Example #1
0
def interact_with_mesh_physical_model():
    """
    build an interactive bar for users to zoom in and out
    the mesh physical model.
    """
    from IPython.html.widgets import interact
    interact(show_mesh_physical_model, bound=(1, 10), tube_radius=(1, 10))
def examine_cutouts(catalog, cluster_directory='./', invert_color=False):
    # some generic things you can configure:
    # what columns we want to plot

    columns = ['ZooID', 'object_id', 'stage', 'field_flavor', 'object_flavor',
               'status', 'markers_in_object', 'markers_in_field', 'people_marking_objects',
               'people_marking_field', 'people_looking_at_field',
               'object_size', 'mean_probability', 'x', 'y']
    def examine_entry(i):
        entry = catalog.iloc[i]
        ZooID = entry['ZooID']
        display(entry[columns])


        cluster_path = cluster_directory + entry['object_name']

        cluster = imread(cluster_path) * 1. / 255.
        if invert_color:
            cluster = np.abs(cluster - cluster.max())

        fig, axs = plt.subplots(nrows=1, ncols=1, figsize=(5, 5))
        cluster = imread(cluster_path)
        axs.imshow(cluster)

    interact(examine_entry,
             i=(0, len(catalog)-1),
             show_field=False)
Example #3
0
  def select_CPDFS(self):

    def f(**kwargs):
      if kwargs['pdfset']=='cteq6': self.CPDF=Cteq6PDF(self.root)
      if kwargs['pdfset']=='fake': self.CPDF=FakePDF()

    interact(f,pdfset={'cteq6':'cteq6','fake':'fake'})
def interactA():
  widH = widgets.IntSliderWidget(min=0,max=1000,step=1,value=100)
  widZ = widgets.IntSliderWidget(min=0,max=1000,step=1,value=1)
  wida = widgets.FloatSliderWidget(min=0.01,max=1,step=0.01,value=0.05)
  widb = widgets.FloatSliderWidget(min=0.1,max=1,step=0.05,value=0.3)
  widz = widgets.FloatSliderWidget(min=0.01,max=0.5,step=0.01,value=0.2)
  interact(graficaSolucionA,humanos=widH, zombies=widZ, muertos=fixed(0), a=wida, b=(0.1,1,0.05), z=(0.01,0.5,0.01));
def examine_catalog(catalog):
    def examine_cat(groupby_str):
        groupby_list = eval(groupby_str)
        print(catalog.groupby(groupby_list).apply(len))

    interact(examine_cat,
             groupby_str="['stage', 'field_flavor', 'object_flavor']")
Example #6
0
def myshow(img, title=None, margin=0.05, dpi=80 ):
    nda = sitk.GetArrayFromImage(img)

    spacing = img.GetSpacing()
    slicer = False

    if nda.ndim == 3:
        # fastest dim, either component or x
        c = nda.shape[-1]

        # the the number of components is 3 or 4 consider it an RGB image
        if not c in (3,4):
            slicer = True

    elif nda.ndim == 4:
        c = nda.shape[-1]

        if not c in (3,4):
            raise Runtime("Unable to show 3D-vector Image")

        # take a z-slice
        slicer = True

    if (slicer):
        ysize = nda.shape[1]
        xsize = nda.shape[2]
    else:
        ysize = nda.shape[0]
        xsize = nda.shape[1]


    # Make a figure big enough to accomodate an axis of xpixels by ypixels
    # as well as the ticklabels, etc...
    figsize = (1 + margin) * ysize / dpi, (1 + margin) * xsize / dpi
    def callback(z=None):

        extent = (0, xsize*spacing[1], ysize*spacing[0], 0)

        fig = plt.figure(figsize=figsize, dpi=dpi)

        # Make the axis the right size...
        ax = fig.add_axes([margin, margin, 1 - 2*margin, 1 - 2*margin])

        plt.set_cmap("gray")

        if z is None:
            ax.imshow(nda,extent=extent,interpolation=None)
        else:
            ax.imshow(nda[z,...],extent=extent,interpolation=None)

        if title:
            plt.title(title)

        plt.show()

    if slicer:
        interact(callback, z=(0,nda.shape[0]-1))
    else:
        callback()
    def _repr_html_(self):
        def _data_frame(solution):
            notice("%s: %f" % self.solutions.axes[0][solution - 1][0])
            notice("%s: %f" % self.solutions.axes[0][solution - 1][1])
            display(self.solutions.iloc[solution - 1])

        interact(_data_frame, solution=[1, len(self.solutions)])
        return ""
def interactB():
  widH = widgets.IntSliderWidget(min=0,max=1000,step=1,value=100)
  widZ = widgets.IntSliderWidget(min=0,max=1000,step=1,value=1)
  widI = widgets.IntSliderWidget(min=0,max=10,step=1,value=0)
  wida = widgets.FloatSliderWidget(min=0.01,max=1,step=0.01,value=0.05)
  widb = widgets.FloatSliderWidget(min=0.1,max=1,step=0.05,value=0.6)
  widz = widgets.FloatSliderWidget(min=0.01,max=0.5,step=0.01,value=0.2)
  widr = widgets.FloatSliderWidget(min=0.1,max=1,step=0.05,value=0.9)
  interact(solucionB,humanos=widH, infectados=widI, zombies=widZ, muertos=fixed(0), a=wida, b=widb, z=widz, r=widr);
def iview(self, width = 400):
    f = lambda rows_start, rows_end,cols: display(self[list(cols)].iloc[rows_start:rows_end])
    rs = IntSlider(min=0, max=self.shape[0], width=width)
    re = IntSlider(min=0, max=self.shape[0], width= width)
    link((re, 'min'), (rs, 'value'))
    interact(f,
             cols=SelectMultiple(options=self.columns.tolist()),
             rows_start=rs,
             rows_end=re, width=width)
Example #10
0
def ksplot(func,mu_lims,sig_lims,t_series,p_series,bar_num,*func_auxargs):
    """Compare traced data to a normal distribution with a KS test.

    Returns output of a KS test:
    + The KS statistic
    + The corrisponding p-value
    
    Returns two plots:
    + A trace of the give data and time series
    + A histogram of the trace's scaled fds and a fit gaussian.

    Sliders are used to vary the parameters 'a' and 'b' in func.
    
