Example #1
0
    def target(selfOO, vector):
        selfOO.iteration += 1
        ptr = 0
        for key in selfOO.crnm.ref_params:
            n_values = len(selfOO.crnm.ref_params[key].display_labels)
            these_values = vector[ptr:ptr + n_values]
            selfOO.crnm.ref_params[key].set_proposal_from_simplex(these_values)
            ptr += n_values

        BEG = time()
        if "cell" in selfOO.crnm.ref_params:
            selfOO.alt_crystal = selfOO.crnm.ref_params[
                "cell"].get_current_crystal_model(selfOO.alt_crystal)
        if "rot" in selfOO.crnm.ref_params:
            selfOO.alt_crystal = selfOO.crnm.ref_params[
                "rot"].get_current_crystal_model(selfOO.alt_crystal)
        if "ncells" in selfOO.crnm.ref_params:
            selfOO.Ncells_abc = selfOO.crnm.ref_params[
                "ncells"].get_current_model()

        whitelist_only, TIME_BG, TIME_BRAGG, selfOO.crnm.exascale_mos_blocks = multipanel_sim(
            CRYSTAL=selfOO.alt_crystal,
            DETECTOR=selfOO.PP["detector"],
            BEAM=selfOO.PP["beam"],
            Famp=selfOO.crnm.gpu_channels_singleton,
            energies=selfOO.PP["energies"],
            fluxes=selfOO.PP["weights"],
            cuda=True,
            oversample=selfOO.PP["oversample"],
            Ncells_abc=selfOO.Ncells_abc,
            mos_dom=selfOO.PP["mosaic_spread_samples"],
            mos_spread=selfOO.crnm.parameters["etaa"].proposal,
            mos_aniso=(selfOO.crnm.parameters["etaa"].proposal,
                       selfOO.crnm.parameters["etab"].proposal,
                       selfOO.crnm.parameters["etac"].proposal),
            beamsize_mm=selfOO.PP["beamsize_mm"],
            profile=selfOO.PP["shapetype"],
            show_params=False,
            time_panels=False,
            verbose=selfOO.PP["verbose"],
            spot_scale_override=selfOO.PP["spot_scale"],
            include_background=False,
            mask_file=selfOO.PP["mask_array"],
            skip_numpy=True,
            relevant_whitelist_order=selfOO.crnm.relevant_whitelist_order)
        Rmsd, sigZ, LLG = selfOO.PP["Z"](kernel_model=whitelist_only,
                                         plot=False)
        #print ("Old NLL ",selfOO.crnm.llg_chain[-1], "NEW LLG",LLG, "diff",selfOO.crnm.llg_chain[-1] - LLG)
        for key in selfOO.crnm.ref_params:
            selfOO.crnm.ref_params[key].accept()
        selfOO.crnm.accept.append(1)
        selfOO.crnm.rmsd_chain.append(Rmsd)
        selfOO.crnm.sigz_chain.append(sigZ)
        selfOO.crnm.llg_chain.append(LLG)
        selfOO.crnm.plot_all(selfOO.iteration + 1, of=selfOO.n_cycles)
        TIME_EXA = time() - BEG
        #print("\t\tExascale: time for Bragg sim: %.4fs; total: %.4fs" % (TIME_BRAGG, TIME_EXA))
        return LLG
Example #2
0
    def job_runner(self, i_exp=0, spectra={}):
        from simtbx.nanoBragg import utils

        from LS49.adse13_187.case_data import retrieve_from_repo
        experiment_file = retrieve_from_repo(i_exp)

        # Fixed hyperparameters
        mosaic_spread_samples = 250
        ev_res = 1.5  # resolution of the downsample spectrum
        total_flux = 1e12  # total flux across channels
        beamsize_mm = 0.000886226925452758  # sqrt beam focal area
        spot_scale = 500.
        oversample = 1  # factor 1,2, or 3 probably enough
        verbose = 0  # leave as 0, unless debug
        shapetype = "gauss_argchk"

