def __init__(self, URM_train, ICM_train):
        super(ScoresHybridKNNCFKNNCBF, self).__init__(URM_train)

        self.URM_train = check_matrix(URM_train.copy(), 'csr')
        self.ICM_train = ICM_train
        self.itemKNNCF = ItemKNNCFRecommender.ItemKNNCFRecommender(URM_train)
        self.itemKNNCBF = ItemKNNCBFRecommender.ItemKNNCBFRecommender(URM_train, ICM_train)
Example #2
0
    def __init__(self, URM_train, ICM_train):
        super(ScoresHybridSpecializedV2Mid, self).__init__(URM_train)

        self.URM_train = check_matrix(URM_train.copy(), 'csr')
        self.ICM_train = ICM_train
        self.P3alpha = P3alphaRecommender.P3alphaRecommender(URM_train)
        self.itemKNNCBF = ItemKNNCBFRecommender.ItemKNNCBFRecommender(
            URM_train, ICM_train)
Example #3
0
        "validation_metric": "MAP",
    }

    # MAP 0.07 Kaggle "topK": 131, "shrink": 2, "similarity": "cosine", "normalize": true}
    #recommender = UserKNNCFRecommender.UserKNNCFRecommender(URM_train)
    #recommender.fit(**{"topK": 131, "shrink": 2, "similarity": "cosine", "normalize": True})
    '''itemKNNCF = ItemKNNCFRecommender.ItemKNNCFRecommender(URM_train)
    itemKNNCF.fit(**{"topK": 1000, "shrink": 732, "similarity": "cosine", "normalize": True,
                     "feature_weighting": "TF-IDF"})
    itemKNNCF2 = ItemKNNCFRecommender.ItemKNNCFRecommender(URM_ICM_train)
    itemKNNCF2.fit(**{"topK": 1000, "shrink": 732, "similarity": "cosine", "normalize": True,
                     "feature_weighting": "TF-IDF"})
    itemKNNCF3 = ItemKNNCFRecommender.ItemKNNCFRecommender(URM_ICM_train2.T)
    itemKNNCF3.fit(**{"topK": 1000, "shrink": 732, "similarity": "cosine", "normalize": True,
                     "feature_weighting": "TF-IDF"})'''
    itemKNNCBF = ItemKNNCBFRecommender.ItemKNNCBFRecommender(
        URM_train, URM_train.T)
    itemKNNCBF.fit(topK=700,
                   shrink=200,
                   similarity='jaccard',
                   normalize=True,
                   feature_weighting="TF-IDF")
    itemKNNCBF2 = ItemKNNCBFRecommender.ItemKNNCBFRecommender(
        URM_train, URM_ICM_train.T)
    itemKNNCBF2.fit(topK=700,
                    shrink=200,
                    similarity='jaccard',
                    normalize=True,
                    feature_weighting="TF-IDF")
    itemKNNCBF3 = ItemKNNCBFRecommender.ItemKNNCBFRecommender(
        URM_train, URM_ICM_train2)
    itemKNNCBF3.fit(topK=700,
Example #4
0
def crossval(URM_all, ICM_all, target_ids, k):

    seed = 1234 + k  #+ int(time.time())
    np.random.seed(seed)
    tp = 0.75
    URM_train, URM_test = train_test_holdout(URM_all, train_perc=tp)
    ICM_train, ICM_test = train_test_holdout(ICM_all, train_perc=0.95)
    evaluator_validation = EvaluatorHoldout(URM_test,
                                            cutoff_list=[10],
                                            exclude_seen=True)
    args = {}

    p3alpha = P3alphaRecommender.P3alphaRecommender(URM_train)
    try:
        args = {
            "topK": 991,
            "alpha": 0.4705816992313091,
            "normalize_similarity": False
        }
        p3alpha.load_model(
            'SavedModels\\', p3alpha.RECOMMENDER_NAME + toFileName(args) +
            ",s=" + str(seed) + ",tp=" + str(tp) + ".zip")
    except:
        print("Saved model not found. Fitting a new one...")
        p3alpha.fit(**args)
        p3alpha.save_model(
            'SavedModels\\', p3alpha.RECOMMENDER_NAME + toFileName(args) +
            ",s=" + str(seed) + ",tp=" + str(tp))

