#!/usr/bin/env python import os from functools import partial import JMTucker.Tools.Samples as Samples import JMTucker.MFVNeutralino.AnalysisConstants as ac from JMTucker.Tools.ROOTTools import ROOT, data_mc_comparison, set_style, plot_saver, plot_dir year = '2017p8' version = 'V23m' root_file_dir = '/uscms_data/d2/tucker/crab_dirs/Histos%s' % version set_style() ps = plot_saver(plot_dir('dbv_%s_%s' % (year, version)), pdf_log=True) int_lumi = ac.int_lumi_2017p8 * ac.scale_factor_2017p8 int_lumi_nice = ac.int_lumi_nice_2017p8 qcd_samples = Samples.qcd_samples_2017[1:] + Samples.qcd_samples_2018 ttbar_samples = Samples.ttbar_samples_2017 signal_sample = Samples.mfv_neu_tau001000um_M0800_2017 data_samples = Samples.data_samples_2017 background_samples = ttbar_samples + qcd_samples for s in qcd_samples: s.join_info = True, 'Multijet events', ROOT.kBlue - 9 for s in ttbar_samples: s.join_info = True, 't#bar{t}', ROOT.kBlue - 7 signal_samples = [signal_sample] signal_sample.nice_name = 'Multijet signal: #sigma = 1 fb,\\c#tau = 1 mm, M = 800 GeV'
#!/usr/bin/env python import os from functools import partial import JMTucker.Tools.Samples as Samples import JMTucker.MFVNeutralino.AnalysisConstants as ac from JMTucker.Tools.ROOTTools import ROOT, data_mc_comparison, set_style, plot_saver root_file_dir = '/uscms_data/d3/jchu/crab_dirs/mfv_763p2/HistosV6p1_76x_nstlays3_26' plot_dir = 'plots/AN-16-394/data_mc_comp' set_style() ps = plot_saver(plot_dir) ac.int_lumi = 36200. ac.int_lumi_nice = '36.2 fb^{-1} (13 TeV)' scale_factor = 1. #245750.0 / 264843.310478 data_samples = [] #Samples.data_samples background_samples = Samples.ttbar_samples + Samples.qcd_samples signal_samples = [Samples.mfv_neu_tau00100um_M0800, Samples.mfv_neu_tau00300um_M0800, Samples.mfv_neu_tau01000um_M0800, Samples.mfv_neu_tau10000um_M0800] y = ['100 #mum', '300 #mum', '1 mm', '10 mm'] c = [7, 4, 6, 8] for i, signal_sample in enumerate(signal_samples): signal_sample.xsec = 0.001 signal_sample.nice_name = 'Signal: #sigma = 1 fb, c#tau = %s, M = 800 GeV' % y[i] signal_sample.color = c[i] Samples.mfv_neu_tau01000um_M0800.color = 8 signal_samples = [Samples.mfv_neu_tau01000um_M0800]
from array import array from JMTucker.Tools.ROOTTools import ROOT, plot_saver, set_style, differentiate_stat_box, sort_histogram_pair set_style() ROOT.gStyle.SetOptStat(100) ps = plot_saver('plots/btag_counting', size=(600,600)) btags = 'CSVpt30bd0p244 CSVpt30bd0p679 CSVpt30bd0p898 JPpt30bd0p275 JPpt30bd0p545 JPpt30bd0p79 JBPpt30bd1p33 JBPpt30bd2p55 JBPpt30bd3p74 SSVHEpt30bd1p74 SSVHEpt30bd3p05 SSVHPpt30bd2p0 TCHEpt30bd1p7 TCHEpt30bd3p3 TCHEpt30bd10p2 TCHPpt30bd1p19 TCHPpt30bd1p93 TCHPpt30bd3p41'.split() taus = '0000 0010 0100 1000 4000 9900'.split() taus = [(tau, ROOT.TFile('mfv_reco_counting_gluino_tau%sum_M400.root' % tau)) for tau in taus] tau_nice = {'0000': '0', '0010': '10 #mum', '0100': '100 #mum', '1000': '1 mm', '4000': '4 mm', '9900': '9.9 mm'} colors = [1,2,3,4,6,46] def btag_color(btag): if 'CSV' in btag: return ROOT.kRed elif 'JP' in btag: return ROOT.kBlue elif 'JBP' in btag: return ROOT.kGreen elif 'SSV' in btag: return ROOT.kCyan elif 'TCHE' in btag: return ROOT.kOrange elif 'TCHP' in btag: return ROOT.kMagenta xs = [1e-3, 10e-3, 100e-3, 1, 9.9] yys = [] for btag in btags: print btag hs = [(tau, tau_file.Get('%s/h_ndisc' % btag)) for tau, tau_file in taus] opt = ''
event_histo_path = 'mfvEventHistosOnlyOneVtx' vertex_histo_path = 'mfvVertexHistosOnlyOneVtx' hist_path_for_nevents_check = None # 'mfvEventHistosNoCuts/h_npu', plot_size = (600,600) int_lumi = 18200. # /pb int_lumi_nice = '18.2 fb^{-1}' scale_factor = 253433.0/174559.114014#54685200.8472/45484519.0 ################################################################################ from functools import partial from JMTucker.Tools.ROOTTools import ROOT, data_mc_comparison, set_style, plot_saver import JMTucker.Tools.Samples as Samples set_style() ps = plot_saver(plot_dir, size=plot_size) data_samples = Samples.data_samples background_samples = Samples.ttbar_samples + Samples.qcd_samples