def PlotHistosAndCalculateTF(datasetsMgr, histoList, binLabels, opts):

    # Get the histogram customisations (keyword arguments)
    _kwargs = GetHistoKwargs(histoList[0])

    # Get the root histos for all datasets and Control Regions (CRs)
    regions = ["SR", "VR", "CRone", "CRtwo"]
    rhDict = GetRootHistos(datasetsMgr, histoList, regions, binLabels)

    #=========================================================================================
    # Calculate the Transfer Factor (TF) and save to file
    #=========================================================================================
    manager = FakeBNormalization.FakeBNormalizationManager(binLabels,
                                                           opts.mcrab,
                                                           opts.optMode,
                                                           verbose=False)
    if opts.inclusiveOnly:
        #manager.CalculateTransferFactor(binLabels[0], rhDict["CRone-FakeB"], rhDict["CRtwo-FakeB"])
        binLabel = "Inclusive"
        manager.CalculateTransferFactor("Inclusive",
                                        rhDict["FakeB-CRone-Inclusive"],
                                        rhDict["FakeB-CRtwo-Inclusive"])
    else:
        for bin in binLabels:
            manager.CalculateTransferFactor(bin,
                                            rhDict["FakeB-CRone-%s" % bin],
                                            rhDict["FakeB-CRtwo-%s" % bin])

    # Get unique a style for each region
    for k in rhDict:
        dataset = k.split("-")[0]
        region = k.split("-")[1]
        styles.getABCDStyle(region).apply(rhDict[k])
        if "FakeB" in k:
            styles.getFakeBStyle().apply(rhDict[k])
        # sr.apply(rhDict[k])

    # =========================================================================================
    # Create the final plot object
    # =========================================================================================
    rData_SR = rhDict["Data-SR-Inclusive"]
    rEWKGenuineB_SR = rhDict["EWK-SR-Inclusive-EWKGenuineB"]
    rBkgSum_SR = rhDict["FakeB-VR-Inclusive"].Clone("BkgSum-SR-Inclusive")
    rBkgSum_SR.Reset()

    if opts.inclusiveOnly:
        bin = "Inclusive"
        # Normalise the VR histogram with the Transfer Factor ( BkgSum = VR * (CR1/CR2) )
        binHisto_VR = rhDict["FakeB-VR-%s" % (bin)]
        VRtoSR_TF = manager.GetTransferFactor(bin)
        Print(
            "Applying TF = %s%0.6f%s to VR shape" %
            (ShellStyles.NoteStyle(), VRtoSR_TF, ShellStyles.NormalStyle()),
            True)
        binHisto_VR.Scale(VRtoSR_TF)
        # Add the normalised histogram to the final Inclusive SR (predicted) histo
        rBkgSum_SR.Add(binHisto_VR, +1)
    else:
        # For-loop: All bins
        for i, bin in enumerate(binLabels, 1):
            if bin == "Inclusive":
                continue
            # Normalise the VR histogram with the Transfer Factor ( BkgSum = VR * (CR1/CR2) )
            binHisto_VR = rhDict["FakeB-VR-%s" % (bin)]
            VRtoSR_TF = manager.GetTransferFactor(bin)
            Print(
                "Applying TF = %s%0.6f%s to VR shape" %
                (ShellStyles.NoteStyle(), VRtoSR_TF,
                 ShellStyles.NormalStyle()), i == 1)
            binHisto_VR.Scale(VRtoSR_TF)
            # Add the normalised histogram to the final Inclusive SR (predicted) histo
            rBkgSum_SR.Add(binHisto_VR, +1)

    #Print("Got Verification Region (VR) shape %s%s%s" % (ShellStyles.NoteStyle(), rFakeB_VR.GetName(), ShellStyles.NormalStyle()), True)

    # Normalise the VR histogram with the Transfer Factor ( BkgSum = VR * (CR1/CR2) )
    #VRtoSR_TF = manager.GetTransferFactor("Inclusive")
    #Print("Applying TF = %s%0.6f%s to VR shape" % (ShellStyles.NoteStyle(), VRtoSR_TF, ShellStyles.NormalStyle()), True)
    #rBkgSum_SR.Scale(VRtoSR_TF)