    Arguments
    ---------
    func = use etrace or atrace to act on p_series and t_series
    mu_lims = slider limits for the paramter 'a' in func
    sig_lims = slider limits for the paramter 'b' in func
    t_series = the time series corrisponding to p_series
    p_series = the data set which will be traced
    bar_num = number of bars in the histogramed plot
    func_auxargs = auxilary arguments for func
    """
    def makeplots(a,b):
        dat = func('price',t_series,p_series,a,b,*func_auxargs)
        fig, ax = plt.subplots(figsize=(10,2))
        ax.set_title('Data After Trace')
        ax.set_ylabel('wiener',fontsize=13)
        ax.set_xlabel('time',fontsize=13)
        ax.set_xlim(min(t_series),max(t_series))
        ax.plot(t_series,dat)
        
        dat_fds = np.array(ufuncs.get_fds(dat))
        dat_cnt,dat_mkr = np.histogram(dat_fds,bar_num)
        norm_hist = np.histogram(dat_fds,bar_num)[0]
        cnt_norm = normpdf(dat_mkr,0,np.std(dat_fds))
        cnt_norm = cnt_norm*max(dat_cnt)/max(cnt_norm)
        ksstat,pval = ks_2samp(cnt_norm, dat_cnt)
        print 'KS test using scaled fds of traced dat and a fit gaussian:'
        print 'Statistic value =',ksstat
        print 'Two sided p-value =',pval
        
        fig,ax1 = plt.subplots(figsize=(10,4))
        ax1.set_title('Finite Difference Series Comparison')
        ax1.set_ylabel('count',fontsize=13)
        ax1.set_xlabel('difference',fontsize=13)
        
        wdth = float(max(dat_mkr)-min(dat_mkr))/bar_num
        plt.bar(dat_mkr[:-1],dat_cnt,label='traced fds (scaled by dt)',width = wdth,align='center')
        plt.plot(dat_mkr,cnt_norm,label='fit gaussian',color='m')
        ax1.set_xlim(min(dat_mkr)-wdth,max(dat_mkr)+wdth)
        plt.legend(loc='best')
        plt.show()

    interact(makeplots,a=mu_lims,b=sig_lims)
def plot_interaktiv_kNN(x, naboer=(1,17)):

    def f(k, metode):
        xd, yd = ukendte_data()

        fit = fit_kNN(xd, yd, k, metode)
        plot_kNN(x, fit, data=(xd,yd))

    widgets.interact(f, k=widgets.IntSliderWidget(min=naboer[0], max=naboer[1],
                                                  step=1, value=naboer[0]),
                     metode=("uniform", "distance"))
def plot_interaktivt_polynomium(x, ordener=(0,20), figsize=(10,6)):

    def f(orden):
        xd, yd = ukendte_data()

        fit = fit_polynomium(xd, yd, orden)
        plot_polynomium(x, fit, data=(xd,yd), ordener=ordener, figsize=figsize)

    widgets.interact(f, orden=widgets.IntSliderWidget(min=ordener[0],
                                                  max=ordener[1], step=1,
                                                  value=ordener[0]))
Example #13
0
def confusion_matrix(truths, predictions, sampling_rate=1):
    from IPython.html.widgets import interact, fixed
    assert len(truths) == len(predictions)
    if sampling_rate < 1:
        n = len(truths)
        indices = random.sample(range(n), int(n * sampling_rate))
        truths = [truths[i] for i in indices]
        predictions = [predictions[i] for i in indices]

    interact(_show_confusion_matrix,
             threshold=(0.0, 1.0, 0.01), truths=fixed(truths), predictions=fixed(predictions))
Example #14
0
def interactive_plot(self):
    """Create an interative plot using Ipython widgets
    """
    basedict = self.__class__.__base_traits__
    inputs = dict([(c, (getattr(basedict[c], 'low'), getattr(basedict[c], 'high')))
                   for c in list_ios(self, 'in')])

    def f(**kwargs):
        my_call(self, **kwargs)
        display(self.plot())
    interact(f, **inputs)
Example #15
0
def plot_pca_interactive(data, n_components=6):
    from sklearn.decomposition import PCA
    from IPython.html.widgets import interact

    pca = PCA(n_components=n_components)
    Xproj = pca.fit_transform(data)

    def show_decomp(i=0):
        plot_image_components(data[i], Xproj[i],
                              pca.mean_, pca.components_)

    interact(show_decomp, i=(0, data.shape[0] - 1));
def interactC():
  widH = widgets.IntSliderWidget(min=0,max=1000,step=1,value=100)
  widZ = widgets.IntSliderWidget(min=0,max=1000,step=1,value=1)
  widI = widgets.IntSliderWidget(min=0,max=10,step=1,value=0)
  wida = widgets.FloatSliderWidget(min=0.01,max=1,step=0.01,value=0.05)
  widb = widgets.FloatSliderWidget(min=0.1,max=1,step=0.05,value=0.85)
  widz = widgets.FloatSliderWidget(min=0.01,max=0.5,step=0.01,value=0.09)
  widr = widgets.FloatSliderWidget(min=0.1,max=1,step=0.05,value=0.8)
  widk = widgets.FloatSliderWidget(min=0.1,max=1,step=0.1,value=0.3)
  wids = widgets.FloatSliderWidget(min=0.01,max=0.5,step=0.01,value=0.01)
  widg = widgets.FloatSliderWidget(min=0.1,max=1,step=0.1,value=0.6)
  interact(solucionC,humanos=widH, infectados=widI, zombies=widZ, muertos=fixed(0), cuarentena=fixed(0), a=wida, b=widb, z=widz, r=widr, k=widk, s=wids, g=widg);
Example #17
0
def simulate(transitions,
             input='10101', unary=False, input_unary=12,
             pause=0.05, step_from=0, step_to=100, step_slack=100):
    """loads widget to simulate a given TM"""


    # widgets to specify the range of steps to simulate
    from_w = widgets.IntText(value=step_from, description="simulate from step")
    to_w = widgets.IntText(value=step_to, description="simulate to step")

    pause_w = widgets.FloatText(value=pause, description="pause between steps");

    # widget to indicate current step
    steps_w = widgets.IntSlider(min=0, max=step_to + step_slack, value=0, description="current step")

    # subroutine to animate the simulation
    def animate(x):
        steps_w.max = to_w.value + step_slack
        for steps in range(from_w.value, to_w.value+1):
            steps_w.value = steps
            sleep(pause_w.value)

    # button to start animated simulation
    simulate_w = widgets.Button(description='simulate')
    simulate_w.on_click(animate)

    input_w = widgets.Text(value=input, description="input")

    unary_w = widgets.Checkbox(value=unary, description='unary?')

    input_unary_w = widgets.IntText(value=input_unary, description='input number')

    def update():
        if unary_w.value:
            input_w.disabled = True
            input_unary_w.visible = True
            input_w.value = '1' * input_unary_w.value
        else:
            input_w.disabled = False
            input_unary_w.visible = False

    update()
    unary_w.on_trait_change(update)
    input_unary_w.on_trait_change(update)

    # display control widgets
    box = widgets.VBox(children=[simulate_w, from_w, to_w, pause_w, unary_w, input_unary_w])
    display(box)

