Example #1
0
    def __init__(self, restore_from=[]):
        self.hand_evaluator = HandEvaluator()
        self.Q_gamma = 0.9
        self.epsilon = 0.995
        self.new_state = []

        if restore_from:
            print("Restoring from: " + restore_from)
            self.Q = load_model(restore_from)
        else:
            self.Q = self.initialize_network()
Example #2
0
File: Bot.py Project: nahu/PokerBot
    def __init__(self, identificador, fichas, nombre, p=0.5):
        '''
        Constructor del Bot
        '''

        self.handEval = HandEvaluator()
        self.bot = True
        self.nombre = nombre
        self.fichas = fichas
        self.id = identificador
        self.mano = [None, None]
        self.apuesta_actual = 0
        self.dealer = False
        self.jugada = None
        self.esperar = False
        self.allin = False
        self.p = p
Example #3
0
File: Bot.py Project: nahu/PokerBot
class Bot(Jugador):
    '''
    El bot extiende de un jugador, redefine los métodos del mismo
    '''
    
    def __init__(self, identificador, fichas, nombre, p=0.5):
        '''
        Constructor del Bot
        '''

        self.handEval = HandEvaluator()
        self.bot = True
        self.nombre = nombre
        self.fichas = fichas
        self.id = identificador
        self.mano = [None, None]
        self.apuesta_actual = 0
        self.dealer = False
        self.jugada = None
        self.esperar = False
        self.allin = False
        self.p = p
        
    def inicializar_estrategia(self):
        estrategia = self.establecer_estrategia(self.p)
        self.cerebro = Cerebro(estrategia[0], estrategia[1])
        
    def obtener_jugada(self, ronda, comunitarias):
        '''
        Dependiendo de la ronda hace lo que tiene que hacer
        @param ronda : Ronda, para saber el tipo de ronda y las apuesta
        hasta el momento en esa ronda
        1-preflop, 2-flop, 3-turn y 4-river
        1, 2, 3 o 4 veces.
        @type ronda: Ronda
        @param comunitarias: lista de 5 strings que denotan las cartas
        comunitarias en la ronda, por ejemplo, si es el flop la lista 
        sería [carta1, carta2, carta3, None, None]
        @type comunitarias: String[]
        @return jugada : devuelve lo que tiene que hacer
        si es un jugador se obtiene de la pantalla
        si es un bot se calcula.
        
        @rtype: String
        '''
        
        ''' return Cerebro().elegir_accion(mano, comunitarias, ronda, dict_odds, dealer)
        dealer: true o false si es que soy o no dealer
        '''
        #print self.mano   
        return self.cerebro.elegir_accion(self.mano, comunitarias, ronda, self.calcular_odds(ronda, comunitarias), self.dealer)
         
    
    def calcular_odds(self, ronda, comunitarias):
        
        cartas_restantes = [1,50, 47, 46, 45]
        odds={"carta alta":[None,True],"par":[None,True], "doble par":[None,True], "trio":[None,True], "escalera interna":[None,True], "escalera abierta":[None,True], 
              "color":[None, True], "full":[None,True], "poker":[None,True], "escalera color":[None,True]}

        numero,colores = self.handEval.gobisificar(self.mano, comunitarias)
        
        
        if ronda.tipo == 1:#solo en el pre-flop
            tipo = self.tiene_cartas_consecutivas()
            if tipo:
                    odds["escalera interna"][0]=(cartas_restantes[ronda.tipo]/12)-1
                    odds["escalera abierta"][0]=(cartas_restantes[ronda.tipo]/12)-1
                    
            if self.tiene_cartas_del_mismo_color():
                    odds["color"][0]=(cartas_restantes[ronda.tipo]/11)-1
        
        if self.tiene_carta_alta():
            odds["carta alta"][0]=0
        
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++  
        tipo, jugada = self.handEval.comprobar_par(numero,colores)
        
        if tipo: #tiene par
            odds["trio"][0]=(cartas_restantes[ronda.tipo]/2)-1
            odds["doble par"][0]=(cartas_restantes[ronda.tipo]/3)-1
            odds["par"][0]=0
        else: #no tiene par
            odds["par"][0]=(cartas_restantes[ronda.tipo]/6)-1
             
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++  
#        print "numero:", numero
#        print "colores: ", colores
        tipo, jugada = self.handEval.comprobar_doble_par(numero,colores)
        if tipo:
            #tiene doble par
            odds["doble par"][0]=0
            odds["full"][0]= (cartas_restantes[ronda.tipo]/4)-1
            