    # Plot histograms
    if opts.altPlot:
        # Add the SR EWK Genuine-b to the SR FakeB ( BkgSum = [FakeB] + [GenuineB-MC] = [VR * (CR1/CR2)] + [GenuineB-MC] )
        rBkgSum_SR.Add(rEWKGenuineB_SR, +1)

        # Change style
        styles.getGenuineBStyle().apply(rBkgSum_SR)

        # Remove unsupported settings of kwargs
        _kwargs["stackMCHistograms"] = False
        _kwargs["addLuminosityText"] = False

        # Create the plot
        p = plots.ComparisonManyPlot(rData_SR, [rBkgSum_SR], saveFormats=[])

        # Set draw / legend style
        p.histoMgr.setHistoDrawStyle("Data-SR-Inclusive", "P")
        p.histoMgr.setHistoLegendStyle("Data-SR-Inclusive", "LP")
        p.histoMgr.setHistoDrawStyle("BkgSum-SR-Inclusive", "HIST")
        p.histoMgr.setHistoLegendStyle("BkgSum-SR-Inclusive", "F")

        # Set legend labels
        p.histoMgr.setHistoLegendLabelMany({
            "Data-SR": "Data",
            "BkgSum-SR": "Fake-b + Gen-b",
        })
    else:
        # Create empty histogram stack list
        myStackList = []

        # Signal
        p2 = plots.DataMCPlot(datasetsMgr,
                              "ForTestQGLR/QGLR_SR/QGLR_SRInclusive",
                              saveFormats=[])

        hSignal_800 = p2.histoMgr.getHisto(
            'ChargedHiggs_HplusTB_HplusToTB_M_800').getRootHisto()
        hhSignal_800 = histograms.Histo(
            hSignal_800, 'ChargedHiggs_HplusTB_HplusToTB_M_800',
            "H^{+} m_{H^+}=800 GeV")
        hhSignal_800.setIsDataMC(isData=False, isMC=True)
        myStackList.append(hhSignal_800)

        hSignal_250 = p2.histoMgr.getHisto(
            'ChargedHiggs_HplusTB_HplusToTB_M_250').getRootHisto()
        hhSignal_250 = histograms.Histo(
            hSignal_250, 'ChargedHiggs_HplusTB_HplusToTB_M_250',
            "H^{+} m_{H^+}=250 GeV"
        )  #plots._legendLabels['ChargedHiggs_HplusTB_HplusToTB_M_250'])
        hhSignal_250.setIsDataMC(isData=False, isMC=True)
        #myStackList.append(hhSignal_250)

        hSignal_500 = p2.histoMgr.getHisto(
            'ChargedHiggs_HplusTB_HplusToTB_M_500').getRootHisto()
        hhSignal_500 = histograms.Histo(
            hSignal_500, 'ChargedHiggs_HplusTB_HplusToTB_M_500',
            "H^{+} m_{H^+}=500 GeV"
        )  #plots._legendLabels['ChargedHiggs_HplusTB_HplusToTB_M_500'])
        hhSignal_500.setIsDataMC(isData=False, isMC=True)
        #myStackList.append(hhSignal_500)

        hSignal_1000 = p2.histoMgr.getHisto(
            'ChargedHiggs_HplusTB_HplusToTB_M_1000').getRootHisto()
        hhSignal_1000 = histograms.Histo(
            hSignal_1000, 'ChargedHiggs_HplusTB_HplusToTB_M_1000',
            "H^{+} m_{H^+}=1000 GeV"
        )  #plots._legendLabels['ChargedHiggs_HplusTB_HplusToTB_M_500'])
        hhSignal_1000.setIsDataMC(isData=False, isMC=True)
        #myStackList.append(hhSignal_1000)

        # Add the FakeB data-driven background to the histogram list
        hFakeB = histograms.Histo(rBkgSum_SR, "FakeB", "Fake-b")
        hFakeB.setIsDataMC(isData=False, isMC=True)
        myStackList.append(hFakeB)

        # Add the EWKGenuineB MC background to the histogram list
        hGenuineB = histograms.Histo(rEWKGenuineB_SR, "GenuineB",
                                     "EWK Genuine-b")
        hGenuineB.setIsDataMC(isData=False, isMC=True)
        myStackList.append(hGenuineB)

        # Add the collision datato the histogram list
        hData = histograms.Histo(rData_SR, "Data", "Data")
        hData.setIsDataMC(isData=True, isMC=False)
        myStackList.insert(0, hData)

        p = plots.DataMCPlot2(myStackList, saveFormats=[])
        p.setLuminosity(opts.intLumi)
        p.setDefaultStyles()