        #<><><><><><><><>
        os.environ[
            "NXMX_LOCAL_DATA"] = "/global/cfs/cdirs/m3562/der/master_files/run_000795.JF07T32V01_master.h5"
        expt = ExperimentListFactory.from_json_file(experiment_file,
                                                    check_format=True)[0]

        crystal = expt.crystal
        detector = expt.detector
        flat = True  # enforce that the camera has 0 thickness
        if flat:
            from dxtbx_model_ext import SimplePxMmStrategy
            for panel in detector:
                panel.set_px_mm_strategy(SimplePxMmStrategy())
                panel.set_mu(0)
                panel.set_thickness(0)
            assert detector[0].get_thickness() == 0

        alt_exper = ExperimentListFactory.from_json_file(
            '/global/cfs/cdirs/m3562/der/braggnanimous/top8_newlam2/expers/rank0/stg1_top_0_0.expt',
            check_format=False)[0]
        AC = alt_crystal = alt_exper.crystal

        beam = expt.beam
        spec = expt.imageset.get_spectrum(0)
        energies_raw = spec.get_energies_eV().as_numpy_array()
        weights_raw = spec.get_weights().as_numpy_array()
        energies, weights = utils.downsample_spectrum(energies_raw,
                                                      weights_raw,
                                                      method=1,
                                                      total_flux=total_flux,
                                                      ev_width=ev_res)

        device_Id = 0
        if self.gpu_channels_singleton is not None:
            device_Id = self.gpu_channels_singleton.get_deviceID()

        mn_energy = (energies * weights).sum() / weights.sum()
        mn_wave = utils.ENERGY_CONV / mn_energy
        print(
            "\n<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>"
        )
        print("\tBreakdown:")
        for shapetype in ["gauss_argchk"]:
            BEG = time()
            print(self.gpu_channels_singleton.get_deviceID(), "device",
                  shapetype)
            Famp_is_uninitialized = (
                self.gpu_channels_singleton.get_nchannels() == 0)
            if Famp_is_uninitialized:
                F_P1 = self.amplitudes
                for x in range(
                        1
                ):  # in this scenario, amplitudes are independent of lambda
                    self.gpu_channels_singleton.structure_factors_to_GPU_direct(
                        x, F_P1.indices(), F_P1.data())
            assert self.gpu_channels_singleton.get_nchannels() == 1

            # Variable parameters
            mosaic_spread = 0.00  # degrees
            Ncells_abc = 130, 30, 10  # medians from best stage1

            JF16M_numpy_array, TIME_BG, TIME_BRAGG, _ = multipanel_sim(
                CRYSTAL=alt_crystal,
                DETECTOR=detector,
                BEAM=beam,
                Famp=self.gpu_channels_singleton,
                energies=list(energies),
                fluxes=list(weights),
                background_wavelengths=[mn_wave],
                background_wavelength_weights=[1],
                background_total_flux=total_flux,
                background_sample_thick_mm=0.5,
                cuda=True,
                oversample=oversample,
                Ncells_abc=Ncells_abc,
                mos_dom=mosaic_spread_samples,
                mos_spread=mosaic_spread,
                beamsize_mm=beamsize_mm,
                profile=shapetype,
                show_params=False,
                time_panels=False,
                verbose=verbose,
                spot_scale_override=spot_scale,
                include_background=False,
                mask_file=mask_array)
            TIME_EXA = time() - BEG

            print(
                "\t\tExascale: time for bkgrd sim: %.4fs; Bragg sim: %.4fs; total: %.4fs"
                % (TIME_BG, TIME_BRAGG, TIME_EXA))
        print(
            "<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>\n"
        )
        return JF16M_numpy_array
Example #3
0
def tst_one_monkeypatch(i_exp, spectra, Fmerge, gpu_channels_singleton, rank,
                        params):
    print("IN MONKEYPATCH")
    from simtbx.nanoBragg import utils
    from dxtbx.model.experiment_list import ExperimentListFactory
    import numpy as np

    print("Experiment %d" % i_exp, flush=True)