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++
        tipo, jugada = self.handEval.comprobar_trio(numero,colores)
        if tipo:
            #tiene trio
            odds["trio"][0]= 0
            odds["full"][0]=(cartas_restantes[ronda.tipo]/3)-1
            odds["poker"][0] = (cartas_restantes[ronda.tipo]/1)-1
            
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++
        tipo, jugada = self.handEval.comprobar_escalera(numero,colores)
        if tipo: #tiene Escalera
                odds["escalera abierta"][0]=0
                odds["escalera interna"][0]=0     
        else:#no tiene escalera
            if self.handEval.posible_escalera_abierta(numero,colores):
                odds["escalera abierta"][0]= (cartas_restantes[ronda.tipo]/8)-1
            else:
                if self.handEval.posible_escalera_interna(numero,colores):
                    odds["escalera interna"][0] = (cartas_restantes[ronda.tipo]/4)-1
                    
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++
        tipo,jugada = self.handEval.comprobar_color(numero,colores)
        
        if tipo:
            #tiene color
            odds["color"][0]= 0
        else:
            if self.handEval.posible_color(numero,colores):
                odds["color"][0]= (cartas_restantes[ronda.tipo]/9)-1
        
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++               
        tipo,jugada = self.handEval.comprobar_full(numero, colores)
        if tipo:
            odds["full"][0]=0
        
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++
        tipo, jugada = self.handEval.comprobar_poker(numero,colores)
        if tipo:
            odds["poker"][0]=0    
       
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++
        if (odds["escalera interna"][0]==0 or odds["escalera abierta"][0]==0) and odds["color"][0]==0:
            odds["escalera color"][0]=0
        
        if not ronda.tipo == 1:
            self.comprobar_jugada_en_mesa(odds, comunitarias)
             
        return odds 
                    
    
    def comprobar_jugada_en_mesa(self,odds, comunitarias): 
        numero,colores = self.handEval.gobisificar([],comunitarias)
        
        #comprobar par
        tipo,jugada = self.handEval.comprobar_par(numero,colores)
        if tipo: 
            odds["par"][1] = False
        #comprobar doble par
        tipo,jugada = self.handEval.comprobar_doble_par(numero,colores)
        if tipo:
            odds["doble par"][1] = False
        #comprobar trio
        tipo,jugada = self.handEval.comprobar_trio(numero,colores)
        if tipo:
            odds["trio"][1]=False
        #comprobar escalera
        tipo,jugada = self.handEval.comprobar_escalera(numero,colores)
        if tipo:
            odds["escalera interna"][1] = False
            odds["escalera abierta"][1] = False
        #comprobar color
        tipo,jugada = self.handEval.comprobar_color(numero,colores)
        if tipo:
            odds["color"][1] = False
        
        #comprobar full
        tipo,jugada = self.handEval.comprobar_full(numero,colores)
        if tipo:
            odds["full"][1] = False
        #comprobar poker
        tipo,jugada = self.handEval.comprobar_poker(numero,colores)
        if tipo:
            odds["full"][1] = False               
                    
    def tiene_cartas_consecutivas(self):
        cartas={"1":1, "2":2, "3":3, "4":4, "5":5, "6":6, "7":7, "8":8, "9":9, "d":10, "j":11, "q":12, "k":13}
        
        carta1 = self.mano[0][0]
        carta2 = self.mano[1][0]
        r = cartas[carta1]-cartas[carta2]
        if r==1 or r==-1 or r== 12:
            return True
        return False
    
    def tiene_cartas_del_mismo_color(self):
        if self.mano[0][1] == self.mano[1][0]:
            return True
        return False
    
    def tiene_carta_alta(self):
        if self.mano[0][0]== "7" or self.mano[0][0]=="8" or self.mano[0][0]=="9" \
        or self.mano[0][0]=="d"or self.mano[0][0]=="j" or self.mano[0][0]=="q" \
        or self.mano[0][0]=="k" or self.mano[0][0]=="1":
            return True
        return False
    
    def tiene_par_en_mano(self):
        if self.mano[0][0] == self.mano[0][0] :
            return True
        return False
        
