def get_image_sample_transforms(self) -> ModelTransformsPerExecutionMode: if self.use_combined_model: return ModelTransformsPerExecutionMode( train=ScalarItemAugmentation( transform=RandAugmentSlice(use_joint_channel_transformation=False, is_transformation_for_segmentation_maps=True))) else: return ModelTransformsPerExecutionMode()
def get_image_sample_transforms(self) -> ModelTransformsPerExecutionMode: """ Get transforms to perform on image samples for each model execution mode. """ return ModelTransformsPerExecutionMode( train=ScalarItemAugmentation( RandAugmentSlice(is_transformation_for_segmentation_maps=( self.imaging_feature_type == ImagingFeatureType.Segmentation or self.imaging_feature_type == ImagingFeatureType.ImageAndSegmentation))))
def test_image_encoder(test_output_dirs: OutputFolderForTests, encode_channels_jointly: bool, use_non_imaging_features: bool, kernel_size_per_encoding_block: Optional[Union[TupleInt3, List[TupleInt3]]], stride_size_per_encoding_block: Optional[Union[TupleInt3, List[TupleInt3]]], reduction_factor: float, expected_num_reduced_features: int, aggregation_type: AggregationType) -> None: """ Test if the image encoder networks can be trained without errors (including GradCam computation and data augmentation). """ logging_to_stdout() set_random_seed(0) dataset_folder = Path(test_output_dirs.make_sub_dir("dataset")) scan_size = (6, 64, 60) scan_files: List[str] = [] for s in range(4): random_scan = np.random.uniform(0, 1, scan_size) scan_file_name = f"scan{s + 1}{NumpyFile.NUMPY.value}" np.save(str(dataset_folder / scan_file_name), random_scan) scan_files.append(scan_file_name) dataset_contents = """subject,channel,path,label,numerical1,numerical2,categorical1,categorical2 S1,week0,scan1.npy,,1,10,Male,Val1 S1,week1,scan2.npy,True,2,20,Female,Val2 S2,week0,scan3.npy,,3,30,Female,Val3 S2,week1,scan4.npy,False,4,40,Female,Val1 S3,week0,scan1.npy,,5,50,Male,Val2 S3,week1,scan3.npy,True,6,60,Male,Val2 """ (dataset_folder / "dataset.csv").write_text(dataset_contents) numerical_columns = ["numerical1", "numerical2"] if use_non_imaging_features else [] categorical_columns = ["categorical1", "categorical2"] if use_non_imaging_features else [] non_image_feature_channels = get_non_image_features_dict(default_channels=["week1", "week0"], specific_channels={"categorical2": ["week1"]}) \ if use_non_imaging_features else {} config_for_dataset = ScalarModelBase( local_dataset=dataset_folder, image_channels=["week0", "week1"], image_file_column="path", label_channels=["week1"], label_value_column="label", non_image_feature_channels=non_image_feature_channels, numerical_columns=numerical_columns, categorical_columns=categorical_columns, should_validate=False ) config_for_dataset.read_dataset_into_dataframe_and_pre_process() dataset = ScalarDataset(config_for_dataset, sample_transforms=ScalarItemAugmentation( RandAugmentSlice(is_transformation_for_segmentation_maps=False))) assert len(dataset) == 3 config = ImageEncoder( encode_channels_jointly=encode_channels_jointly, should_validate=False, numerical_columns=numerical_columns, categorical_columns=categorical_columns, non_image_feature_channels=non_image_feature_channels, categorical_feature_encoder=config_for_dataset.categorical_feature_encoder, encoder_dimensionality_reduction_factor=reduction_factor, aggregation_type=aggregation_type, scan_size=(6, 64, 60) ) if kernel_size_per_encoding_block: config.kernel_size_per_encoding_block = kernel_size_per_encoding_block if stride_size_per_encoding_block: config.stride_size_per_encoding_block = stride_size_per_encoding_block config.set_output_to(test_output_dirs.root_dir) config.max_batch_grad_cam = 1 model = create_model_with_temperature_scaling(config) input_size: List[Tuple] = [(len(config.image_channels), *scan_size)] if use_non_imaging_features: input_size.append((config.get_total_number_of_non_imaging_features(),)) # Original number output channels (unreduced) is # num initial channel * (num encoder block - 1) = 4 * (3-1) = 8 if encode_channels_jointly: # reduced_num_channels + num_non_img_features assert model.final_num_feature_channels == expected_num_reduced_features + \ config.get_total_number_of_non_imaging_features() else: # num_img_channels * reduced_num_channels + num_non_img_features assert model.final_num_feature_channels == len(config.image_channels) * expected_num_reduced_features + \ config.get_total_number_of_non_imaging_features() summarizer = ModelSummary(model) summarizer.generate_summary(input_sizes=input_size) config.local_dataset = dataset_folder config.validate() model_train(config, checkpoint_handler=get_default_checkpoint_handler(model_config=config, project_root=Path(test_output_dirs.root_dir)))