    rp3beta = RP3betaRecommender.RP3betaRecommender(URM_train)
    try:
        args = {
            "topK": 991,
            "alpha": 0.4705816992313091,
            "beta": 0.37,
            "normalize_similarity": False
        }
        rp3beta.load_model(
            'SavedModels\\', rp3beta.RECOMMENDER_NAME + toFileName(args) +
            ",s=" + str(seed) + ",tp=" + str(tp) + ".zip")
    except:
        print("Saved model not found. Fitting a new one...")
        rp3beta.fit(**args)
        rp3beta.save_model(
            'SavedModels\\', rp3beta.RECOMMENDER_NAME + toFileName(args) +
            ",s=" + str(seed) + ",tp=" + str(tp))

    itemKNNCF = ItemKNNCFRecommender.ItemKNNCFRecommender(URM_train)
    try:
        args = {
            "topK": 1000,
            "shrink": 732,
            "similarity": "cosine",
            "normalize": True,
            "feature_weighting": "TF-IDF"
        }
        itemKNNCF.load_model(
            'SavedModels\\', itemKNNCF.RECOMMENDER_NAME + toFileName(args) +
            ",s=" + str(seed) + ",tp=" + str(tp) + ".zip")
    except:
        print("Saved model not found. Fitting a new one...")
        itemKNNCF.fit(**args)
        itemKNNCF.save_model(
            'SavedModels\\', itemKNNCF.RECOMMENDER_NAME + toFileName(args) +
            ",s=" + str(seed) + ",tp=" + str(tp))

    userKNNCF = UserKNNCFRecommender.UserKNNCFRecommender(URM_train)
    try:
        args = {
            "topK": 131,
            "shrink": 2,
            "similarity": "cosine",
            "normalize": True
        }
        userKNNCF.load_model(
            'SavedModels\\', userKNNCF.RECOMMENDER_NAME + toFileName(args) +
            ",s=" + str(seed) + ",tp=" + str(tp) + ".zip")
    except:
        print("Saved model not found. Fitting a new one...")
        userKNNCF.fit(**args)
        userKNNCF.save_model(
            'SavedModels\\', userKNNCF.RECOMMENDER_NAME + toFileName(args) +
            ",s=" + str(seed) + ",tp=" + str(tp))

    itemKNNCBF = ItemKNNCBFRecommender.ItemKNNCBFRecommender(
        URM_train, ICM_all)
    try:
        args = {
            "topK": 700,
            "shrink": 100,
            "similarity": 'jaccard',
            "normalize": True,
            "feature_weighting": "TF-IDF"
        }
        itemKNNCBF.load_model(
            'SavedModels\\', itemKNNCBF.RECOMMENDER_NAME + toFileName(args) +
            ",s=" + str(seed) + ",tp=" + str(tp) + ".zip")
    except:
        print("Saved model not found. Fitting a new one...")
        itemKNNCBF.fit(**args)
        itemKNNCBF.save_model(
            'SavedModels\\', itemKNNCBF.RECOMMENDER_NAME + toFileName(args) +
            ",s=" + str(seed) + ",tp=" + str(tp))

    #cfw = CFW_D_Similarity_Linalg.CFW_D_Similarity_Linalg(URM_train, ICM_train, itemKNNCF.W_sparse)
    #cfw.fit(show_max_performance=False, logFile=None, loss_tolerance=1e-6,
    #        iteration_limit=500000, damp_coeff=0.5, topK=900, add_zeros_quota=0.5, normalize_similarity=True)

    # Need to change bpr code to avoid memory error, useless since it's bad
    # bpr = SLIM_BPR_Cython(URM_train, recompile_cython=False)
    # bpr.fit(**{"topK": 1000, "epochs": 130, "symmetric": False, "sgd_mode": "adagrad", "lambda_i": 1e-05,
    #          "lambda_j": 0.01, "learning_rate": 0.0001})

    pureSVD = PureSVDRecommender.PureSVDRecommender(URM_train)
    pureSVD.fit(num_factors=1000)

    hyb = ItemKNNScoresHybridRecommender.ItemKNNScoresHybridRecommender(
        URM_train, p3alpha, itemKNNCBF)
    hyb.fit(alpha=0.5)

    # Kaggle MAP 0.084 rp3beta, itemKNNCBF
    hyb2 = ItemKNNScoresHybridRecommender.ItemKNNScoresHybridRecommender(
        URM_train, pureSVD, itemKNNCBF)
    hyb2.fit(alpha=0.5)