    def establecer_estrategia(self,numero):
        aleatorio = random.random()
        if numero < 0.9:
            limite_superior = numero + 0.1
        else:
            limite_superior = 1
        if numero > 0.1:
            limite_inferior = numero - 0.1
        else:
            limite_inferior = 0
        if limite_superior < 1:
            rango_mentira = 1 - limite_superior
        else:
            rango_mentira = 0
        if aleatorio < limite_inferior:
            return (2,0)
        if aleatorio >= limite_inferior and aleatorio <= limite_superior:
            return (3,random.randint(1,4))
        rango_mentira = rango_mentira / 4
        for i in range(1,5):
            if aleatorio <= limite_superior + rango_mentira*i:
                return (1,i)
Example #4
0
class AdaptiveBrain:
    def __init__(self, restore_from=[]):
        self.hand_evaluator = HandEvaluator()
        self.Q_gamma = 0.9
        self.epsilon = 0.995
        self.new_state = []

        if restore_from:
            print("Restoring from: " + restore_from)
            self.Q = load_model(restore_from)
        else:
            self.Q = self.initialize_network()

    def initialize_network(self):
        TIMESTEPS = None
        TEMPORAL_DATADIM = 5
        STATIC_DATADIM = 1

        # Learns over the temporal feature matrix
        temporal_model = Sequential()
        temporal_model.add(
            LSTM(12,
                 return_sequences=True,
                 input_shape=(TIMESTEPS, TEMPORAL_DATADIM))
        )  # returns a sequence of vectors of dimension 12
        temporal_model.add(LSTM(12, return_sequences=True)
                           )  # returns a sequence of vectors of dimension 12
        temporal_model.add(LSTM(12))  # return a single vector of dimension 12

        # Learns over static features.
        static_model = Sequential()
        static_model.add(Dense(5, input_dim=STATIC_DATADIM, activation="relu"))

        combined_model = Sequential()
        combined_model.add(Merge([temporal_model, static_model],
                                 mode='concat'))
        combined_model.add(Dense(10, activation='relu'))
        combined_model.add(Dense(3, activation='relu'))
        combined_model.add(Dense(1, activation='linear'))

        combined_model.compile(loss='mse', optimizer='adam')

        return combined_model

    def enumerate_next_action_vectors(self, bot):
        BET_INCREMENT = 5
        STACKSIZE = 200.0
        possible_actions = bot.possible_actions

        last_in_pot_hero = bot.temporal_feature_matrix[0, -1]
        last_in_pot_villain = bot.temporal_feature_matrix[1, -1]
        street = bot.get_street()
        if is_discard_round(possible_actions):
            # Showdown probabilities of discarding.
            win_pct_discard_none = self.hand_evaluator.evaluate_showdown_probabilities(
                [bot.hand['hole1'], bot.hand['hole2']], bot.hand['board'], 100)
            win_pct_discard_1 = self.hand_evaluator.evaluate_showdown_probabilities(
                [bot.hand['hole2']], bot.hand['board'], 100)
            win_pct_discard_2 = self.hand_evaluator.evaluate_showdown_probabilities(
                [bot.hand['hole1']], bot.hand['board'], 100)

            a_none = np.asarray(
                [last_in_pot_hero, last_in_pot_villain, street, 0, 0]).reshape(
                    (1, -1))
            a_discard = np.asarray(
                [last_in_pot_hero, last_in_pot_villain, street, 1, 0]).reshape(
                    (1, -1))

            input_discard_none = [a_none, np.asarray([[win_pct_discard_none]])]
            input_discard_1 = [a_discard, np.asarray([[win_pct_discard_1]])]
            input_discard_2 = [a_discard, np.asarray([[win_pct_discard_2]])]

            inputs = [input_discard_none, input_discard_1, input_discard_2]
            action_strs = [
                'CHECK', 'DISCARD:' + bot.hand['hole1'],
                'DISCARD:' + bot.hand['hole2']
            ]
        else:
            # Available actions should be one of the following:
            # BET:minBet:maxBet *
            # CALL*
            # CHECK *
            # FOLD *
            # RAISE:minRaise:maxRaise *
            showdown_prob = self.hand_evaluator.evaluate_showdown_probabilities(
                [bot.hand['hole1'], bot.hand['hole2']], bot.hand['board'], 100)

            inputs = []
            action_strs = []

            # Folding
            #if can_fold(possible_actions):
            #    inputs.append([np.asarray([-1, -1, -1, -1, -1]).reshape((1,-1)),
            #                   np.asarray([[showdown_prob]]) ])
            #    action_strs.append("FOLD")

            # Checking
            inputs.append([
                np.asarray(
                    [last_in_pot_hero, last_in_pot_villain, street, 0,
                     0]).reshape((1, -1)),
                np.asarray([[showdown_prob]])
            ])
            if can_check(possible_actions):
                action_strs.append("CHECK")
            else:
                action_strs.append("FOLD")