    # widgets to display simulation
    interact(display_wrap(run),
             transitions=fixed(transitions), input=input_w, steps=steps_w)
    def _repr_html_(self):
        def _data_frame(solution):
            df = self.nth_panel(solution - 1)
            notice("biomass: {0:g}".format(df['biomass'].iat[0]))
            notice("production: {0:g}".format(df['production'].iat[0]))
            df = df.loc[abs(df['normalized_gaps']) >= non_zero_flux_threshold]
            df.sort_values('normalized_gaps', inplace=True)
            display(df)

        num = len(self.solutions.groupby(['biomass', 'production'],
                                         as_index=False, sort=False))
        interact(_data_frame, solution=(1, num))
        return ''
def createPlots(filter1, filter2, filter3, type, filename=None):
    if type == 'Ia':
        lightcurvesPlotsFunc = lightcurvesPlots.plot_Ia
    elif type == 'Ibc':
        lightcurvesPlotsFunc = lightcurvesPlots.plot_Ibc
    elif type == 'II':
        lightcurvesPlotsFunc = lightcurvesPlots.plot_II

    if filename is not None:
        p = paramsFromFile(filter1, filter2, filter3, filename)
    else:
        p = paramsFromHand(filter1, filter2, filter3)

    interact(lightcurvesPlotsFunc, **p)
Example #20
0
    def __init__(self, r,
                 paramIds=None,
                 minFactor=0,
                 maxFactor=2,
                 sliderStepFactor=10,
                 selection=None,
                 simulateAndPlot=simulateAndPlot
                 ):

        if paramIds is None:
            paramIds = r.model.getGlobalParameterIds()
        paramMap = {}

        def runSim(start=0, stop=100, steps=100, **paramMap):
            r.reset()
            for k, v in paramMap.items():
                try:
                    key = k.encode('ascii', 'ignore')
                    r[key] = v
                except:
                    # error in setting model variable
                    e = sys.exc_info()
                    print e

            try:
                simulateAndPlot(r, start, stop, steps, selection)
            except:
                # error in simulation
                e = sys.exc_info()
                print e

        for i, id in enumerate(paramIds):
            val = r[id]
            try:
                r[id] = val
                paramMap[id] = widgets.FloatSliderWidget(
                    min=minFactor*val,
                    max=maxFactor*val,
                    step=val/sliderStepFactor,
                    value=val)
            except:
                e = sys.exc_info()
                print e

        interact(runSim,
                 start=widgets.FloatTextWidget(min=0, value=0),
                 stop=widgets.FloatTextWidget(min=0, value=100),
                 steps=widgets.IntTextWidget(min=0, value=100),
                 **paramMap
                 )
Example #21
0
    def interactive_reset_outliers(self):
        """User selects from columns that start with 'outlier_' to merge
        multiple outlier classifications"""
        outlier_columns = dict()

        for column in self.metadata.data.columns:
            if column.startswith("outlier_"):
                outlier_columns[column] = False

        def do_interact(**columns):
            if len(columns.keys()) == 0:
                print "You have not specified any 'outlier_' columns in " "study.metadata.data... \n" "This function will do nothing to your data."
            else:
                self.metadata.set_outliers_by_merging_columns([k for (k, v) in columns.items() if v])

        interact(do_interact, **outlier_columns)
Example #22
0
def openDB(DBchoice = 0):
    
    global dbname
    global lists
    dbname = lists[DBchoice]
    print 'dbname',dbname
    con = sqlite3.connect(dbname)
    query = "SELECT * FROM sqlite_master WHERE type='table'"
    print query
    global df
    df = pd.io.sql.read_frame(query,con)
    # print df.tail()

    global tablelen
    tablelen = len(df['name'])/3
    
    if not tablelen == 1:
        tablelen = tablelen -1
    print 'tablelen',tablelen
    global i2
    if not i2 == 0:
        i2.widget.close()
        # i2.visible = False
    i2 = interact(show_tables,Tablechoice=(0,tablelen))        
    con.close()
Example #23
0
def show_args(**kwargs):
    for k,v in kwargs.items():
        global dbname
        global lists
        dbname = lists[v]
        print 'dbname',dbname
        con = sqlite3.connect(dbname)
        query = "SELECT * FROM sqlite_master WHERE type='table'"
        print query
        global df
        df = pd.io.sql.read_frame(query,con)
#         print df.tail()
        
        # df = dftemp.sort(ascending=True,columns=['name'])
        global tablelen
        tablelen = len(df['name'])
        
        if not tablelen == 1:
            tablelen = tablelen -1
        print 'tablelen',tablelen
        global i2
        if not i2 == 0:
            i2.widget.close()
            # i2.visible = False
        i2 = interact(show_tables,Table=(0,tablelen),Name=u'Type here')        
Example #24
0
    def interactive_classifier(self,
                               data_types=('expression', 'splicing'),
                               sample_subsets=None,
                               feature_subsets=None,
                               categorical_variables=None,
                               predictor_types=None,
                               score_coefficient=(0.1, 20),
                               draw_labels=False,
                               savefile='data/last.clf.pdf'):
        def do_interact(data_type,
                        sample_subset,
                        feature_subset,
                        predictor_type=default_classifier,
                        categorical_variable='outlier',
                        score_coefficient=2,
                        savefile='data/last.clf.pdf'):

            for k, v in locals().iteritems():
                if k == 'self':
                    continue
                sys.stdout.write('{} : {}\n'.format(k, v))

            self.plot_classifier(trait=categorical_variable,
                                 feature_subset=feature_subset,
                                 sample_subset=sample_subset,
                                 predictor_name=predictor_type,
                                 score_coefficient=score_coefficient,
                                 data_type=data_type)

            if savefile is not '':
                self.maybe_make_directory(savefile)
                plt.gcf().savefig(savefile)

        if feature_subsets is None:
            feature_subsets = Interactive.get_feature_subsets(self, data_types)
            feature_subsets.insert(0, 'variant')
        if sample_subsets is None:
            sample_subsets = self.default_sample_subsets

        if categorical_variables is None:
            categorical_variables = [
                i for i in self.default_sample_subsets
                if not i.startswith("~") and i != 'all_samples'
            ]

        if predictor_types is None:
            predictor_types = self.predictor_config_manager.predictor_configs.keys(
            )

        # self.plot_study_sample_legend()

        return interact(do_interact,
                        data_type=data_types,
                        sample_subset=sample_subsets,
                        feature_subset=feature_subsets,
                        categorical_variable=categorical_variables,
                        score_coefficient=score_coefficient,
                        draw_labels=draw_labels,
                        predictor_type=predictor_types,
                        savefile=savefile)
    def _repr_html_(self):
        def _data_frame(solution):
            notice("%s: %f" % self.solutions.axes[0][solution - 1][0])
            notice("%s: %f" % self.solutions.axes[0][solution - 1][1])
            display(self.solutions.iloc[solution - 1])

        return interact(_data_frame, solution=[1, len(self.solutions)])
Example #26
0
def iplot(N_points=100, n_clusters=2):

    X, y = make_blobs(n_samples=N_points, centers=n_clusters,
                      random_state=0, cluster_std=0.60)

    def _kmeans_step(k=n_clusters, frame=0):
        rng = np.random.RandomState(2)
        labels = np.zeros(X.shape[0])
        centers = X[rng.randint(N_points, size=k),:]

        nsteps = frame // 3

        for i in range(nsteps + 1):
            old_centers = centers
            if i < nsteps or frame % 3 > 0:
                dist = euclidean_distances(X, centers)
                labels = dist.argmin(1)

            if i < nsteps or frame % 3 > 1:
                centers = np.array([X[labels == j].mean(0)
                                    for j in range(k)])
                nans = np.isnan(centers)
                centers[nans] = old_centers[nans]