    outfile = "boop_%d.hdf5" % i_exp
    from LS49.adse13_187.case_data import retrieve_from_repo
    experiment_file = retrieve_from_repo(i_exp)
    cuda = True  # False  # whether to use cuda
    omp = False
    ngpu_on_node = 1  # 8  # number of available GPUs
    mosaic_spread = 0.07  # degrees
    mosaic_spread_samples = params.mosaic_spread_samples  # number of mosaic blocks sampling mosaicity
    Ncells_abc = 30, 30, 10  # medians from best stage1
    ev_res = 1.5  # resolution of the downsample spectrum
    total_flux = 1e12  # total flux across channels
    beamsize_mm = 0.000886226925452758  # sqrt of beam focal area
    spot_scale = 500.  # 5.16324  # median from best stage1
    plot_spec = False  # plot the downsample spectra before simulating
    oversample = 1  # oversample factor, 1,2, or 3 probable enough
    panel_list = None  # integer list of panels, usefule for debugging
    rois_only = False  # only set True if you are running openMP, or CPU-only (i.e. not for GPU)
    include_background = params.include_background  # default is to add water background 100 mm thick
    verbose = 0  # leave as 0, unles debug
    flat = True  # enfore that the camera has 0 thickness
    #<><><><><><><><>
    # XXX new code
    El = ExperimentListFactory.from_json_file(experiment_file,
                                              check_format=True)
    exper = El[0]

    crystal = exper.crystal
    detector = exper.detector
    if flat:
        from dxtbx_model_ext import SimplePxMmStrategy
        for panel in detector:
            panel.set_px_mm_strategy(SimplePxMmStrategy())
            panel.set_mu(0)
            panel.set_thickness(0)

    beam = exper.beam

    # XXX new code
    spec = exper.imageset.get_spectrum(0)
    energies_raw, weights_raw = spec.get_energies_eV().as_numpy_array(), \
                                spec.get_weights().as_numpy_array()
    energies, weights = utils.downsample_spectrum(energies_raw,
                                                  weights_raw,
                                                  method=1,
                                                  total_flux=total_flux,
                                                  ev_width=ev_res)

    if flat:
        assert detector[0].get_thickness() == 0

    if panel_list is None:
        panel_list = list(range(len(detector)))

    pids_for_rank = panel_list
    device_Id = 0
    if gpu_channels_singleton is not None:
        device_Id = gpu_channels_singleton.get_deviceID()

    print("Rank %d will use device %d" % (rank, device_Id))
    show_params = False
    time_panels = (rank == 0)

    mn_energy = (energies * weights).sum() / weights.sum()
    mn_wave = utils.ENERGY_CONV / mn_energy
    print(
        "\n<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>")
    print("\tBreakdown:")
    for shapetype in ["gauss_argchk"]:
        BEG = time()
        print(gpu_channels_singleton.get_deviceID(), "device", shapetype)
        Famp_is_uninitialized = (gpu_channels_singleton.get_nchannels() == 0)
        if Famp_is_uninitialized:
            F_P1 = Fmerge.expand_to_p1()
            for x in range(
                    1
            ):  # in this scenario, amplitudes are independent of lambda
                gpu_channels_singleton.structure_factors_to_GPU_direct(
                    x, F_P1.indices(), F_P1.data())
        assert gpu_channels_singleton.get_nchannels() == 1

        JF16M_numpy_array, TIME_BG, TIME_BRAGG, _ = multipanel_sim(
            CRYSTAL=crystal,
            DETECTOR=detector,
            BEAM=beam,
            Famp=gpu_channels_singleton,
            energies=list(energies),
            fluxes=list(weights),
            background_wavelengths=[mn_wave],
            background_wavelength_weights=[1],
            background_total_flux=total_flux,
            background_sample_thick_mm=0.5,
            cuda=True,
            oversample=oversample,
            Ncells_abc=Ncells_abc,
            mos_dom=mosaic_spread_samples,
            mos_spread=mosaic_spread,
            mosaic_method="double_random",
            beamsize_mm=beamsize_mm,
            profile=shapetype,
            show_params=show_params,
            time_panels=time_panels,
            verbose=verbose,
            spot_scale_override=spot_scale,
            include_background=include_background,
            mask_file=params.mask_file,
            context=params.context)
        TIME_EXA = time() - BEG

        print(
            "\t\tExascale: time for bkgrd sim: %.4fs; Bragg sim: %.4fs; total: %.4fs"
            % (TIME_BG, TIME_BRAGG, TIME_EXA))
    print("<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>\n")

    if params.write_output:
        if params.write_experimental_data:
            data = exper.imageset.get_raw_data(0)
        img_sh = JF16M_numpy_array.shape
        assert img_sh == (256, 254, 254)
        num_output_images = 1 + int(params.write_experimental_data)
        print("Saving exascale output data of shape", img_sh)
        beam_dict = beam.to_dict()
        det_dict = detector.to_dict()
        try:
            beam_dict.pop("spectrum_energies")
            beam_dict.pop("spectrum_weights")
        except Exception:
            pass