            # Calling
            if can_call(possible_actions):
                call_amt = bot.temporal_feature_matrix[1, -1]
                inputs.append([
                    np.asarray([call_amt, last_in_pot_villain, street, 0,
                                0]).reshape((1, -1)),
                    np.asarray([[showdown_prob]])
                ])
                action_strs.append("CALL")

            # Betting or raising.
            cpmi, action_type, min_bet, max_bet = can_put_money_in(
                possible_actions)
            if cpmi:
                max_of_prev_street = bot.get_max_of_prev_street(0)
                for i in range(min_bet, max_bet + 1, BET_INCREMENT):
                    inputs.append([
                        np.asarray([
                            float(i) / STACKSIZE + max_of_prev_street,
                            last_in_pot_villain, street, 0, 0
                        ]).reshape((1, -1)),
                        np.asarray([[showdown_prob]])
                    ])
                    action_strs.append(action_type + ":" + str(i))

                if i != max_bet:  # tack on the max_bet
                    i = max_bet
                    inputs.append([
                        np.asarray([
                            float(i) / STACKSIZE + max_of_prev_street,
                            last_in_pot_villain, street, 0, 0
                        ]).reshape((1, -1)),
                        np.asarray([[showdown_prob]])
                    ])
                    action_strs.append(action_type + ":" + str(i))

        return inputs, action_strs

    def evaluate_Q_function(self, S, a):
        # S = state
        # a = action(s)

        Q_in_temporal = np.vstack((S, a[0][0])).reshape((1, -1, S.shape[1]))
        Q_in_static = a[0][1]

        for i in range(1, len(a)):
            q_i = np.vstack((S, a[i][0])).reshape((1, -1, S.shape[1]))
            Q_in_temporal = np.vstack((Q_in_temporal, q_i))
            Q_in_static = np.vstack((Q_in_static, a[i][1]))

        possible_states = [Q_in_temporal, Q_in_static]
        return self.Q.predict(possible_states), possible_states

    def update_Q_function(self, bot):
        # self.new_state is the move we made in the last decision point.

        if len(self.new_state) > 0:  # only update if tfm is initialized.
            print("YO!! Updating Q-function")
            actions, action_strs = self.enumerate_next_action_vectors(bot)
            Qvals, possible_states = self.evaluate_Q_function(
                bot.temporal_feature_matrix.T, actions)
            reward = bot.hand['winnings']

            if reward != 0:  # hand is over -> terminal state.
                target = reward
            else:  # we're still playing the hand
                #newQ = self.Q.predict(self.new_state, batch_size=1)
                maxQ = np.max(Qvals)
                target = self.Q_gamma * maxQ  # reward is zero, so our target is simply our expected future reward.

            print(target)
            self.Q.fit(self.new_state,
                       np.asarray(target).reshape((1, 1)),
                       batch_size=1,
                       nb_epoch=5,
                       verbose=0)

    def learn_from_last_action(self, bot):
        self.update_Q_function(bot)

    def get_reward_for_folding(self, bot):
        return -self.bot.temporal_feature_matrix[0, -1] * 200.0

    def get_epsilon_value(self):
        self.epsilon = 0.995 * self.epsilon
        return self.epsilon

    def make_decision(self, bot):
        print("Making Q decision")
        actions, action_strs = self.enumerate_next_action_vectors(bot)

        # Evaluates Q-function over all non-folding actions.
        Qvals, possible_states = self.evaluate_Q_function(
            bot.temporal_feature_matrix.T, actions)

        if random.random() > self.get_epsilon_value():
            best_idx = np.argmax(Qvals)
        else:
            print("woowowow taking random action!!")
            best_idx = random.randint(0, Qvals.shape[0] - 1)

        best_temporal_in = possible_states[0][best_idx]
        best_static_in = possible_states[1][best_idx]
        self.new_state = [
            best_temporal_in.reshape(
                (1, best_temporal_in.shape[0], best_temporal_in.shape[1])),
            best_static_in.reshape((1, 1))
        ]

        return action_strs[best_idx]
Example #5
0
 def __init__(self):
     self.hand_evaluator = HandEvaluator()
Example #6
0
class RationalBrain:
    def __init__(self):
        self.hand_evaluator = HandEvaluator()

    def make_decision(self, bot):
        # bot is a poker player bot.
        # by passing bot, this function has access to the internals of bot
        # which includes various features.