        # plot the cluster centers
        fig = plt.figure(figsize=(8,6))

        plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='rainbow');
        plt.scatter(old_centers[:, 0], old_centers[:, 1], marker='s',
                    c="white",
                    s=200)
        plt.scatter(old_centers[:, 0], old_centers[:, 1], marker='s',
                    c=np.arange(k), s=50, cmap='rainbow')

        # plot new centers if third frame
        if frame % 3 == 2:
            for i in range(k):
                plt.annotate('', centers[i], old_centers[i],
                             arrowprops=dict(arrowstyle='->', linewidth=1))
            plt.scatter(centers[:, 0], centers[:, 1], marker='s',
                        c="white",
                        s=200, cmap='rainbow')
            plt.scatter(centers[:, 0], centers[:, 1], marker='s',
                        c=np.arange(k), s=50, cmap='rainbow')

        plt.xlim(-4, 4)
        plt.ylim(-2, 10)

        if frame % 3 == 1:
            plt.text(3.8, 9.5, "1. Reasignacion de etiquetas",
                     ha='right', va='top', size=14)
        elif frame % 3 == 2:
            plt.text(3.8, 9.5, "2. Calculo de centroides",
                     ha='right', va='top', size=14)

    frame_range = [0,20]
    k_range = [2, n_clusters+2]
    return interact(_kmeans_step, k=k_range, frame=frame_range)
Example #27
0
def interactB():
    widH = widgets.IntSliderWidget(min=0, max=1000, step=1, value=100)
    widZ = widgets.IntSliderWidget(min=0, max=1000, step=1, value=1)
    widI = widgets.IntSliderWidget(min=0, max=10, step=1, value=0)
    wida = widgets.FloatSliderWidget(min=0.01, max=1, step=0.01, value=0.05)
    widb = widgets.FloatSliderWidget(min=0.1, max=1, step=0.05, value=0.6)
    widz = widgets.FloatSliderWidget(min=0.01, max=0.5, step=0.01, value=0.2)
    widr = widgets.FloatSliderWidget(min=0.1, max=1, step=0.05, value=0.9)
    interact(solucionB,
             humanos=widH,
             infectados=widI,
             zombies=widZ,
             muertos=fixed(0),
             a=wida,
             b=widb,
             z=widz,
             r=widr)
Example #28
0
def plot_kmeans_interactive():
    from IPython.html.widgets import interact
    from sklearn.metrics.pairwise import euclidean_distances
    from sklearn.datasets.samples_generator import make_blobs
    
    X, y = make_blobs(n_samples=300, centers=4,
                      random_state=0, cluster_std=0.60)

    def _kmeans_step(frame, n_clusters):
        rng = np.random.RandomState(2)
        labels = np.zeros(X.shape[0])
        centers = rng.randn(n_clusters, 2)

        nsteps = frame // 3

        for i in range(nsteps + 1):
            old_centers = centers
            if i < nsteps or frame % 3 > 0:
                dist = euclidean_distances(X, centers)
                labels = dist.argmin(1)

            if i < nsteps or frame % 3 > 1:
                centers = np.array([X[labels == j].mean(0)
                                    for j in range(n_clusters)])
                nans = np.isnan(centers)
                centers[nans] = old_centers[nans]


        # plot the cluster centers
        plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='rainbow');
        plt.scatter(old_centers[:, 0], old_centers[:, 1], marker='o',
                    c=np.arange(n_clusters),
                    s=200, cmap='rainbow')
        plt.scatter(old_centers[:, 0], old_centers[:, 1], marker='o',
                    c='black', s=50)

        # plot new centers if third frame
        if frame % 3 == 2:
            for i in range(n_clusters):
                plt.annotate('', centers[i], old_centers[i], 
                             arrowprops=dict(arrowstyle='->', linewidth=1))
            plt.scatter(centers[:, 0], centers[:, 1], marker='o',
                        c=np.arange(n_clusters),
                        s=200, cmap='rainbow')
            plt.scatter(centers[:, 0], centers[:, 1], marker='o',
                        c='black', s=50)

        plt.xlim(-4, 4)
        plt.ylim(-2, 10)

        if frame % 3 == 1:
            plt.text(3.8, 9.5, "1. Reassign points to nearest centroid",
                     ha='right', va='top', size=14)
        elif frame % 3 == 2:
            plt.text(3.8, 9.5, "2. Update centroids to cluster means",
                     ha='right', va='top', size=14)

    return interact(_kmeans_step, frame=[0, 50], n_clusters=[3, 5])
Example #29
0
    def interactive_classifier(self, data_types=('expression', 'splicing'),
                               sample_subsets=None,
                               feature_subsets=None,
                               categorical_variables=None,
                               predictor_types=None,
                               score_coefficient=(0.1, 20),
                               draw_labels=False,
                               savefile='data/last.clf.pdf'):

        def do_interact(data_type,
                        sample_subset,
                        feature_subset,
                        predictor_type=default_classifier,
                        categorical_variable='outlier',
                        score_coefficient=2,
                        savefile='data/last.clf.pdf'):

            for k, v in locals().iteritems():
                if k == 'self':
                    continue
                sys.stdout.write('{} : {}\n'.format(k, v))

            self.plot_classifier(trait=categorical_variable,
                                 feature_subset=feature_subset,
                                 sample_subset=sample_subset,
                                 predictor_name=predictor_type,
                                 score_coefficient=score_coefficient,
                                 data_type=data_type)

            if savefile is not '':
                self.maybe_make_directory(savefile)
                plt.gcf().savefig(savefile)

        if feature_subsets is None:
            feature_subsets = Interactive.get_feature_subsets(self, data_types)
            feature_subsets.insert(0, 'variant')
        if sample_subsets is None:
            sample_subsets = self.default_sample_subsets

        if categorical_variables is None:
            categorical_variables = [i for i in self.default_sample_subsets if
                                     not i.startswith(
                                         "~") and i != 'all_samples']

        if predictor_types is None:
            predictor_types = self.predictor_config_manager.predictor_configs.keys()

