def train(n_hidden): n_input = dataReader.num_feature n_output = dataReader.num_category eta, batch_size, max_epoch = 0.1, 10, 10000 eps = 0.01 hp = HyperParameters_2_0(n_input, n_hidden, n_output, eta, max_epoch, batch_size, eps, NetType.MultipleClassifier, InitialMethod.Xavier) net = NeuralNet_2_2(hp, "Bank_2N3") net.train(dataReader, 100, True) net.ShowTrainingHistory() loss = net.GetLatestAverageLoss() fig = plt.figure(figsize=(6, 6)) DrawThreeCategoryPoints(dataReader.XTrain[:, 0], dataReader.XTrain[:, 1], dataReader.YTrain, hp.toString()) ShowClassificationResult25D( net, 50, str.format("{0}, loss={1:.3f}", hp.toString(), loss)) plt.show()
color=colors[j], marker=shapes[j]) plt.show() if __name__ == '__main__': dataReader = DataReader_2_0(train_data_name, test_data_name) dataReader.ReadData() dataReader.NormalizeY(NetType.MultipleClassifier, base=1) dataReader.NormalizeX() dataReader.Shuffle() dataReader.GenerateValidationSet() n_input = dataReader.num_feature n_hidden = 3 n_output = dataReader.num_category eta, batch_size, max_epoch = 0.1, 10, 5000 eps = 0.1 hp = HyperParameters_2_0(n_input, n_hidden, n_output, eta, max_epoch, batch_size, eps, NetType.MultipleClassifier, InitialMethod.Xavier) net = NeuralNet_2_2(hp, "Bank_233_2") #net.LoadResult() net.train(dataReader, 100, True) net.ShowTrainingHistory() Show3D(net, dataReader)