        with utils.H5AttributeGeomWriter(
                os.path.join(params.log.outdir, "exap_%d.hdf5" % i_exp),
                image_shape=img_sh,
                num_images=num_output_images,
                detector=det_dict,
                beam=beam_dict,
                detector_and_beam_are_dicts=True) as writer:
            writer.add_image(JF16M_numpy_array)

            if params.write_experimental_data:
                data = [data[pid].as_numpy_array() for pid in panel_list]
                writer.add_image(data)
            print("Saved output to file %s" % ("exap_%d.hdf5" % i_exp))

    if not params.write_output:
        # ability to read in the special file format
        # note to end-user:  The special file format can be installed permanently into a
        #   developmental version of dials/cctbx:
        # dxtbx.install_format ./FormatHDF5AttributeGeometry.py --global # writes to build directory
        #   or alternatively to the user's account:
        # dxtbx.install_format ./FormatHDF5AttributeGeometry.py --user # writes to ~/.dxtbx
        from LS49.adse13_187.FormatHDF5AttributeGeometry import FormatHDF5AttributeGeometry as format_instance
        from LS49 import ls49_big_data
        filename = os.path.join(ls49_big_data, "adse13_228",
                                "exap_%d.hdf5" % i_exp)
        instance = format_instance(filename)
        reference = [D.as_numpy_array() for D in instance.get_raw_data()]
        print("reference length for %s is %d" %
              ("exap_%d.hdf5" % i_exp, len(reference)))

        # assertion on equality:
        abs_diff = np.abs(JF16M_numpy_array - reference).max()
        assert np.allclose(JF16M_numpy_array, reference), \
        "max per-pixel difference: %f photons, experiment %d"%(abs_diff,i_exp)
Example #4
0
def model_spots_from_pandas(pandas_frame,
                            rois_per_panel=None,
                            mtz_file=None,
                            mtz_col=None,
                            oversample_override=None,
                            Ncells_abc_override=None,
                            pink_stride_override=None,
                            spectrum_override=None,
                            cuda=False,
                            device_Id=0,
                            time_panels=False,
                            d_max=999,
                            d_min=1.5,
                            defaultF=1e3,
                            omp=False,
                            norm_by_spectrum=False,
                            symbol_override=None,
                            quiet=False,
                            reset_Bmatrix=False,
                            nopolar=False,
                            force_no_detector_thickness=False,
                            printout_pix=None,
                            norm_by_nsource=False,
                            use_exascale_api=False,
                            use_db=False):
    if use_exascale_api:
        assert gpu_energy_channels is not None, "cant use exascale api if not in a GPU build"
        assert multipanel_sim is not None, "cant use exascale api if LS49: https://github.com/nksauter/LS49.git  is not configured\n install in the modules folder"

    df = pandas_frame

    if not quiet: LOGGER.info("Loading experiment models")
    expt_name = df.opt_exp_name.values[0]
    El = ExperimentListFactory.from_json_file(expt_name, check_format=False)
    expt = El[0]
    columns = list(df)
    if "detz_shift_mm" in columns:  # NOTE, this could also be inside expt_name directly
        expt.detector = utils.shift_panelZ(expt.detector,
                                           df.detz_shift_mm.values[0])

    if force_no_detector_thickness:
        expt.detector = utils.strip_thickness_from_detector(expt.detector)
    if reset_Bmatrix:
        ucell_params = df[["a", "b", "c", "al", "be", "ga"]].values[0]
        ucell_man = utils.manager_from_params(ucell_params)
        expt.crystal.set_B(ucell_man.B_recipspace)
    assert len(df) == 1
    Ncells_abc = df.ncells.values[0]
    if Ncells_abc_override is not None:
        Ncells_abc = Ncells_abc_override
    spot_scale = df.spot_scales.values[0]
    beamsize_mm = df.beamsize_mm.values[0]
    total_flux = df.total_flux.values[0]
    oversample = df.oversample.values[0]
    if oversample_override is not None:
        oversample = oversample_override