        # self.plot_study_sample_legend()

        return interact(do_interact,
                 data_type=data_types,
                 sample_subset=sample_subsets,
                 feature_subset=feature_subsets,
                 categorical_variable=categorical_variables,
                 score_coefficient=score_coefficient,
                 draw_labels=draw_labels,
                 predictor_type=predictor_types,
                 savefile=savefile)
Example #30
0
    def interactive_lavalamp_pooled_inconsistent(
        self,
        sample_subsets=None,
        feature_subsets=None,
        difference_threshold=(0.001, 1.00),
        colors=["red", "green", "blue", "purple", "yellow"],
        savefile="",
    ):
        from IPython.html.widgets import interact

        savefile = "figures/last.lavalamp_pooled_inconsistent.pdf"

        def do_interact(
            sample_subset=self.default_sample_subsets,
            feature_subset=self.default_feature_subsets,
            difference_threshold=0.1,
            color=red,
            savefile=savefile,
        ):

            for k, v in locals().iteritems():
                if k == "self":
                    continue
                sys.stdout.write("{} : {}\n".format(k, v))

            assert feature_subset in self.splicing.feature_subsets.keys()
            feature_ids = self.splicing.feature_subsets[feature_subset]
            sample_ids = self.sample_subset_to_sample_ids(sample_subset)

            color = str_to_color[color]

            self.splicing.plot_lavalamp_pooled_inconsistent(sample_ids, feature_ids, difference_threshold, color=color)
            plt.tight_layout()

        if feature_subsets is None:
            feature_subsets = Interactive.get_feature_subsets(self, ["splicing", "expression"])
        if sample_subsets is None:
            sample_subsets = self.default_sample_subsets

        gui = interact(
            do_interact,
            sample_subset=sample_subsets,
            feature_subset=feature_subsets,
            difference_threshold=difference_threshold,
            color=colors,
            savefile="",
        )

        def save(w):
            filename, extension = os.path.splitext(savefile.value)
            self.maybe_make_directory(savefile.value)
            gui.widget.result.savefig(savefile.value, format=extension.lstrip("."))

        savefile = TextWidget(description="savefile", value="figures/clustermap.pdf")
        save_widget = ButtonWidget(description="save")
        gui.widget.children = list(gui.widget.children) + [savefile, save_widget]
        save_widget.on_click(save)
Example #31
0
def test_call_interact_kwargs():
    def foo(a="default"):
        pass

    with tt.monkeypatch(interaction, "display", record_display):
        ifoo = interact(foo, a=10)
    nt.assert_equal(len(displayed), 1)
    w = displayed[0].children[0]
    check_widget(w, cls=widgets.IntSlider, value=10)
Example #32
0
def show_images(button):
    """
    Do a quick and dirty plot of an image.

    Parameters
    ----------

    button : `IPython.html.widgets.ButtonWidget`
        Button whose click generated this call.
    """
    images = button.parent.image_list
    num = len(images)

    def view_image(i):
        plt.imshow(images[i])
        plt.title("Image {0}".format(i))
        plt.show()
    widgets.interact(view_image, i=(0, num - 1))
def plot_tree_interactive(X, y):
    from sklearn.tree import DecisionTreeClassifier

    def interactive_tree(depth=1):
        clf = DecisionTreeClassifier(max_depth=depth, random_state=0)
        visualize_tree(clf, X, y)

    from IPython.html.widgets import interact
    return interact(interactive_tree, depth=[1, 5])
Example #34
0
def plot_tree_interactive(X, y):
    from sklearn.tree import DecisionTreeClassifier

    def interactive_tree(depth=1):
        clf = DecisionTreeClassifier(max_depth=depth, random_state=0)
        visualize_tree(clf, X, y)

    from IPython.html.widgets import interact
    return interact(interactive_tree, depth=[1, 5])
Example #35
0
def test_call_interact_kwargs():
    def foo(a='default'):
        pass
    with tt.monkeypatch(interaction, 'display', record_display):
        ifoo = interact(foo, a=10)
    nt.assert_equal(len(displayed), 1)
    w = displayed[0].children[0]
    check_widget(w,
        cls=widgets.IntSlider,
        value=10,
    )
Example #36
0
def DC2DPseudoWidget():
    # print xzlocs
    Q = interact(DC2DPseudoWidgetWrapper,
                 rhohalf=FloatSlider(min=10, max=1000, step=1, value=1000),
                 rhosph=FloatSlider(min=10, max=1000, step=1, value=50),
                 xc=FloatSlider(min=-40, max=40, step=1, value=0),
                 zc=FloatSlider(min=-20, max=0, step=1, value=-10),
                 r=FloatSlider(min=0, max=15, step=0.5, value=5),
                 surveyType=ToggleButtons(
                     options=['DipoleDipole', 'PoleDipole', 'DipolePole']))
    return Q
Example #37
0
def interactive_graph(self):
    """Create an interative graph using Ipython widgets
    """
    basedict = self.__class__.__base_traits__
    inputs = dict([(c, (getattr(basedict[c],
                                'low'), getattr(basedict[c], 'high')))
                   for c in list_ios(self, 'in')])

    def f(**kwargs):
        my_call(self, **kwargs)
        display(self.draw_graph(value=True))

    return interact(f, **inputs)
Example #38
0
def test_call_interact():
    def foo(a='default'):
        pass

    with tt.monkeypatch(interaction, 'display', record_display):
        ifoo = interact(foo)
    nt.assert_equal(len(displayed), 1)
    w = displayed[0].children[0]
    check_widget(
        w,
        cls=widgets.TextWidget,
        value='default',
    )
Example #39
0
def InteractSeismogram():
    return interact(plotSeismogramInteract,
                    d2=(0., 150., 1),
                    d3=(0., 200., 1),
                    rho1=(2000., 5000., 50.),
                    rho2=(2000., 5000., 50.),
                    rho3=(2000., 5000., 50.),
                    v1=(100., 4000., 5.),
                    v2=(100., 4000., 5.),
                    v3=(300., 4000., 50.),
                    wavf=(5., 100., 2.5),
                    wavA=FloatSlider(min=-0.5, max=1., step=0.25, value=1.),
                    addNoise=False,
                    usingT=True)
Example #40
0
def test_interact_instancemethod():
    class Foo(object):
        def show(self, x):
            print(x)

    f = Foo()
    
    with tt.monkeypatch(interaction, 'display', record_display):
        g = interact(f.show, x=(1,10))
    nt.assert_equal(len(displayed), 1)
    w = displayed[0].children[0]
    check_widget(w,
        cls=widgets.IntSlider,
        value=5,
    )
Example #41
0
def setup_likelihood_sampler(kernel):
    # Pre-compute some stuff.
    x0 = np.linspace(-5, 5, 300)
    r = x0[:, None] - x0[None, :]