for sample in background_samples: sample.total_events = sample.nevents_orig/2 signal_samples = [Samples.mfv_neutralino_tau0300um_M0400, Samples.mfv_neutralino_tau1000um_M0400, Samples.mfv_neutralino_tau9900um_M0400] #signal_samples = [Samples.mfv_neutralino_tau1000um_M0400] Samples.mfv_neutralino_tau0300um_M0400.nice_name = '#tau = 300 #mum, M = 400 GeV signal' Samples.mfv_neutralino_tau1000um_M0400.nice_name = '#tau = 1 mm, M = 400 GeV signal' Samples.mfv_neutralino_tau9900um_M0400.nice_name = '#tau = 10 mm, M = 400 GeV signal' Samples.mfv_neutralino_tau0300um_M0400.color = 6 Samples.mfv_neutralino_tau1000um_M0400.color = 8 Samples.mfv_neutralino_tau9900um_M0400.color = 2
#!/usr/bin/env python import os from functools import partial import JMTucker.Tools.Samples as Samples import JMTucker.MFVNeutralino.AnalysisConstants as ac from JMTucker.Tools.ROOTTools import ROOT, data_mc_comparison, set_style, plot_saver root_file_dir = '/uscms_data/d2/tucker/crab_dirs/HistosV15_v2' plot_dir = 'plots/EXO-17-018/dbv' set_style() ps = plot_saver(plot_dir, pdf_log=True) int_lumi_2015 = ac.int_lumi_2015 * ac.scale_factor_2015 int_lumi_2016 = ac.int_lumi_2016 * ac.scale_factor_2016 int_lumi = ac.int_lumi_2015p6 * ac.scale_factor_2015p6 int_lumi_nice = ac.int_lumi_nice_2015p6 qcd_samples = Samples.qcd_samples_sum_2015 + Samples.qcd_samples_sum ttbar_samples = Samples.ttbar_samples_2015 + Samples.ttbar_samples signal_sample = Samples.mfv_neu_tau01000um_M0800 data_samples = Samples.data_samples_2015 + Samples.data_samples background_samples = ttbar_samples + qcd_samples for s in qcd_samples: s.join_info = True, 'Multijet events', ROOT.kBlue-9 for s in ttbar_samples: s.join_info = True, 't#bar{t}', ROOT.kBlue-7 signal_samples = [signal_sample]
#!/usr/bin/env python from array import array from math import atan2, pi from JMTucker.Tools.ROOTTools import ROOT, set_style, plot_saver set_style() ps = plot_saver('plots/svdist2d', size=(600,600), root=False) events = [ #JMTBAD ('ttbarhadronic', 11, 0.038701, (0.261774, 0.408543, 5.461642), (0.227344, 0.390869, 5.455204)), ('ttbarhadronic', 13, 0.052628, (0.256565, 0.375338, 6.423751), (0.216289, 0.409213, 6.422791)), ('ttbarhadronic', 13, 0.035594, (0.242142, 0.408818, 9.065842), (0.242830, 0.373231, 9.031754)), ('ttbarhadronic', 22, 0.035238, (0.256337, 0.386669, 12.382702), (0.221108, 0.385888, 12.389077)), ('ttbarhadronic', 14, 0.047271, (0.265458, 0.405046, -2.695619), (0.241287, 0.364422, -2.724167)), ('ttbarhadronic', 16, 0.035710, (0.234981, 0.383859, 3.376724), (0.270516, 0.387383, 3.372786)), ('ttbarhadronic', 15, 0.043497, (0.266564, 0.379380, 2.645792), (0.230433, 0.403599, 2.642178)), ('ttbarhadronic', 13, 0.005584, (0.255890, 0.389789, -5.614880), (0.261179, 0.391579, -5.632700)), ('ttbarhadronic', 14, 0.045643, (0.227548, 0.410070, -3.065305), (0.270651, 0.395057, -3.077112)), ('ttbarhadronic', 11, 0.026877, (0.253156, 0.376443, 5.128539), (0.255399, 0.403226, 5.124454)), ('ttbarhadronic', 14, 0.032884, (0.255983, 0.405007, -8.209767), (0.237292, 0.377952, -8.198071)), ('ttbarhadronic', 10, 0.031105, (0.231817, 0.387824, 3.532544), (0.259541, 0.401928, 3.530664)), ('ttbarhadronic', 10, 0.029926, (0.257093, 0.400376, -5.239875), (0.228456, 0.391689, -5.243913)), ('ttbarhadronic', 16, 0.053752, (0.269075, 0.394132, -7.130037), (0.217579, 0.409540, -7.126348)), ('ttbarhadronic', 14, 0.029036, (0.248531, 0.403836, -5.928278), (0.251489, 0.374951, -5.968768)), ('ttbarhadronic', 12, 0.038412, (0.277733, 0.400785, -4.486256), (0.245794, 0.422124, -4.502941)), ('ttbarhadronic', 12, 0.022547, (0.234883, 0.381776, 3.450872), (0.245009, 0.361631, 3.413937)), ('ttbarhadronic', 12, 0.035867, (0.231730, 0.393902, -4.327154), (0.263719, 0.410125, -4.301592)), ('ttbarhadronic', 15, 0.032213, (0.239994, 0.372933, -14.086270), (0.260160, 0.398052, -14.074339)), ('ttbarhadronic', 11, 0.048556, (0.233032, 0.419259, -8.775222), (0.244513, 0.372079, -8.765034)), ('ttbarhadronic', 16, 0.035112, (0.261019, 0.388552, -3.532264), (0.225916, 0.389328, -3.552430)),