    # Draw the plot and save it
    hName = "test"
    plots.drawPlot(p, hName, **_kwargs)
    SavePlot(p,
             hName,
             os.path.join(opts.saveDir, opts.optMode),
             saveFormats=[".png", ".pdf"])

    #==========================================================================================
    # Calculate Cut-Flow Efficiency
    #==========================================================================================
    kwargs = {
        "rebinX": 1,
        "xlabel": "QGLR",
        "ylabel": "Significance / %.02f ",
        "opts": {
            "ymin": 0.0,
            "ymaxfactor": 1.3
        },
        "createLegend": {
            "x1": 0.55,
            "y1": 0.70,
            "x2": 0.92,
            "y2": 0.92
        },
        #            "cutBox"           : {"cutValue": 0.0, "fillColor" : 16, "box": False, "line": False, "greaterThan": True},
    }

    efficiencyList = []
    xValues = []

    yValues_250 = []
    yValues_500 = []
    yValues_800 = []
    yValues_1000 = []
    yValues_Bkg = []

    nBins = hSignal_250.GetNbinsX() + 1

    hBkg = p.histoMgr.getHisto(
        "ChargedHiggs_HplusTB_HplusToTB_M_800").getRootHisto().Clone("Bkg")
    hBkg.Reset()

    # Bkg: FakeB + Genuine B
    hBkg.Add(hFakeB.getRootHisto(), +1)
    hBkg.Add(hGenuineB.getRootHisto(), +1)

    for i in range(0, nBins):

        # Cut value
        cut = hSignal_250.GetBinCenter(i)

        passed_250 = hSignal_250.Integral(i, hSignal_250.GetXaxis().GetNbins())
        passed_500 = hSignal_500.Integral(i, hSignal_500.GetXaxis().GetNbins())
        passed_800 = hSignal_800.Integral(i, hSignal_800.GetXaxis().GetNbins())
        passed_1000 = hSignal_1000.Integral(i,
                                            hSignal_1000.GetXaxis().GetNbins())

        passed_Bkg = hBkg.Integral(i, hBkg.GetXaxis().GetNbins())

        total_250 = hSignal_250.Integral()
        total_500 = hSignal_500.Integral()
        total_800 = hSignal_800.Integral()
        total_1000 = hSignal_1000.Integral()
        total_Bkg = hBkg.Integral()

        eff_250 = float(passed_250) / total_250
        eff_500 = float(passed_500) / total_500
        eff_800 = float(passed_800) / total_800
        eff_1000 = float(passed_1000) / total_1000

        eff_Bkg = float(passed_Bkg) / total_Bkg

        xValues.append(cut)
        yValues_250.append(eff_250)
        yValues_500.append(eff_500)
        yValues_800.append(eff_800)
        yValues_1000.append(eff_1000)

        yValues_Bkg.append(eff_Bkg)

    # Create the Efficiency Plot
    tGraph_250 = ROOT.TGraph(len(xValues), array.array("d", xValues),
                             array.array("d", yValues_250))
    tGraph_500 = ROOT.TGraph(len(xValues), array.array("d", xValues),
                             array.array("d", yValues_500))
    tGraph_800 = ROOT.TGraph(len(xValues), array.array("d", xValues),
                             array.array("d", yValues_800))
    tGraph_1000 = ROOT.TGraph(len(xValues), array.array("d", xValues),
                              array.array("d", yValues_1000))
    tGraph_Bkg = ROOT.TGraph(len(xValues), array.array("d", xValues),
                             array.array("d", yValues_Bkg))

    styles.getSignalStyleHToTB_M("200").apply(tGraph_250)
    styles.getSignalStyleHToTB_M("500").apply(tGraph_500)
    styles.getSignalStyleHToTB_M("800").apply(tGraph_800)
    styles.getSignalStyleHToTB_M("1000").apply(tGraph_1000)
    styles.getQCDLineStyle().apply(tGraph_Bkg)

