Example #1
0
def makeOptGraphs(category, higgswindow, compileOrLoad):
    #cosThetaCutValue = 0.7
    print "making optgraphs for category %s, window (%i-%i)" % (
        category, higgswindow[0], higgswindow[1])

    graphs = []
    massWindows = getMassWindows()
    massWindows.pop(2000)
    massWindows.pop(3000)
    cutValues = getCutValues()
    pToverMcutValue = cutValues["ptOverM"]
    deltaRcutValue = cutValues["deltaR"]
    jetEtaCutValue = cutValues["jetEta"]
    phoEtaCutValue = cutValues["phEta"]

    for mass in getSortedDictKeys(massWindows):
        print "making S/rootB optGraph for mass %s" % mass
        masswindow = massWindows[mass]
        graphs.append(TGraph())
        graphs[-1].SetNameTitle(
            "HbbOpt", "S/#sqrt{B}, M=%s, higgs window %s-%s" %
            (str(mass), str(higgswindow[0]), str(higgswindow[1])))
        #print "Signal mass %f" % mass
        # just keep the name from TTree::MakeClass(), don't give it a special name
        samplesDirs = getSamplesDirs()
        fillGraph(graphs[-1], dataOrMCbg, str(mass), higgswindow, masswindow,
                  category, pToverMcutValue, deltaRcutValue, jetEtaCutValue,
                  phoEtaCutValue, compileOrLoad)
        compileOrLoad = "load"

    canvas = TCanvas()
    canvas.cd()
    option = ""
    iGraph = 0
    for graph in graphs:
        graph.Draw(option)
        x = TColor()
        graph.SetLineColor(x.GetColor(0, 0.9 - iGraph * 0.15, iGraph * 0.15))
        graph.SetFillColor(kWhite)
        iGraph += 1
        option = "SAME"
    outfile = TFile(
        "HbbOpt_SoverRootB_higgsWindow_%i-%i.root" %
        (higgswindow[0], higgswindow[1]), "RECREATE")
    outfile.cd()
    canvas.BuildLegend()
    canvas.Draw()
    legend = canvas.GetPrimitive("TPave")
    legend.SetHeader("%s category" % category)
    for prim in canvas.GetListOfPrimitives():
        if "HbbOpt" in prim:
            prim.SetTitle("H(b#bar{b})#gamma optimization: S/#sqrt{B}")
            prim.GetXaxis().SetRangeUser(0, 2500)
    canvas.Write()
    outfile.Close()
Example #2
0
def processHg(inputFileName, outputFileName, load, loopMode = False, btagVariation=0):
  if inputFileName is None:
    print "\nPlease specify the input file with the -i option."
    exit(1)
  elif outputFileName is None:
    print "\nPlease specify the output filename with the -o option."
    exit(1)
  elif not os.path.isfile(inputFileName):
    print "\nThe input file specified was not found: %s" % inputfileName
    exit(1)
  
  
  print "\nInput file is %s\n" % inputFileName
  presentTense = "load" if load else "compile"
  pastTense  = "loaded" if load else "compiled"
  print "\nAttempting to %s HgammaSelector.\n" % presentTense
  
  # call the compiling function to compile the HgammaSelector, then run its Loop() method
  if presentTense=="compile" and not loopMode:
     deleteLibs("HgammaSelector")
     # compile the macro using g++ and check compilation status
     exitCode = gSystem.CompileMacro("HgammaSelector.C", "gOck")
     success=(exitCode==1)
  elif presentTense=="load" and not loopMode:
     exitCode = gSystem.Load('HgammaSelector_C')
     success=(exitCode>=-1)
  if not loopMode:
    if not success:
       print "\nError... HgammaSelector failed to %s. :-("%presentTense
       print "Make sure you're using an up-to-date version of ROOT by running cmsenv in a 7_4_X>=16 CMSSW area."
       exit(1)
  
  print "\nHgammaSelector %s successfully."%pastTense
  if presentTense=="compile" and not loopMode:
     gSystem.Load('HgammaSelector_C')
  inputFile = TFile(inputFileName)
  
  print "testing"
  from pprint import pprint
  from os.path import basename
  sampleDirs = getSamplesDirs()
  weights = getMCbgWeightsDict(sampleDirs["bkgSmall3sDir"])
  pprint(weights)
  shortName = basename(inputFile.GetName()).replace("smallified_", "")
  print shortName
  weight = 1.
  if shortName in weights.keys():
    weight = weights[shortName][0]
  print "weight for this sample:", weight
  
  # get the ntuplizer/tree tree from the file specified by argument 1
  tree = inputFile.Get("ntuplizer/tree")
  instance = HgammaSelector(tree)
  # run the HgammaSelector::Loop method
  instance.Loop(outputFileName, btagVariation, weight)
Example #3
0
  print "Number of events for signal with mass %i is %i" % (mass, nGenEvents)
  eff = sigAndBGinfo["S"]/nGenEvents
  seff = eff*quadratureUncertainties
  bck = sigAndBGinfo["B"]
  sbck = sigAndBGinfo["B"]*quadratureUncertainties
  expectedLimit = CLA(ilum, slum, eff, seff, bck, sbck)
  print "expected limit is: %f" % expectedLimit
  compileOrLoad = "load"
  response = {}
  response["compileOrLoad"]="load"
  response["expectedLimit"]=expectedLimit
  return response
  


samplesDirs = getSamplesDirs()
small3sDir = samplesDirs["small3sDir"]
ddDir = samplesDirs["ddDir"]
massWindows = getMassWindows()

def useHbbTag(cosThetaCutValue):
  if testTwoMasses:
    del massWindows[1000]
    del massWindows[2000]
  graphs = []
  compileOrLoad = "compile"
  for mass in massWindows.keys():
    graphs.append(TGraph())
    graphs[-1].SetNameTitle(str(mass), str(mass))
    #for i in range(-10, 20):        # TODO make some reasonable way of chosing the step size and bounds for the optimization scan
    #  HbbCutValue = i/float(20)