    # This function samples from the likelihood distribution.
    def sample_likelihood(amp, ell):
        np.random.seed(123)
        K = kernel([amp, ell], r)
        y0 = np.random.multivariate_normal(np.zeros_like(x0), K, 6)
        pl.plot(x0, y0.T, "k", alpha=0.5)
        pl.ylim(-1.5, 1.5)
        pl.xlim(-5, 5)

    return interact(sample_likelihood, amp=(1.0e-4, 1.0), ell=(0.01, 3.0))
Example #42
0
def interactC():
    widH = widgets.IntSliderWidget(min=0, max=1000, step=1, value=100)
    widZ = widgets.IntSliderWidget(min=0, max=1000, step=1, value=1)
    widI = widgets.IntSliderWidget(min=0, max=10, step=1, value=0)
    wida = widgets.FloatSliderWidget(min=0.01, max=1, step=0.01, value=0.05)
    widb = widgets.FloatSliderWidget(min=0.1, max=1, step=0.05, value=0.85)
    widz = widgets.FloatSliderWidget(min=0.01, max=0.5, step=0.01, value=0.09)
    widr = widgets.FloatSliderWidget(min=0.1, max=1, step=0.05, value=0.8)
    widk = widgets.FloatSliderWidget(min=0.1, max=1, step=0.1, value=0.3)
    wids = widgets.FloatSliderWidget(min=0.01, max=0.5, step=0.01, value=0.01)
    widg = widgets.FloatSliderWidget(min=0.1, max=1, step=0.1, value=0.6)
    interact(solucionC,
             humanos=widH,
             infectados=widI,
             zombies=widZ,
             muertos=fixed(0),
             cuarentena=fixed(0),
             a=wida,
             b=widb,
             z=widz,
             r=widr,
             k=widk,
             s=wids,
             g=widg)
Example #43
0
    def interactive_lavalamp_pooled_inconsistent(
            self,
            sample_subsets=None,
            feature_subsets=None,
            difference_threshold=(0.001, 1.00),
            colors=['red', 'green', 'blue', 'purple', 'yellow'],
            savefile=''):
        from IPython.html.widgets import interact

        # not sure why nested fxns are required for this, but they are... i
        # think...
        def do_interact(sample_subset=self.default_sample_subsets,
                        feature_subset=self.default_feature_subsets,
                        difference_threshold=0.1,
                        color=red,
                        savefile='data/last.lavalamp_pooled_inconsistent.pdf'):

            for k, v in locals().iteritems():
                if k == 'self':
                    continue
                sys.stdout.write('{} : {}\n'.format(k, v))

            assert (feature_subset in self.splicing.feature_subsets.keys())
            feature_ids = self.splicing.feature_subsets[feature_subset]
            sample_ids = self.sample_subset_to_sample_ids(sample_subset)

            color = str_to_color[color]

            self.splicing.plot_lavalamp_pooled_inconsistent(
                sample_ids, feature_ids, difference_threshold, color=color)
            plt.tight_layout()
            if savefile is not '':
                self.maybe_make_directory(savefile)
                plt.gcf().savefig(savefile)

        if feature_subsets is None:
            feature_subsets = Interactive.get_feature_subsets(
                self, ['splicing', 'expression'])

        if sample_subsets is None:
            sample_subsets = self.default_sample_subsets

        return interact(do_interact,
                        sample_subset=sample_subsets,
                        feature_subset=feature_subsets,
                        difference_threshold=difference_threshold,
                        color=colors,
                        savefile='')
Example #44
0
    def __init__(self):
        dfiles = glob.glob('DATA' + os.path.sep + '*.SPUV')
        dfiles.sort()

        self.slopes = zeros(6)
        # calibration constants
        self.spa = [
            0.0, 2.412917, 1.0417198 / 1.4, 2.60924 / 2.5, 0.92835 / 0.85,
            1.32079 / 0.85, 9.28147
        ]
        self.spb = [
            0.0, 0.001200, -0.0009700, -0.00040, 0.00050, -0.00197, 0.00030
        ]
        self.spc = 1000.0
        self.spd = 0.0
        self.w1 = interact(self.file_select, filename=dfiles)
Example #45
0
    def interactive_localZ(self):

        from IPython.html.widgets import interact

        def do_interact(data_type='expression',
                        sample1='',
                        sample2='',
                        pCut='0.01'):

            for k, v in locals().iteritems():
                if k == 'self':
                    continue
                sys.stdout.write('{} : {}'.format(k, v))

            pCut = float(pCut)
            assert pCut > 0
            if data_type == 'expression':
                data_obj = self.expression
            if data_type == 'splicing':
                data_obj = self.splicing

            try:
                assert sample1 in data_obj.df.index
            except:
                sys.stdout.write("sample: {}, is not in {} DataFrame, "
                                 "try a different sample ID".format(
                                     sample1, data_type))
                return
            try:
                assert sample2 in data_obj.df.index
            except:
                sys.stdout.write("sample: {}, is not in {} DataFrame, "
                                 "try a different sample ID".format(
                                     sample2, data_type))
                return
            self.localZ_result = data_obj.plot_twoway(sample1,
                                                      sample2,
                                                      pCut=pCut).result_
            sys.stdout.write("local_z finished, find the result in "
                             "<this_object>.localZ_result_")

        return interact(do_interact,
                        data_type=('expression', 'splicing'),
                        sample1='replaceme',
                        sample2='replaceme',
                        pCut='0.01')
Example #46
0
def PseudoSectionWidget(survey, flag):
    dx = 5
    xr = np.arange(-40, 41, dx)
    if flag == "PoleDipole":
        ntx, nmax = xr.size - 2, 8
        dxr = np.diff(xr)
    elif flag == "DipolePole":
        ntx, nmax = xr.size - 1, 7
        dxr = xr
    elif flag == "DipoleDipole":
        ntx, nmax = xr.size - 3, 8
        dxr = np.diff(xr)
    xzlocs = getPseudoLocs(dxr, ntx, nmax, flag)
    PseudoSectionPlot = lambda i, j: PseudoSectionPlotfnc(i, j, survey, flag)
    return interact(PseudoSectionPlot,
                    i=IntSlider(min=0, max=ntx - 1, step=1, value=0),
                    j=IntSlider(min=0, max=nmax - 1, step=1, value=0))
Example #47
0
def interact_with_plot_all_outputs(sa_dict, demo=False, manual=True):
    """
    This function adds the ability to interactively adjust all of the
    plotting.make_plot() arguments.

    Parameters
    ----------
    sa_dict : dict
              a dictionary with all the sensitivity analysis results.
    demo    : bool, optional
              plot only few outcomes for demo purpose.

    Returns
    -------
    Interactive widgets to control plot
    """
    min_val_box = BoundedFloatText(value=0.01,
                                   min=0,
                                   max=1,
                                   description='Min value:')
    top_box = IntText(value=20, description='Show top:')
    stacks = Checkbox(
        description='Show stacked plots:',
        value=True,
    )
    error_bars = Checkbox(description='Show error bars:', value=True)
    log_axis = Checkbox(description='Use log axis:', value=True)

    # get a list of all the parameter options
    key = sa_dict.keys()[0]
    param_options = list(sa_dict[key][0].Parameter.values)
    highlighted = SelectMultiple(description="Choose parameters to highlight",
                                 options=param_options,
                                 value=[])

    return interact(plot_all_outputs,
                    sa_dict=fixed(sa_dict),
                    demo=fixed(demo),
                    min_val=min_val_box,
                    top=top_box,
                    stacked=stacks,
                    error_bars=error_bars,
                    log_axis=log_axis,
                    highlighted_parameters=highlighted,
                    __manual=manual)
Example #48
0
    def fig(self, ix, raw=False, alt_df=None):
        """Generate interactive plot of a specified target.

