def main(): parser = OptionParser() parser.set_defaults(n=100) parser.set_defaults(tmin=1e-3) parser.set_defaults(tmax=1) parser.set_defaults(profile='default') parser.add_option("-n", type='int', dest='n', help='the number of tasks to run') parser.add_option("-t", type='float', dest='tmin', help='the minimum task length in seconds') parser.add_option("-T", type='float', dest='tmax', help='the maximum task length in seconds') parser.add_option("-p", '--profile', type='str', dest='profile', help="the cluster profile [default: 'default']") (opts, args) = parser.parse_args() assert opts.tmax >= opts.tmin, "tmax must not be smaller than tmin" rc = Client() view = rc.load_balanced_view() print view rc.block = True nengines = len(rc.ids) with rc[:].sync_imports(): from IPython.utils.timing import time # the jobs should take a random time within a range times = [ random.random() * (opts.tmax - opts.tmin) + opts.tmin for i in range(opts.n) ] stime = sum(times) print "executing %i tasks, totalling %.1f secs on %i engines" % ( opts.n, stime, nengines) time.sleep(1) start = time.time() amr = view.map(time.sleep, times) amr.get() stop = time.time() ptime = stop - start scale = stime / ptime print "executed %.1f secs in %.1f secs" % (stime, ptime) print "%.3fx parallel performance on %i engines" % (scale, nengines) print "%.1f%% of theoretical max" % (100 * scale / nengines)
def execute(self): from IPython.utils.timing import time points = [] while len(points) == 0: hs = self.heuristics self.current = (self.current + 1) % len(hs) points.extend(hs[self.current].get_points(self.size)) time.sleep(1e-3) return points
def task(): while True: gtk.threads_enter() try: [c.draw_idle() for c in self._canvases if c._need_redraw] finally: gtk.threads_leave() from IPython.utils.timing import time time.sleep(self.config.ui_redraw_delay)
def main(): parser = OptionParser() parser.set_defaults(n=100) parser.set_defaults(tmin=1) parser.set_defaults(tmax=60) parser.set_defaults(controller='localhost') parser.set_defaults(meport=10105) parser.set_defaults(tport=10113) parser.add_option("-n", type='int', dest='n', help='the number of tasks to run') parser.add_option("-t", type='float', dest='tmin', help='the minimum task length in seconds') parser.add_option("-T", type='float', dest='tmax', help='the maximum task length in seconds') parser.add_option("-c", type='string', dest='controller', help='the address of the controller') parser.add_option("-p", type='int', dest='meport', help="the port on which the controller listens for the MultiEngine/RemoteController client") parser.add_option("-P", type='int', dest='tport', help="the port on which the controller listens for the TaskClient client") (opts, args) = parser.parse_args() assert opts.tmax >= opts.tmin, "tmax must not be smaller than tmin" rc = client.MultiEngineClient() tc = client.TaskClient() print(tc.task_controller) rc.block=True nengines = len(rc.get_ids()) rc.execute('from IPython.utils.timing import time') # the jobs should take a random time within a range times = [random.random()*(opts.tmax-opts.tmin)+opts.tmin for i in range(opts.n)] tasks = [client.StringTask("time.sleep(%f)"%t) for t in times] stime = sum(times) print("executing %i tasks, totalling %.1f secs on %i engines"%(opts.n, stime, nengines)) time.sleep(1) start = time.time() taskids = [tc.run(t) for t in tasks] tc.barrier(taskids) stop = time.time() ptime = stop-start scale = stime/ptime print("executed %.1f secs in %.1f secs"%(stime, ptime)) print("%.3fx parallel performance on %i engines"%(scale, nengines)) print("%.1f%% of theoretical max"%(100*scale/nengines))
def main(): parser = OptionParser() parser.set_defaults(n=100) parser.set_defaults(tmin=1e-3) parser.set_defaults(tmax=1) parser.set_defaults(profile='default') parser.add_option("-n", type='int', dest='n', help='the number of tasks to run') parser.add_option("-t", type='float', dest='tmin', help='the minimum task length in seconds') parser.add_option("-T", type='float', dest='tmax', help='the maximum task length in seconds') parser.add_option("-p", '--profile', type='str', dest='profile', help="the cluster profile [default: 'default']") (opts, args) = parser.parse_args() assert opts.tmax >= opts.tmin, "tmax must not be smaller than tmin" rc = Client() view = rc.load_balanced_view() print(view) rc.block = True nengines = len(rc.ids) with rc[:].sync_imports(): from IPython.utils.timing import time # the jobs should take a random time within a range times = [ random.random() * (opts.tmax - opts.tmin) + opts.tmin for i in range(opts.n)] stime = sum(times) print("executing %i tasks, totalling %.1f secs on %i engines" % (opts.n, stime, nengines)) time.sleep(1) start = time.time() amr = view.map(time.sleep, times) amr.get() stop = time.time() ptime = stop - start scale = stime / ptime print("executed %.1f secs in %.1f secs" % (stime, ptime)) print("%.3fx parallel performance on %i engines" % (scale, nengines)) print("%.1f%% of theoretical max" % (100 * scale / nengines))
def main(): parser = OptionParser() parser.set_defaults(n=100) parser.set_defaults(tmin=1) parser.set_defaults(tmax=60) parser.set_defaults(controller='localhost') parser.set_defaults(meport=10105) parser.set_defaults(tport=10113) parser.add_option("-n", type='int', dest='n', help='the number of tasks to run') parser.add_option("-t", type='float', dest='tmin', help='the minimum task length in seconds') parser.add_option("-T", type='float', dest='tmax', help='the maximum task length in seconds') parser.add_option("-c", type='string', dest='controller', help='the address of the controller') parser.add_option( "-p", type='int', dest='meport', help= "the port on which the controller listens for the MultiEngine/RemoteController client" ) parser.add_option( "-P", type='int', dest='tport', help= "the port on which the controller listens for the TaskClient client") (opts, args) = parser.parse_args() assert opts.tmax >= opts.tmin, "tmax must not be smaller than tmin" rc = client.MultiEngineClient() tc = client.TaskClient() print tc.task_controller rc.block = True nengines = len(rc.get_ids()) rc.execute('from IPython.utils.timing import time') # the jobs should take a random time within a range times = [ random.random() * (opts.tmax - opts.tmin) + opts.tmin for i in range(opts.n) ] tasks = [client.StringTask("time.sleep(%f)" % t) for t in times] stime = sum(times) print "executing %i tasks, totalling %.1f secs on %i engines" % ( opts.n, stime, nengines) time.sleep(1) start = time.time() taskids = [tc.run(t) for t in tasks] tc.barrier(taskids) stop = time.time() ptime = stop - start scale = stime / ptime print "executed %.1f secs in %.1f secs" % (stime, ptime) print "%.3fx parallel performance on %i engines" % (scale, nengines) print "%.1f%% of theoretical max" % (100 * scale / nengines)
def func_sum(tid, data): "x is either a number or a list/vector of numbers" time.sleep(math.log(1 + random())) return tid, numpy.sum(data)