] for vect in vals: vect /= vect.std() labels = [ r'$\mathcal{R}, n=2000$, Poisson', r'$\mathcal{R}, n=10000$, Poisson', r'$\mathcal{R}, n=2000$, PDF', r'$\mathcal{R}, n=10000$, PDF', r'$\mathcal{I}, n=2000$, Poisson', r'$\mathcal{I}, n=10000$, Poisson', r'$\mathcal{I}, n=2000$, PDF', r'$\mathcal{I}, n=10000$, PDF', ] #bins = np.linspace(-0.003, 0.003, 61) bins = np.linspace(-5, 5, 101) curve_pts = np.linspace(-5, 5, 1001) gauss_vals = stats.norm.pdf(curve_pts) * re_alm_2000.size / 10. o_dict = figs.plot_hists("alm", bins, vals, labels=labels) axes = o_dict['axes'] axes.plot(curve_pts, gauss_vals, 'b-', label="Unit Normal") testfigpath = os.path.join(Defaults.NUXGAL_PLOT_DIR, 'test') testfigfile = os.path.join(testfigpath, 'alm_distrib') Utilityfunc.makedir_safe(testfigfile) figs.save_all(testfigfile, 'pdf')
w_cross_150_2000 = w_cross_2000 w_cross_150_10000 = w_cross_10000 w_cross_150_syn_2000 = w_cross_syn_2000 w_cross_150_syn_10000 = w_cross_syn_10000 vals = [ w_cross_150_2000, w_cross_150_10000, w_cross_150_syn_2000, w_cross_150_syn_10000 ] for vect in vals: vect /= vect.std(0) labels = [ r'$n=2000$, Poisson', r'$n=10000$, Poisson', r'$n=2000$, PDF', r'$n=10000$, PDF' ] bins = np.linspace(-5, 5, 101) curve_pts = np.linspace(-5, 5, 1001) gauss_vals = stats.norm.pdf(curve_pts) * w_cross_150_2000.size / 10. o_dict = figs.plot_hists("w_cross", bins, vals, labels=labels) axes = o_dict['axes'] axes.plot(curve_pts, gauss_vals, 'b-', label="Unit Normal") testfigpath = os.path.join(Defaults.NUXGAL_PLOT_DIR, 'test') testfigfile = os.path.join(testfigpath, 'cl_distrib') Utilityfunc.makedir_safe(testfigfile) figs.save_all(testfigfile, 'pdf')