        alt_df: df to use for fig; None if using self.pbb
        ix: index of the dataframe to plot
        raw: slider for raw image
        """

        if alt_df is None:
            df = self.pbbs
        else:
            df = alt_df

        row = df.loc[ix]
        print row
        pid, z, y, x, d = row['pid'], row['z'],\
                          row['y'],row['x'],row['d']

        import IPython.html.widgets as w
        if not raw:
            img = np.load(os.path.join(self.PREP, pid + '_clean.npy'))
        else:
            img, origin, spacing = utils.load_itk_image(os.path.join(self.RAW,pid + '.mhd'))

            # convert z,y,x,d to raw voxel coordinates
            v = np.array([z,y,x])
            ebox_origin = np.load(os.path.join(self.PREP,pid+'_ebox_origin.npy'))
            v = v + ebox_origin
            prep_spacing = np.load(os.path.join(self.PREP,pid+'_spacing.npy'))
            v = utils.voxelToWorldCoord(v, origin, prep_spacing)
            v = utils.worldToVoxelCoord(v, origin, spacing)
            z, y, x = v[0], v[1], v[2]
            d = d * prep_spacing[1] / spacing[1]

            # convert title
            row = row.copy()
            row['z'] = z
            row['y'] = y
            row['x'] = x
            row['d'] = d

        def fz(k):
            utils.showTargetImgComp(img, [k,y,x], plt, d=d, t=str(row))
        def fy(k):
            utils.showTargetImgComp(np.swapaxes(img,0,1), [k,z,x], plt, d=d, t=str(row))
        def fx(k):
            utils.showTargetImgComp(np.swapaxes(img,0,2), [k,y,z], plt, d=d, t=str(row))
        w.interact(fz, k=w.IntSlider(min=0,max=img.shape[0]-1,step=1,value=z))
        w.interact(fy, k=w.IntSlider(min=0,max=img.shape[1]-1,step=1,value=y))
        w.interact(fx, k=w.IntSlider(min=0,max=img.shape[2]-1,step=1,value=x))
 def file_select(self, filename=''):
     f = open(filename, 'r')
     self.title = filename
     lines = f.readlines()
     spuv = []
     for line in lines[18:]:
         spuv.append([float(val) for val in line.split()[0:]])
     f.close()
     self.spuv = array(spuv)
     self.cspuv = copy.deepcopy(self.spuv)
     for i in range(0, 6):
         self.cspuv[:,
                    i + 3] = (self.spuv[:, i + 3] -
                              (self.spb[i + 1] * self.spc - self.spd)) / (
                                  self.spa[i + 1] * self.spc)
     self.cspuv = where(self.cspuv < 0, 1e-10, self.cspuv)
     self.costheta = self.spuv[:, 2]
     self.costheta = where(self.costheta < 0, 1e-10, self.costheta)
     self.m = 1. / self.costheta
     self.xtime = self.spuv[:, 1]
     self.sza = arccos(self.costheta) * 180 / pi
     # remove possible existing widget before starting a new one
     try:
         self.w2.widget.close()
     except:
         None
     # setup widget:
     roptions = ['slopes', 'Langley slopes']
     self.w2 = interact(self.langley,
                        representation=roptions,
                        wl_368nm=True,
                        wl_501nm=True,
                        wl_670nm=True,
                        wl_780nm=True,
                        wl_870nm=True,
                        wl_940nm=True,
                        dayfraction=['morning', 'afternoon'],
                        mmin=(1, 10, 0.1),
                        mmax=(1, 10, 0.1))
Example #50
0
def InteractSeismogramTBL(v1=125, v2=125, v3=125):
    return interact(plotSeismogramInteractTBL,
                    d2=FloatSlider(min=1., max=100., step=0.1, value=9.),
                    d3=FloatSlider(min=2., max=100., step=0.1, value=9.5),
                    rho1=FloatSlider(min=2000.,
                                     max=5000.,
                                     step=50.,
                                     value=2300.),
                    rho2=FloatSlider(min=2000.,
                                     max=5000.,
                                     step=50.,
                                     value=2300.),
                    rho3=FloatSlider(min=2000.,
                                     max=5000.,
                                     step=50.,
                                     value=2300.),
                    v1=FloatSlider(min=100., max=1200., step=5., value=v1),
                    v2=FloatSlider(min=100., max=1200., step=5., value=v2),
                    v3=FloatSlider(min=100., max=1200., step=5., value=v3),
                    wavf=FloatSlider(min=5., max=100., step=1, value=67),
                    wavA=FloatSlider(min=-0.5, max=1., step=0.25, value=1.),
                    addNoise=False,
                    usingT=True)
Example #51
0
 def file_select(self, filename=''):
     f = open(filename, 'r')
     self.title = filename
     lines = f.readlines()
     spuv = []
     for line in lines[18:]:
         spuv.append([float(val) for val in line.split()[0:]])
     f.close()
     self.spuv = array(spuv)
     self.cspuv = copy.deepcopy(self.spuv)
     for i in range(0, 6):
         self.cspuv[:,
                    i + 3] = (self.spuv[:, i + 3] -
                              (self.spb[i + 1] * self.spc - self.spd)) / (
                                  self.spa[i + 1] * self.spc)
     self.cspuv = where(self.cspuv < 0, 1e-10, self.cspuv)
     self.costheta = self.spuv[:, 2]
     self.costheta = where(self.costheta < 0, 1e-10, self.costheta)
     self.m = 1. / self.costheta
     self.xtime = self.spuv[:, 1]
     self.sza = arccos(self.costheta) * 180 / pi
     # remove possible existing widget before starting a new one
     try:
         self.w2.widget.close()
     except:
         None
     # setup widget:
     roptions = ['raw counts', 'calibrated radiances', 'airmass']
     self.w2 = interact(self.aerosol,
                        representation=roptions,
                        wl_368nm=True,
                        wl_501nm=False,
                        wl_670nm=False,
                        wl_780nm=False,
                        wl_870nm=False,
                        wl_940nm=False)
    y = y[:N]
    clf = SVC(kernel='linear')
    clf.fit(X, y)
    plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='RdYlGn')
    plt.xlim(-50, 300)
    plt.ylim(0, 350)
    plot_svc_decision_function(clf, plt.gca())
    plt.scatter(clf.support_vectors_[:, 0],
                clf.support_vectors_[:, 1],
                s=200,
                facecolors='none')
    plt.xlabel(u'freies mtl. Einkommen [EUR]')
    plt.ylabel(u'angefragte mtl. Kreditrate [EUR]')


interact(plot_svm, N=[5, 500], kernel='poly')

# # Unsupervised Learning: Clustering
#
# [KMeans](http://scikit-learn.org/stable/modules/clustering.html#k-means) findet Cluster selbst, man muss nur sagen, wieviel unterschiedliche man haben möchte.