        possible_actions = bot.possible_actions
        if is_discard_round(possible_actions):
            print("This is a discard round")
            # Just take a look at naive showdown probabilities and make the discard decision based on that.
            win_pct_discard_none = self.hand_evaluator.evaluate_showdown_probabilities(
                [bot.hand['hole1'], bot.hand['hole2']], bot.hand['board'], 100)
            win_pct_discard_1 = self.hand_evaluator.evaluate_showdown_probabilities(
                [bot.hand['hole2']], bot.hand['board'], 100)
            win_pct_discard_2 = self.hand_evaluator.evaluate_showdown_probabilities(
                [bot.hand['hole1']], bot.hand['board'], 100)

            prob_vec = np.asarray(
                [win_pct_discard_none, win_pct_discard_1, win_pct_discard_2])
            print(prob_vec)
            action_idx = np.argmax(prob_vec)

            if action_idx == 0:
                action_str = "CHECK"
            elif action_idx == 1:
                action_str = "DISCARD:" + bot.hand['hole1']
            elif action_idx == 2:
                action_str = "DISCARD:" + bot.hand['hole2']

            print("ACTION_TAKEN -> " + action_str)
            return action_str

        else:  # This is a quantitative bet round, where we have to decide how much money to put on the table (if any <=> fold)
            print("This is a Q-bet round")
            showdown_prob = self.hand_evaluator.evaluate_showdown_probabilities(
                [bot.hand['hole1'], bot.hand['hole2']], bot.hand['board'], 100)

            print("showdown prob:" + str(showdown_prob))
            if showdown_prob > 0.8:
                stake_is_worth = random.randint(170, 200)
            elif showdown_prob > 0.6 and showdown_prob < 0.8:
                stake_is_worth = random.randint(100, 169)
            elif showdown_prob > 0.5 and showdown_prob < 0.6:
                stake_is_worth = random.randint(50, 100)
            elif showdown_prob > 0.3 and showdown_prob < 0.5:
                stake_is_worth = random.randint(10, 50)
            else:
                stake_is_worth = 0

            # Available actions should be one of the following:
            # BET:minBet:maxBet
            # CALL
            # CHECK
            # FOLD
            # RAISE:minRaise:maxRaise
            current_stake = np.sum(bot.temporal_feature_matrix[0]) * 200
            villain_hero_differential = (bot.hand['pot_size'][-1] -
                                         current_stake)
            stake_difference = stake_is_worth - villain_hero_differential

            print("Current stake: " + str(current_stake))
            print("Stake worth: " + str(stake_is_worth))
            print("Stake diff: " + str(stake_difference))

            if stake_difference < 0:
                action_str = "CHECK" if can_check(
                    bot.possible_actions) else "FOLD"
            else:
                if stake_difference < 30:
                    action_str = "CHECK" if can_check(
                        bot.possible_actions) else "CALL"
                else:
                    can_put_money_in, action_type, min_bet, max_bet = can_put_money_in(
                        bot.possible_actions)
                    if action_type == "RAISE":
                        bet_val = max(
                            min(stake_difference + current_stake, max_bet),
                            min_bet)
                    else:
                        bet_val = max(min(stake_difference, max_bet), min_bet)

                    action_str = action_type + ":" + str(bet_val)

            print("ACTION_TAKEN -> " + action_str)
            return action_str
Example #7
0
 def setUp(self, hand=None, eval=None):
     self.hand = Hand()
     self.eval = HandEvaluator()
Example #8
0
class HandEvaluator_Tester(unittest.TestCase):
    def setUp(self, hand=None, eval=None):
        self.hand = Hand()
        self.eval = HandEvaluator()

    def test_hand_fullhouse(self):

        for k in range(5):
            self.hand.pop(0)
        self.hand.append(Card(1, 1))
        self.hand.append(Card(2, 1))
        self.hand.append(Card(1, 2))
        self.hand.append(Card(0, 2))
        self.hand.append(Card(3, 1))
        start = time.clock()
        self.assertTrue(self.eval.evaluate_hand(self.hand) == "FullHouse")
        elapsed_time = time.clock() - start
        print "Elapsed Time = %f" % elapsed_time

    def test_hand_straight(self):
        for k in range(5):
            self.hand.pop(0)
        self.hand.append(Card(1, 1))
        self.hand.append(Card(2, 2))
        self.hand.append(Card(1, 5))
        self.hand.append(Card(0, 4))
        self.hand.append(Card(3, 3))