    # get the optimized spectra
    if spectrum_override is None:
        if "spectrum_filename" in list(
                df) and df.spectrum_filename.values[0] is not None:
            spectrum_file = df.spectrum_filename.values[0]
            pink_stride = df.spectrum_stride.values[0]
            if norm_by_spectrum:
                nspec = utils.load_spectra_file(spectrum_file)[0].shape[0]
                spot_scale = spot_scale / nspec
            if pink_stride_override is not None:
                pink_stride = pink_stride_override
            fluxes, energies = utils.load_spectra_file(spectrum_file,
                                                       total_flux=total_flux,
                                                       pinkstride=pink_stride)
        else:
            fluxes = np.array([total_flux])
            energies = np.array(
                [utils.ENERGY_CONV / expt.beam.get_wavelength()])
            if not quiet: LOGGER.info("Running MONO sim")

    else:
        wavelens, fluxes = map(np.array, zip(*spectrum_override))
        energies = utils.ENERGY_CONV / wavelens

    lam0 = df.lam0.values[0]
    lam1 = df.lam1.values[0]
    if lam0 == -1:
        lam0 = 0
    if lam1 == -1:
        lam1 = 1
    wavelens = utils.ENERGY_CONV / energies
    wavelens = lam0 + lam1 * wavelens
    energies = utils.ENERGY_CONV / wavelens

    if mtz_file is not None:
        assert mtz_col is not None
        Famp = utils.open_mtz(mtz_file, mtz_col)
    else:
        Famp = utils.make_miller_array_from_crystal(expt.crystal,
                                                    dmin=d_min,
                                                    dmax=d_max,
                                                    defaultF=defaultF,
                                                    symbol=symbol_override)

    diffuse_params = None
    if "use_diffuse_models" in columns and df.use_diffuse_models.values[0]:
        if not use_db:
            raise RuntimeError(
                "Cant simulate diffuse models unless use_db=True (diffBragg modeler)"
            )
        diffuse_params = {
            "gamma": tuple(df.diffuse_gamma.values[0]),
            "sigma": tuple(df.diffuse_sigma.values[0]),
            "gamma_miller_units": False
        }
        if "gamma_miller_units" in list(df):
            diffuse_params[
                "gamma_miller_units"] = df.gamma_miller_units.values[0]

    if use_exascale_api:
        #===================
        gpu_channels_singleton = gpu_energy_channels(deviceId=0)
        print(gpu_channels_singleton.get_deviceID(), "device")
        from simtbx.nanoBragg import nanoBragg_crystal
        C = nanoBragg_crystal.NBcrystal(init_defaults=False)
        C.miller_array = Famp
        F_P1 = C.miller_array
        F_P1 = Famp.expand_to_p1()
        gpu_channels_singleton.structure_factors_to_GPU_direct(
            0, F_P1.indices(), F_P1.data())
        Famp = gpu_channels_singleton
        #===========
        results, _, _ = multipanel_sim(CRYSTAL=expt.crystal,
                                       DETECTOR=expt.detector,
                                       BEAM=expt.beam,
                                       Famp=Famp,
                                       energies=energies,
                                       fluxes=fluxes,
                                       Ncells_abc=Ncells_abc,
                                       beamsize_mm=beamsize_mm,
                                       oversample=oversample,
                                       spot_scale_override=spot_scale,
                                       default_F=0,
                                       interpolate=0,
                                       include_background=False,
                                       profile="gauss",
                                       cuda=True,
                                       show_params=False)
        return results, expt
    elif use_db:
        results = diffBragg_forward(CRYSTAL=expt.crystal,
                                    DETECTOR=expt.detector,
                                    BEAM=expt.beam,
                                    Famp=Famp,
                                    fluxes=fluxes,
                                    energies=energies,
                                    beamsize_mm=beamsize_mm,
                                    Ncells_abc=Ncells_abc,
                                    spot_scale_override=spot_scale,
                                    device_Id=device_Id,
                                    oversample=oversample,
                                    show_params=not quiet,
                                    nopolar=nopolar,
                                    printout_pix=printout_pix,
                                    diffuse_params=diffuse_params,
                                    cuda=cuda)
        return results, expt