    drawStyle = "CPE"
    effGraph_250 = histograms.HistoGraph(tGraph_250,
                                         "H^{+} m_{H^{+}} = 250 GeV", "lp",
                                         drawStyle)
    effGraph_500 = histograms.HistoGraph(tGraph_500,
                                         "H^{+} m_{H^{+}} = 500 GeV", "lp",
                                         drawStyle)
    effGraph_800 = histograms.HistoGraph(tGraph_800,
                                         "H^{+} m_{H^{+}} = 800 GeV", "lp",
                                         drawStyle)
    effGraph_1000 = histograms.HistoGraph(tGraph_1000,
                                          "H^{+} m_{H^{+}} = 1000 GeV", "lp",
                                          drawStyle)
    effGraph_Bkg = histograms.HistoGraph(tGraph_Bkg, "Bkg", "lp", drawStyle)

    efficiencyList.append(effGraph_250)
    efficiencyList.append(effGraph_500)
    efficiencyList.append(effGraph_800)
    efficiencyList.append(effGraph_1000)
    efficiencyList.append(effGraph_Bkg)

    # Efficiency plot
    pE = plots.PlotBase(efficiencyList, saveFormats=["pdf"])
    pE.createFrame("QGLR_Efficiency")
    pE.setEnergy("13")
    pE.getFrame().GetYaxis().SetLabelSize(18)
    pE.getFrame().GetXaxis().SetLabelSize(20)

    pE.getFrame().GetYaxis().SetTitle("Efficiency / 0.01")
    pE.getFrame().GetXaxis().SetTitle("QGLR Cut")

    # Add Standard Texts to plot
    histograms.addStandardTexts()

    # Customise Legend
    moveLegend = {"dx": -0.50, "dy": -0.5, "dh": -0.1}
    pE.setLegend(histograms.moveLegend(histograms.createLegend(),
                                       **moveLegend))

    pE.draw()
    #    plots.drawPlot(pE, "QGLR_Efficiency", **kwargs)
    SavePlot(pE,
             "QGLR_Efficiency",
             os.path.join(opts.saveDir, opts.optMode),
             saveFormats=[".png", ".pdf"])

    #==========================================================================================
    # Calculate Significance
    #==========================================================================================

    SignalName = "ChargedHiggs_HplusTB_HplusToTB_M_800"

    hSignif_250 = p.histoMgr.getHisto(SignalName).getRootHisto().Clone(
        SignalName)
    hSignif_500 = p.histoMgr.getHisto(SignalName).getRootHisto().Clone(
        SignalName)
    hSignif_800 = p.histoMgr.getHisto(SignalName).getRootHisto().Clone(
        SignalName)
    hSignif_1000 = p.histoMgr.getHisto(SignalName).getRootHisto().Clone(
        SignalName)

    hSignif_250.Reset()
    hSignif_500.Reset()
    hSignif_800.Reset()
    hSignif_1000.Reset()

    hBkg = p.histoMgr.getHisto(SignalName).getRootHisto().Clone("Bkg")
    hBkg.Reset()

    # Bkg: FakeB + Genuine B
    hBkg.Add(hFakeB.getRootHisto(), +1)
    hBkg.Add(hGenuineB.getRootHisto(), +1)

    nBins = hSignif_250.GetNbinsX() + 1

    # For-loop: All histo bins
    for i in range(1, nBins + 1):

        sigmaB = ROOT.Double(0)

        b = hBkg.IntegralAndError(i, nBins, sigmaB)

        s_250 = hSignal_250.Integral(i, nBins)
        s_500 = hSignal_500.Integral(i, nBins)
        s_800 = hSignal_800.Integral(i, nBins)
        s_1000 = hSignal_1000.Integral(i, nBins)

        # Calculate significance
        signif_250 = stat.significance(s_250, b, sigmaB,
                                       option="Simple")  #Asimov")
        signif_500 = stat.significance(s_500, b, sigmaB,
                                       option="Simple")  #Asimov")
        signif_800 = stat.significance(s_800, b, sigmaB,
                                       option="Simple")  #Asimov")
        signif_1000 = stat.significance(s_1000, b, sigmaB,
                                        option="Simple")  #"Asimov")

        # Set signif for this bin
        hSignif_250.SetBinContent(i, signif_250)
        hSignif_500.SetBinContent(i, signif_500)
        hSignif_800.SetBinContent(i, signif_800)
        hSignif_1000.SetBinContent(i, signif_1000)