        self.assertTrue(self.eval.evaluate_hand(self.hand) == "Straight")

    def test_hand_two_pair(self):
        for k in range(5):
            self.hand.pop(0)
        self.hand.append(Card(1, 2))
        self.hand.append(Card(2, 2))
        self.hand.append(Card(1, 4))
        self.hand.append(Card(0, 4))
        self.hand.append(Card(3, 10))

        self.assertTrue(self.eval.evaluate_hand(self.hand) == "TwoPair")

    def test_hand_pair(self):
        for k in range(5):
            self.hand.pop(0)
        self.hand.append(Card(1, 12))
        self.hand.append(Card(2, 12))
        self.hand.append(Card(1, 6))
        self.hand.append(Card(0, 4))
        self.hand.append(Card(3, 9))

        self.assertTrue(self.eval.evaluate_hand(self.hand) == "Pair")

    def test_hand_pair_not(self):
        for k in range(5):
            self.hand.pop(0)
        self.hand.append(Card(1, 1))
        self.hand.append(Card(2, 2))
        self.hand.append(Card(1, 6))
        self.hand.append(Card(0, 4))
        self.hand.append(Card(3, 10))

        self.assertFalse(self.eval.evaluate_hand(self.hand) == "Pair")

    def test_hand_trips(self):
        for k in range(5):
            self.hand.pop(0)
        self.hand.append(Card(1, 2))
        self.hand.append(Card(2, 2))
        self.hand.append(Card(1, 2))
        self.hand.append(Card(0, 4))
        self.hand.append(Card(3, 10))

        self.assertTrue(self.eval.evaluate_hand(self.hand) == "Trips")

    def test_hand_quads(self):
        for k in range(5):
            self.hand.pop(0)
        self.hand.append(Card(1, 2))
        self.hand.append(Card(2, 2))
        self.hand.append(Card(3, 2))
        self.hand.append(Card(0, 2))
        self.hand.append(Card(3, 10))

        self.assertTrue(self.eval.evaluate_hand(self.hand) == "Quads")

    def test_hand_flush(self):
        for k in range(5):
            self.hand.pop(0)
        self.hand.append(Card(2, 2))
        self.hand.append(Card(2, 4))
        self.hand.append(Card(2, 6))
        self.hand.append(Card(2, 8))
        self.hand.append(Card(2, 10))

        self.assertTrue(self.eval.evaluate_hand(self.hand) == "Flush")

    def test_hand_straight_flush(self):
        for k in range(5):
            self.hand.pop(0)
        self.hand.append(Card(2, 2))
        self.hand.append(Card(2, 3))
        self.hand.append(Card(2, 4))
        self.hand.append(Card(2, 5))
        self.hand.append(Card(2, 6))

        self.assertTrue(self.eval.evaluate_hand(self.hand) == "StraightFlush")

    def test_hand_nothing(self):
        for k in range(5):
            self.hand.pop(0)
        self.hand.append(Card(0, 7))
        self.hand.append(Card(1, 6))
        self.hand.append(Card(2, 3))
        self.hand.append(Card(2, 13))
        self.hand.append(Card(3, 10))
        start = time.clock()
        self.assertFalse(self.eval.evaluate_hand(self.hand) == "Nothing")
        elapsed_time = time.clock() - start
        print "Elapsed Time = %f" % elapsed_time

    def test_hand_not_straight_flush(self):
        for k in range(5):
            self.hand.pop(0)
        self.hand.append(Card(2, 1))
        self.hand.append(Card(2, 10))
        self.hand.append(Card(2, 11))
        self.hand.append(Card(2, 12))
        self.hand.append(Card(2, 13))

        self.assertFalse(self.eval.evaluate_hand(self.hand) == "StraightFlush")

    def test_hand_royal_flush(self):
        for k in range(5):
            self.hand.pop(0)
        self.hand.append(Card(2, 1))
        self.hand.append(Card(2, 10))
        self.hand.append(Card(2, 11))
        self.hand.append(Card(2, 12))
        self.hand.append(Card(2, 13))

        self.assertTrue(self.eval.evaluate_hand(self.hand) == "RoyalFlush")

    def test_hand_wheel_straight(self):
        for k in range(5):
            self.hand.pop(0)
        self.hand.append(Card(2, 1))
        self.hand.append(Card(3, 10))
        self.hand.append(Card(0, 11))
        self.hand.append(Card(2, 12))
        self.hand.append(Card(1, 13))

        self.assertTrue(self.eval.evaluate_hand(self.hand) == "Straight")