    else:
        pids = None
        if rois_per_panel is not None:
            pids = list(rois_per_panel.keys()),
        results = flexBeam_sim_colors(CRYSTAL=expt.crystal,
                                      DETECTOR=expt.detector,
                                      BEAM=expt.beam,
                                      Famp=Famp,
                                      fluxes=fluxes,
                                      energies=energies,
                                      beamsize_mm=beamsize_mm,
                                      Ncells_abc=Ncells_abc,
                                      spot_scale_override=spot_scale,
                                      cuda=cuda,
                                      device_Id=device_Id,
                                      oversample=oversample,
                                      time_panels=time_panels and not quiet,
                                      pids=pids,
                                      rois_perpanel=rois_per_panel,
                                      omp=omp,
                                      show_params=not quiet,
                                      nopolar=nopolar,
                                      printout_pix=printout_pix)
        if norm_by_nsource:
            return np.array([image / len(energies)
                             for _, image in results]), expt
        else:
            return np.array([image for _, image in results]), expt
Example #5
0
  def job_runner(self,i_exp=0,spectra={}):
    from simtbx.nanoBragg import utils

    from LS49.adse13_187.case_data import retrieve_from_repo
    experiment_file = retrieve_from_repo(i_exp)

    # Fixed hyperparameters
    mosaic_spread_samples = 500
    ev_res = 1.5  # resolution of the downsample spectrum
    total_flux = 1e12  # total flux across channels
    beamsize_mm = 0.000886226925452758 # sqrt beam focal area
    spot_scale = 500.
    oversample = 1  # factor 1,2, or 3 probably enough
    include_background = False
    verbose = 0  # leave as 0, unless debug
    shapetype = "gauss_argchk"

    #<><><><><><><><>
    os.environ["NXMX_LOCAL_DATA"]="/global/cfs/cdirs/m3562/der/master_files/run_000795.JF07T32V01_master.h5"
    expt = ExperimentListFactory.from_json_file(
      experiment_file, check_format=True)[0]

    crystal = expt.crystal
    detector = expt.detector
    flat = True  # enforce that the camera has 0 thickness
    if flat:
        from dxtbx_model_ext import SimplePxMmStrategy
        for panel in detector:
            panel.set_px_mm_strategy(SimplePxMmStrategy())
            panel.set_mu(0)
            panel.set_thickness(0)
        assert detector[0].get_thickness() == 0


    beam = expt.beam
    spec = expt.imageset.get_spectrum(0)
    energies_raw = spec.get_energies_eV().as_numpy_array()
    weights_raw = spec.get_weights().as_numpy_array()
    energies, weights = utils.downsample_spectrum(energies_raw, weights_raw, method=1, total_flux=total_flux, ev_width=ev_res)

    device_Id = 0
    if self.gpu_channels_singleton is not None:
      device_Id = self.gpu_channels_singleton.get_deviceID()

    mn_energy = (energies*weights).sum() / weights.sum()
    mn_wave = utils.ENERGY_CONV / mn_energy
    print("\n<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>")
    print("\tBreakdown:")
    for shapetype in ["gauss_argchk"]:
      BEG=time()
      print (self.gpu_channels_singleton.get_deviceID(),"device",shapetype)
      Famp_is_uninitialized = ( self.gpu_channels_singleton.get_nchannels() == 0 )
      if Famp_is_uninitialized:
        from iotbx.reflection_file_reader import any_reflection_file
        from LS49 import ls49_big_data
        merge_file = os.path.join(ls49_big_data,"adse13_228","cyto_init_merge.mtz")
        self.merged_amplitudes = any_reflection_file(merge_file).as_miller_arrays()[0].as_amplitude_array()

        F1 = self.merged_amplitudes.expand_to_p1()
        F2 = self.amplitudes.expand_to_p1() # takes care of both transform to asu & expand

        if False: # make sure that mtz file (F1) and strong spots (self.amplitudes) are roughly correlated
          from matplotlib import pyplot as plt
          from cctbx import miller
          matches = miller.match_indices( F1.indices(), self.amplitudes.indices() )
          sel0 = flex.size_t([p[0] for p in matches.pairs()])
          sel1 = flex.size_t([p[1] for p in matches.pairs()])
          data0 = F1.data().select(sel0)
          data1 = self.amplitudes.data().select(sel1)
          plt.plot(data0, data1, 'r.')
          plt.show() # yes, the two are very roughly correlated
          # end of test

        #F_P1 = F1 # legacy, use a merged mtz file
        #F_P1 = F2 # this one way absolutely wrong! way too many predictions, beyond the strong spots
        F_P1 = F1
        for x in range(1):  # in this scenario, amplitudes are independent of lambda
          self.gpu_channels_singleton.structure_factors_to_GPU_direct(
          x, F_P1.indices(), F_P1.data())
      assert self.gpu_channels_singleton.get_nchannels() == 1