        # Apply style
        s_250 = styles.getSignalStyleHToTB_M("200")
        s_250.apply(hSignif_250)

        s_500 = styles.getSignalStyleHToTB_M("500")
        s_500.apply(hSignif_500)

        s_800 = styles.getSignalStyleHToTB_M("800")
        s_800.apply(hSignif_800)

        s_1000 = styles.getSignalStyleHToTB_M("1000")
        s_1000.apply(hSignif_1000)

        hList = []
        hList.append(hSignif_250)
        hList.append(hSignif_500)
        hList.append(hSignif_800)
        hList.append(hSignif_1000)

        hSignif_250.SetName("H^{+} m_{H^{+}} = 250 GeV")
        hSignif_500.SetName("H^{+} m_{H^{+}} = 500 GeV")
        hSignif_800.SetName("H^{+} m_{H^{+}} = 800 GeV")
        hSignif_1000.SetName("H^{+} m_{H^{+}} = 1000 GeV")

    pS = plots.PlotBase(hList, saveFormats=["png", "pdf"])
    pS.setLuminosity(opts.intLumi)

    # Drawing style
    pS.histoMgr.setHistoDrawStyleAll("HIST")
    pS.histoMgr.setHistoLegendStyleAll("L")
    pS.histoMgr.forEachHisto(lambda h: h.getRootHisto().SetMarkerSize(1.0))
    pS.histoMgr.forEachHisto(
        lambda h: h.getRootHisto().SetLineStyle(ROOT.kSolid))
    pS.histoMgr.forEachHisto(
        lambda h: h.getRootHisto().SetMarkerStyle(ROOT.kFullCircle))

    # Draw the plot
    name = "QGLR_Signif" + "GE"

    plots.drawPlot(pS, name, **kwargs)
    SavePlot(pS,
             name,
             os.path.join(opts.saveDir, opts.optMode),
             saveFormats=[".png", ".pdf"])

    #=========================================================================================
    # Calculate the Transfer Factor (TF) and save to file
    #=========================================================================================
    Verbose("Write the normalisation factors to a python file", True)
    fileName = os.path.join(
        opts.mcrab, "FakeBTransferFactors%s.py" % (getModuleInfoString(opts)))
    manager.writeNormFactorFile(fileName, opts)
    return
Example #2
0
def PlotHistosAndCalculateTF(runRange, datasetsMgr, histoList, binLabels,
                             opts):

    # Get the histogram customisations (keyword arguments)
    _kwargs = GetHistoKwargs(histoList[0])

    # Get the root histos for all datasets and Control Regions (CRs)
    regions = ["SR", "VR", "CRone", "CRtwo", "CRthree", "CRfour"]
    rhDict = GetRootHistos(datasetsMgr, histoList, regions, binLabels)

    #=========================================================================================
    # Calculate the Transfer Factor (TF) and save to file
    #=========================================================================================
    manager = FakeBNormalization.FakeBNormalizationManager(binLabels,
                                                           opts.mcrab,
                                                           opts.optMode,
                                                           verbose=False)
    if opts.inclusiveOnly:
        binLabel = "Inclusive"
        manager.CalculateTransferFactor("Inclusive",
                                        rhDict["FakeB-CRone-Inclusive"],
                                        rhDict["FakeB-CRtwo-Inclusive"],
                                        rhDict["FakeB-CRthree-Inclusive"],
                                        rhDict["FakeB-CRfour-Inclusive"])
    else:
        for bin in binLabels:
            manager.CalculateTransferFactor(bin,
                                            rhDict["FakeB-CRone-%s" % bin],
                                            rhDict["FakeB-CRtwo-%s" % bin],
                                            rhDict["FakeB-CRthree-%s" % bin],
                                            rhDict["FakeB-CRfour-%s" % bin])

    # Get unique a style for each region
    for k in rhDict:
        dataset = k.split("-")[0]
        region = k.split("-")[1]
        styles.getABCDStyle(region).apply(rhDict[k])
        if "FakeB" in k:
            styles.getFakeBStyle().apply(rhDict[k])
        # sr.apply(rhDict[k])

