self.MPC_temp[i,:]

            # Construct the consumption function by combining the constrained and unconstrained portions
            self.cFuncNowCnst = LinearInterp([self.mNrmMin_list[i], self.mNrmMin_list[i]+1.0],
                                             [0.0,1.0])
            cFuncNowUnc       = interpfunc(mNrm[i,:],cNrm[i,:])
            cFuncNow          = LowerEnvelope(cFuncNowUnc,self.cFuncNowCnst)

            # Make the marginal value function and pack up the current-state-conditional solution
            vPfuncNow     = MargValueFunc(cFuncNow,self.CRRA)
            solution_cond = ConsumerSolution(cFunc=cFuncNow, vPfunc=vPfuncNow,
                                             mNrmMin=self.mNrmMinNow)
            if self.CubicBool: # Add the state-conditional marginal marginal value function (if desired)
                solution_cond = self.addvPPfunc(solution_cond)

            # Add the current-state-conditional solution to the overall period solution
            solution.appendSolution(solution_cond)

        # Add the lower bounds of market resources, MPC limits, human resources,
        # and the value functions to the overall solution
        solution.mNrmMin = self.mNrmMin_list
        solution         = self.addMPCandHumanWealth(solution)
        if self.vFuncBool:
            vFuncNow = self.makevFunc(solution)
            solution.vFunc = vFuncNow

        # Return the overall solution to this period
        return solution