if __name__ == '__main__': import utils from models import networks from Images import data_preprocess from torch.backends import cudnn torch.backends.cudnn.benchmark = True # get dataloader amazon_path = os.path.join(params.imgs_root_path, r'amazon\images') dslr_path = os.path.join(params.imgs_root_path, r'dslr\images') webcam_path = os.path.join(params.imgs_root_path, r'webcam\images') caltech_path = os.path.join(params.imgs_root_path, r'Clatech\clatech') # 不使用target domain amazon_dataloader = data_preprocess.get_dataloader(amazon_path, params.images_name) # dslr_dataloader = data_preprocess.get_dataloader(dslr_path, params.images_name) caltech_dataloader = data_preprocess.get_dataloader( caltech_path, params.images_name) # 目标域带标签的 # amazon_dataloader, dslr_dataloader = data_preprocess.get_src_tgt_dataloader(amazon_path, dslr_path, params.images_name) # 数据均衡后的dataloader # amazon_dataloader, dslr_dataloader = data_preprocess.data_balance_dataloader(amazon_path, dslr_path, params.images_name) # 初始化网络 classifier = networks.Classifier(3 * params.imgs_size * params.imgs_size, len(params.images_name)).cuda() discriminator = networks.LargeDiscriminator(3 * params.imgs_size * params.imgs_size).cuda()
if __name__ == '__main__': from models import networks from Images import data_preprocess from torch.backends import cudnn torch.backends.cudnn.benchmark = True # get dataloader amazon_path = os.path.join(params.imgs_root_path, r'amazon\images') dslr_path = os.path.join(params.imgs_root_path, r'dslr\images') webcam_path = os.path.join(params.imgs_root_path, r'webcam\images') caltech_path = os.path.join(params.imgs_root_path, r'Clatech\clatech') # 不使用target domain amazon_dataloader = data_preprocess.get_dataloader(amazon_path, params.images_name) dslr_dataloader = data_preprocess.get_dataloader(dslr_path, params.images_name) webcam_dataloader = data_preprocess.get_dataloader(webcam_path, params.images_name) caltech_dataloader = data_preprocess.get_dataloader( caltech_path, params.images_name) # 目标域带标签的 # amazon_dataloader, dslr_dataloader = data_preprocess.get_src_tgt_dataloader(amazon_path, dslr_path, params.images_name) # 初始化网络 classifier = networks.Classifier(3 * params.imgs_size * params.imgs_size, len(params.images_name)).cuda() discriminator = networks.LargeDiscriminator(3 * params.imgs_size * params.imgs_size).cuda()
torch.save(classifier.state_dict(), '../pth/classifier_src.pth') if __name__ == '__main__': import utils from models import networks from Images import data_preprocess from torch.backends import cudnn torch.backends.cudnn.benchmark = True # get dataloader amazon_path = os.path.join(params.imgs_root_path, r'amazon\images') dslr_path = os.path.join(params.imgs_root_path, r'dslr\images') # 不使用target domain amazon_dataloader = data_preprocess.get_dataloader(amazon_path, params.images_name) dslr_dataloader = data_preprocess.get_dataloader(dslr_path, params.images_name) # 目标域带标签的 # amazon_dataloader, dslr_dataloader = data_preprocess.get_src_tgt_dataloader(amazon_path, dslr_path, params.images_name) # 初始化网络 classifier = networks.Classifier(3 * params.imgs_size * params.imgs_size, len(params.images_name)).cuda() discriminator = networks.LargeDiscriminator(3 * params.imgs_size * params.imgs_size).cuda() # if os.path.exists('../pth/classifier_src.pth'): # classifier.load_state_dict(torch.load('../pth/classifier_src.pth')) # else: # train_classifier(classifier, dslr_dataloader)