    # =========================================================================================
    # Create the final plot object
    # =========================================================================================
    rData_SR = rhDict["Data-SR-Inclusive"]
    rEWKGenuineB_SR = rhDict["EWK-SR-Inclusive-EWKGenuineB"]
    rBkgSum_SR = rhDict["FakeB-VR-Inclusive"].Clone("BkgSum-SR-Inclusive")
    rBkgSum_SR.Reset()

    if opts.inclusiveOnly:
        bin = "Inclusive"
        # Normalise the VR histogram with the Transfer Factor ( BkgSum = VR * (CR1/CR2) )
        binHisto_VR = rhDict["FakeB-VR-%s" % (bin)]
        VRtoSR_TF = manager.GetTransferFactor(bin)
        Verbose(
            "Applying TF = %s%0.6f%s to VR shape" %
            (ShellStyles.NoteStyle(), VRtoSR_TF, ShellStyles.NormalStyle()),
            True)
        binHisto_VR.Scale(VRtoSR_TF)
        # Add the normalised histogram to the final Inclusive SR (predicted) histo
        rBkgSum_SR.Add(binHisto_VR, +1)
    else:
        # For-loop: All bins
        for i, bin in enumerate(binLabels, 1):
            if bin == "Inclusive":
                continue
            # Normalise the VR histogram with the Transfer Factor ( BkgSum = VR * (CR1/CR2) )
            binHisto_VR = rhDict["FakeB-VR-%s" % (bin)]
            VRtoSR_TF = manager.GetTransferFactor(bin)
            Verbose(
                "Applying TF = %s%0.6f%s to VR shape" %
                (ShellStyles.NoteStyle(), VRtoSR_TF,
                 ShellStyles.NormalStyle()), i == 1)
            binHisto_VR.Scale(VRtoSR_TF)
            # Add the normalised histogram to the final Inclusive SR (predicted) histo
            rBkgSum_SR.Add(binHisto_VR, +1)

    # Plot histograms
    if opts.altPlot:
        # Add the SR EWK Genuine-b to the SR FakeB ( BkgSum = [FakeB] + [GenuineB-MC] = [VR * (CR1/CR2)] + [GenuineB-MC] )
        rBkgSum_SR.Add(rEWKGenuineB_SR, +1)

        # Change style
        styles.getGenuineBStyle().apply(rBkgSum_SR)

        # Remove unsupported settings of kwargs
        _kwargs["stackMCHistograms"] = False
        _kwargs["addLuminosityText"] = False

        # Create the plot
        p = plots.ComparisonManyPlot(rData_SR, [rBkgSum_SR], saveFormats=[])

        # Set draw / legend style
        p.histoMgr.setHistoDrawStyle("Data-SR-Inclusive", "P")
        p.histoMgr.setHistoLegendStyle("Data-SR-Inclusive", "LP")
        p.histoMgr.setHistoDrawStyle("BkgSum-SR-Inclusive", "HIST")
        p.histoMgr.setHistoLegendStyle("BkgSum-SR-Inclusive", "F")

        # Set legend labels
        p.histoMgr.setHistoLegendLabelMany({
            "Data-SR": "Data",
            "BkgSum-SR": "Fake-b + Gen-b",
        })
    else:
        # Create empty histogram stack list
        myStackList = []

        # Add the FakeB data-driven background to the histogram list
        hFakeB = histograms.Histo(rBkgSum_SR, "FakeB", "Fake-b")
        hFakeB.setIsDataMC(isData=False, isMC=True)
        myStackList.append(hFakeB)

        # Add the EWKGenuineB MC background to the histogram list
        hGenuineB = histograms.Histo(rEWKGenuineB_SR, "GenuineB",
                                     "EWK Genuine-b")
        hGenuineB.setIsDataMC(isData=False, isMC=True)
        myStackList.append(hGenuineB)

        # Add the collision datato the histogram list
        hData = histograms.Histo(rData_SR, "Data", "Data")
        hData.setIsDataMC(isData=True, isMC=False)
        myStackList.insert(0, hData)

        p = plots.DataMCPlot2(myStackList, saveFormats=[])
        p.setLuminosity(opts.intLumi)
        p.setDefaultStyles()

    # Draw the plot and save it
    hName = opts.histoKey
    plots.drawPlot(p, hName, **_kwargs)
    SavePlot(p,
             hName,
             os.path.join(opts.saveDir, opts.optMode),
             saveFormats=[".png"])

    #=========================================================================================
    # Calculate the Transfer Factor (TF) and save to file
    #=========================================================================================
    Verbose("Write the normalisation factors to a python file", True)
    fileName = os.path.join(opts.mcrab,
                            "FakeBTransferFactors_%s.py" % (runRange))
    manager.writeTransferFactorsToFile(fileName, opts)
    return