# In[24]:

from sklearn.cluster import KMeans

# In[25]:

cluster = KMeans(n_clusters=2)

# In[26]:
require(["leaflet"], function(leaflet) {

var map = window._my_maps['i3c9fe247-096f-4df2-b6d7-291bb6d3b0e1']
console.log(map.getCenter());
    
});

# <codecell>

from IPython.html import widgets
from IPython.html.widgets import interact, fixed

zoom_widget = widgets.IntSliderWidget(min=1, max=18, step=1)
zoom_widget.value = 12

interact (leaflet, leaflet_api_key=fixed(LEAFLET_KEY), lat=fixed(37.8717), 
                  long=fixed(-122.2728),height=fixed(500), zoom=zoom_widget)

# <headingcell level=1>

# Doing more with a map

# <codecell>

%%javascript
console.log(IPython.notebook.get_cells());

# <codecell>

%%javascript
require(["leaflet"], function(leaflet) {
def secondorder(K_in, tau_in, zeta_in):
    values = {K: K_in, tau: tau_in, zeta: zeta_in}
    AA = A.subs(values)
    stepresponse = sympy.re(
        (x0.subs(values) - sympy.exp(AA * t) * x0.subs(values))[0, 0])
    evalf = sympy.lambdify((t, ), stepresponse, modules='numpy')
    plt.figure(figsize=(12, 6))
    plt.subplot(1, 2, 1)
    plt.title('Step response')
    tau_height = evalf(tau_in)
    plt.plot(ts, evalf(ts))
    plt.axhline(K_in)
    plt.plot([0, tau_in, tau_in], [tau_height] * 2 + [0], alpha=0.4)
    plt.text(0, K_in, '$K=${}'.format(K_in))
    plt.text(0, tau_height, '{:.3}$K$'.format(tau_height))
    plt.text(tau_in, 0, r'$\tau={:.3}$'.format(tau_in))
    plt.ylim(0, 10)
    plt.subplot(1, 2, 2)
    plt.title('Poles plot')
    realpart = [sympy.re(r.subs(values)) for r in roots]
    imagpart = [sympy.im(r.subs(values)) for r in roots]
    plt.scatter(realpart, imagpart, marker='x', s=30)
    plt.axhline(0, color='black')
    plt.axvline(0, color='black')
    plt.axis([-2, 2, -2, 2])


# In[22]:

interact(secondorder, K_in=(0.1, 10.), tau_in=(0., 10.), zeta_in=(0., 2))
Example #55
0
    plt.plot(x,data[:])
    plt.xlabel("y")
    plt.ylabel("w")
    plt.figure()
    scalex = np.sqrt(np.abs(data[1]/x[1]) * p['viscosity']) / p['viscosity']
    scaley = 1./np.sqrt(np.abs(data[1]/x[1]) * p['viscosity']) 
    plt.plot(scalex*x[:50],scaley*data[:50], 'x-')
    plt.grid(True)
    plt.xlabel("y+")
    plt.ylabel("w+")
    plt.figure()
    scalex = np.sqrt(np.abs(data[-1]/(x[-1]-1)) * p['viscosity']) / p['viscosity']
    scaley = 1./np.sqrt(np.abs(data[-1]/(x[-1]-1)) * p['viscosity']) 
    plt.plot(scalex*(x[-50:]-1),scaley*data[-50:], 'x-')
    plt.grid(True)
    plt.xlabel("y+")
    plt.ylabel("w+")

interact(plot_profile, 
         frame=(0,64), 
         index=IntSlider(min=0,max=sc[0.0,'w_xy'].shape[0]-1,step=8,value=int(sc[0.0,'w_xy'].shape[0]*7/9))
        )


# In[8]:

get_ipython().magic('install_ext http://raw.github.com/jrjohansson/version_information/master/version_information.py')
get_ipython().magic('load_ext version_information')
get_ipython().magic('version_information numpy, matplotlib, slict, chest, glopen, globussh')

Example #56
0
def mean_filter_interactive_demo(image):
    from IPython.html import widgets
    mean_filter_step = mean_filter_demo(image)
    step_slider = widgets.IntSliderWidget(min=0, max=image.size - 1, value=0)
    widgets.interact(mean_filter_step, i_step=step_slider)
Example #57
0
def simulate(transitions,
             input='10101',
             unary=False,
             input_unary=12,
             pause=0.05,
             step_from=0,
             step_to=100,
             step_slack=100):
    """loads widget to simulate a given TM"""

    # widgets to specify the range of steps to simulate
    from_w = widgets.IntText(value=step_from, description="simulate from step")
    to_w = widgets.IntText(value=step_to, description="simulate to step")

    pause_w = widgets.FloatText(value=pause, description="pause between steps")

    # widget to indicate current step
    steps_w = widgets.IntSlider(min=0,
                                max=step_to + step_slack,
                                value=0,
                                description="current step")

    # subroutine to animate the simulation
    def animate(x):
        steps_w.max = to_w.value + step_slack
        for steps in range(from_w.value, to_w.value + 1):
            steps_w.value = steps
            sleep(pause_w.value)

    # button to start animated simulation
    simulate_w = widgets.Button(description='simulate')
    simulate_w.on_click(animate)

    input_w = widgets.Text(value=input, description="input")

    unary_w = widgets.Checkbox(value=unary, description='unary?')

    input_unary_w = widgets.IntText(value=input_unary,
                                    description='input number')

    def update():
        if unary_w.value:
            input_w.disabled = True
            input_unary_w.visible = True
            input_w.value = '1' * input_unary_w.value
        else:
            input_w.disabled = False
            input_unary_w.visible = False

    update()
    unary_w.on_trait_change(update)
    input_unary_w.on_trait_change(update)

    # display control widgets
    box = widgets.VBox(
        children=[simulate_w, from_w, to_w, pause_w, unary_w, input_unary_w])
    display(box)

    # widgets to display simulation
    interact(display_wrap(run),
             transitions=fixed(transitions),
             input=input_w,
             steps=steps_w)
Example #58
0

def plot_line(ax, intercept):
    plt.figure(figsize=(12, 12))
    ax = plt.gca()
    ax.set_xlim([0.0, 1.0])
    ax.set_ylim([0.0, 1.0])
    make_roc("gnb", clfgnb, ytest, Xtest, ax, labe=60)
    make_roc("dt", clfdt, ytest, Xtest, ax, labe=1)
    ax.plot(z1, slope * z1 + intercept, 'k-')


# In[48]:

from IPython.html.widgets import interact, fixed
interact(plot_line, ax=fixed(ax), intercept=(0.0, 1.0, 0.02))

# In[50]:


def percentage(tpr, fpr, priorp, priorn):
    perc = tpr * priorp + fpr * priorn
    return perc


def av_cost2(tpr, fpr, cost, priorp, priorn):
    profit = priorp * (cost[1][1] * tpr + cost[1][0] *
                       (1. - tpr)) + priorn * (cost[0][0] *
                                               (1. - fpr) + cost[0][1] * fpr)
    return profit
Example #59
0
 def show(self):
     plt.close(self.plots[self.i - 1])
     interact(self.showFigure, i=[1, self.i, 1])