    # Kaggle MAP 0.08667
    hyb3 = ItemKNNScoresHybridRecommender.ItemKNNScoresHybridRecommender(
        URM_train, hyb, hyb2)
    hyb3.fit(alpha=0.5)

    #hyb3 = ItemKNNScoresHybridRecommender.ItemKNNScoresHybridRecommender(URM_train, p3alpha, userKNNCF)
    #hyb3.fit(alpha=0.5)

    hyb5 = ScoresHybridP3alphaKNNCBF.ScoresHybridP3alphaKNNCBF(
        URM_train, ICM_all)
    # Kaggle MAP 0.08856
    try:
        # Full values: "alpha_P": 0.4108657561671193, "alpha": 0.6290871066510789
        args = {
            "topK_P": 903,
            "alpha_P": 0.41086575,
            "normalize_similarity_P": False,
            "topK": 448,
            "shrink": 20,
            "similarity": "tversky",
            "normalize": True,
            "alpha": 0.6290871,
            "feature_weighting": "TF-IDF"
        }
        hyb5.load_model(
            'SavedModels\\', hyb5.RECOMMENDER_NAME + toFileName(args) + ",s=" +
            str(seed) + ",tp=" + str(tp) + ".zip")
    except:
        print("Saved model not found. Fitting a new one...")
        hyb5.fit(**args)
        hyb5.save_model(
            'SavedModels\\', hyb5.RECOMMENDER_NAME + toFileName(args) + ",s=" +
            str(seed) + ",tp=" + str(tp))

    # hyb5.fit(**{"topK_P": 1000, "alpha_P": 0.5432601071314623, "normalize_similarity_P": True, "topK": 620, "shrink": 0,
    #             "similarity": "tversky", "normalize": False, "alpha": 0.5707347522847057, "feature_weighting": "BM25"})

    # Kaggle MAP 0.086 :(
    #hyb6 = ScoresHybrid3Recommender.ScoresHybrid3Recommender(URM_train, rp3beta, itemKNNCBF, p3alpha)
    #hyb6.fit()

    hyb6 = ScoresHybridRP3betaKNNCBF.ScoresHybridRP3betaKNNCBF(
        URM_train, ICM_all)
    try:
        # Full values: "alpha_P": 0.5081918012150626, "alpha": 0.44740093610861603
        args = {
            "topK_P": 623,
            "alpha_P": 0.5081918,
            "normalize_similarity_P": False,
            "topK": 1000,
            "shrink": 1000,
            "similarity": "tversky",
            "normalize": True,
            "alpha": 0.4474009,
            "beta_P": 0.0,
            "feature_weighting": "TF-IDF"
        }
        hyb6.load_model(
            'SavedModels\\', hyb6.RECOMMENDER_NAME + toFileName(args) + ",s=" +
            str(seed) + ",tp=" + str(tp) + ".zip")
    except:
        print("Saved model not found. Fitting a new one...")
        hyb6.fit(**args)
        hyb6.save_model(
            'SavedModels\\', hyb6.RECOMMENDER_NAME + toFileName(args) + ",s=" +
            str(seed) + ",tp=" + str(tp))

    v0 = evaluator_validation.evaluateRecommender(hyb)[0][10]["MAP"]
    v1 = evaluator_validation.evaluateRecommender(hyb2)[0][10]["MAP"]
    v2 = evaluator_validation.evaluateRecommender(hyb3)[0][10]["MAP"]
    v3 = evaluator_validation.evaluateRecommender(hyb5)[0][10]["MAP"]
    v4 = evaluator_validation.evaluateRecommender(hyb6)[0][10]["MAP"]

    #item_list = hyb3.recommend(target_ids, cutoff=10)
    #CreateCSV.create_csv(target_ids, item_list, 'ItemKNNCBF__RP3beta')

    return [v0, v1, v2, v3, v4]
Example #5
0
            "topK": 1000,
            "shrink": 732,
            "similarity": "cosine",
            "normalize": True,
            "feature_weighting": "TF-IDF"
        })

    userKNNCF = UserKNNCFRecommender.UserKNNCFRecommender(URM_train)
    userKNNCF.fit(**{
        "topK": 131,
        "shrink": 2,
        "similarity": "cosine",
        "normalize": True
    })

    itemKNNCBF = ItemKNNCBFRecommender.ItemKNNCBFRecommender(
        URM_train, ICM_train)
    itemKNNCBF.fit(topK=700,
                   shrink=200,
                   similarity='jaccard',
                   normalize=True,
                   feature_weighting="TF-IDF")

    hyb = ItemKNNScoresHybridRecommender.ItemKNNScoresHybridRecommender(
        URM_train, itemKNNCBF, userKNNCF)
    hyb.fit(alpha=0.5)

    # Kaggle MAP 0.081
    hyb2 = ItemKNNScoresHybridRecommender.ItemKNNScoresHybridRecommender(
        URM_train, hyb, itemKNNCF)
    hyb2.fit(alpha=0.5)
def crossval(URM_all, ICM_all, target_ids, k):

    seed = 1234 + k  #+ int(time.time())
    np.random.seed()
    URM_train, URM_test = train_test_holdout(URM_all, train_perc=0.90)
    ICM_train, ICM_test = train_test_holdout(ICM_all, train_perc=0.95)
    evaluator_validation = EvaluatorHoldout(URM_test,
                                            cutoff_list=[10],
                                            exclude_seen=True)
    args = {}

    p3alpha = P3alphaRecommender.P3alphaRecommender(URM_train)
    args = {
        "topK": 991,
        "alpha": 0.4705816992313091,
        "normalize_similarity": False
    }
    p3alpha.fit(**args)

    #p3alpha2 = P3alphaRecommender.P3alphaRecommender(URM_train)
    #args = {"topK": 400, "alpha": 0.5305816992313091, "normalize_similarity": False}
    #p3alpha2.fit(**args)

    #rp3beta = RP3betaRecommender.RP3betaRecommender(URM_train)
    #args = {"topK": 991, "alpha": 0.4705816992313091, "beta": 0.15, "normalize_similarity": False}
    #rp3beta.fit(**args)

    itemKNNCF = ItemKNNCFRecommender.ItemKNNCFRecommender(URM_train)
    args = {
        "topK": 1000,
        "shrink": 732,
        "similarity": "cosine",
        "normalize": True,
        "feature_weighting": "TF-IDF"
    }
    itemKNNCF.fit(**args)

    userKNNCF = UserKNNCFRecommender.UserKNNCFRecommender(URM_train)
    args = {
        "topK": 131,
        "shrink": 2,
        "similarity": "cosine",
        "normalize": True
    }
    userKNNCF.fit(**args)

    itemKNNCBF = ItemKNNCBFRecommender.ItemKNNCBFRecommender(
        URM_train, ICM_all)
    args = {
        "topK": 700,
        "shrink": 100,
        "similarity": 'jaccard',
        "normalize": True,
        "feature_weighting": "TF-IDF"
    }
    itemKNNCBF.fit(**args)

    itemKNNCBF2 = ItemKNNCBFRecommender.ItemKNNCBFRecommender(
        URM_train, ICM_all)
    args = {
        "topK": 200,
        "shrink": 15,
        "similarity": 'jaccard',
        "normalize": True,
        "feature_weighting": "TF-IDF"
    }
    itemKNNCBF2.fit(**args)

    #cfw = CFW_D_Similarity_Linalg.CFW_D_Similarity_Linalg(URM_train, ICM_train, itemKNNCF.W_sparse)
    #cfw.fit(show_max_performance=False, logFile=None, loss_tolerance=1e-6,
    #        iteration_limit=500000, damp_coeff=0.5, topK=900, add_zeros_quota=0.5, normalize_similarity=True)

    # Need to change bpr code to avoid memory error, useless since it's bad
    #bpr = SLIM_BPR_Cython(URM_train, recompile_cython=False)
    #bpr.fit(**{"topK": 1000, "epochs": 130, "symmetric": False, "sgd_mode": "adagrad", "lambda_i": 1e-05,
    #          "lambda_j": 0.01, "learning_rate": 0.0001})

    pureSVD = PureSVDRecommender.PureSVDRecommender(URM_train)
    pureSVD.fit(num_factors=340)

    #hyb = ItemKNNScoresHybridRecommender.ItemKNNScoresHybridRecommender(URM_train, p3alpha, itemKNNCBF)
    #hyb.fit(alpha=0.5)
    hyb = ItemKNNScoresHybridRecommender.ItemKNNScoresHybridRecommender(
        URM_train, itemKNNCBF, pureSVD)
    hyb.fit(alpha=0.5)

    # Kaggle MAP 0.084 rp3beta, itemKNNCBF
    #hyb2 = ItemKNNScoresHybridRecommender.ItemKNNScoresHybridRecommender(URM_train, p3alpha, itemKNNCBF)
    #hyb2.fit(alpha=0.5)
    hyb2 = ItemKNNSimilarityHybridRecommender.ItemKNNSimilarityHybridRecommender(
        URM_train, itemKNNCBF.W_sparse, itemKNNCF.W_sparse)
    hyb2.fit(topK=1600)

    # Kaggle MAP 0.08667
    hyb3 = ItemKNNScoresHybridRecommender.ItemKNNScoresHybridRecommender(
        URM_train, hyb, hyb2)
    hyb3.fit(alpha=0.5)
    #hyb3 = RankingHybrid.RankingHybrid(URM_train, hyb, hyb2)

    #hyb3 = ItemKNNScoresHybridRecommender.ItemKNNScoresHybridRecommender(URM_train, p3alpha, userKNNCF)
    #hyb3.fit(alpha=0.5)

    hyb5 = ScoresHybridP3alphaKNNCBF.ScoresHybridP3alphaKNNCBF(
        URM_train, ICM_all)
    # Kaggle MAP 0.08856
    args = {
        "topK_P": 903,
        "alpha_P": 0.4108657561671193,
        "normalize_similarity_P": False,
        "topK": 448,
        "shrink": 20,
        "similarity": "tversky",
        "normalize": True,
        "alpha": 0.6290871066510789,
        "feature_weighting": "TF-IDF"
    }
    hyb5.fit(**args)

    # hyb5.fit(**{"topK_P": 1000, "alpha_P": 0.5432601071314623, "normalize_similarity_P": True, "topK": 620, "shrink": 0,
    #             "similarity": "tversky", "normalize": False, "alpha": 0.5707347522847057, "feature_weighting": "BM25"})

    # Kaggle MAP 0.086 :(
    #hyb6 = ItemKNNScoresHybridRecommender.ItemKNNScoresHybridRecommender(URM_train, hyb3, hyb5)
    #hyb6.fit()
    hyb6 = ScoresHybridP3alphaKNNCBF.ScoresHybridP3alphaKNNCBF(
        URM_train, ICM_all)
    args = {
        "topK_P": 756,
        "alpha_P": 0.5292654015790155,
        "normalize_similarity_P": False,
        "topK": 1000,
        "shrink": 47,
        "similarity": "tversky",
        "normalize": False,
        "alpha": 0.5207647439152092,
        "feature_weighting": "none"
    }
    hyb6.fit(**args)
    '''hyb6 = ScoresHybridRP3betaKNNCBF.ScoresHybridRP3betaKNNCBF(URM_train, ICM_all)
    args = {"topK_P": 623, "alpha_P": 0.5081918012150626, "normalize_similarity_P": False, "topK": 1000,
            "shrink": 1000, "similarity": "tversky", "normalize": True, "alpha": 0.44740093610861603, "beta_P": 0.0,
            "feature_weighting": "TF-IDF"}
    hyb6.fit(**args)'''

    hyb7 = RankingHybrid.RankingHybrid(URM_train, hyb6, hyb3)

    v0 = evaluator_validation.evaluateRecommender(hyb)[0][10]["MAP"]
    v1 = evaluator_validation.evaluateRecommender(hyb2)[0][10]["MAP"]
    v2 = evaluator_validation.evaluateRecommender(hyb3)[0][10]["MAP"]
    #v2 = 0
    v3 = evaluator_validation.evaluateRecommender(hyb5)[0][10]["MAP"]
    v4 = evaluator_validation.evaluateRecommender(hyb6)[0][10]["MAP"]
    #v4 = 0
    v5 = evaluator_validation.evaluateRecommender(hyb7)[0][10]["MAP"]

    #item_list = hyb6.recommend(target_ids, cutoff=10)
    #CreateCSV.create_csv(target_ids, item_list, 'HybPureSVD')

    return [v0, v1, v2, v3, v4, v5]