      # Variable parameters
      mosaic_spread = 0.07 # degrees
      Ncells_abc = 30, 30, 10

      JF16M_numpy_array, TIME_BG, TIME_BRAGG, _ = multipanel_sim(
        CRYSTAL=crystal, DETECTOR=detector, BEAM=beam,
        Famp = self.gpu_channels_singleton,
        energies=list(energies), fluxes=list(weights),
        background_wavelengths=[mn_wave], background_wavelength_weights=[1],
        background_total_flux=total_flux,background_sample_thick_mm=0.5,
        cuda=True,
        oversample=oversample, Ncells_abc=Ncells_abc,
        mos_dom=mosaic_spread_samples, mos_spread=mosaic_spread,
        beamsize_mm=beamsize_mm,
        profile=shapetype,
        show_params=False,
        time_panels=False, verbose=verbose,
        spot_scale_override=spot_scale,
        include_background=include_background,
        mask_file=mask_array)
      TIME_EXA = time()-BEG

      print("\t\tExascale: time for bkgrd sim: %.4fs; Bragg sim: %.4fs; total: %.4fs" % (TIME_BG, TIME_BRAGG, TIME_EXA))
    print("<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>\n")
    return JF16M_numpy_array
Example #6
0
def tst_one_monkeypatch(i_exp, spectra, Fmerge, gpu_channels_singleton, rank,
                        params):
    print("IN MONKEYPATCH")
    from simtbx.nanoBragg import utils
    from dxtbx.model.experiment_list import ExperimentListFactory
    import numpy as np

    print("Experiment %d" % i_exp, flush=True)

    outfile = "boop_%d.hdf5" % i_exp
    from LS49.adse13_187.case_data import retrieve_from_repo
    experiment_file = retrieve_from_repo(i_exp)
    cuda = True  # False  # whether to use cuda
    omp = False
    ngpu_on_node = 1  # 8  # number of available GPUs
    mosaic_spread = 0.07  # degrees
    mosaic_spread_samples = params.mosaic_spread_samples  # number of mosaic blocks sampling mosaicity
    Ncells_abc = 30, 30, 10  # medians from best stage1
    ev_res = 1.5  # resolution of the downsample spectrum
    total_flux = 1e12  # total flux across channels
    beamsize_mm = 0.000886226925452758  # sqrt of beam focal area
    spot_scale = 500.  # 5.16324  # median from best stage1
    plot_spec = False  # plot the downsample spectra before simulating
    oversample = 1  # oversample factor, 1,2, or 3 probable enough
    panel_list = None  # integer list of panels, usefule for debugging
    rois_only = False  # only set True if you are running openMP, or CPU-only (i.e. not for GPU)
    include_background = params.include_background  # default is to add water background 100 mm thick
    verbose = 0  # leave as 0, unles debug
    flat = True  # enfore that the camera has 0 thickness
    #<><><><><><><><>
    # XXX new code
    El = ExperimentListFactory.from_json_file(experiment_file,
                                              check_format=True)
    exper = El[0]

    crystal = exper.crystal
    detector = exper.detector
    if flat:
        from dxtbx_model_ext import SimplePxMmStrategy
        for panel in detector:
            panel.set_px_mm_strategy(SimplePxMmStrategy())
            panel.set_mu(0)
            panel.set_thickness(0)

    beam = exper.beam

    # XXX new code
    spec = exper.imageset.get_spectrum(0)
    energies_raw, weights_raw = spec.get_energies_eV().as_numpy_array(), \
                                spec.get_weights().as_numpy_array()
    energies, weights = utils.downsample_spectrum(energies_raw,
                                                  weights_raw,
                                                  method=1,
                                                  total_flux=total_flux,
                                                  ev_width=ev_res)

    if flat:
        assert detector[0].get_thickness() == 0

    if panel_list is None:
        panel_list = list(range(len(detector)))

    pids_for_rank = panel_list
    device_Id = 0
    if gpu_channels_singleton is not None:
        device_Id = gpu_channels_singleton.get_deviceID()

    print("Rank %d will use device %d" % (rank, device_Id))
    show_params = False
    time_panels = (rank == 0)

    mn_energy = (energies * weights).sum() / weights.sum()
    mn_wave = utils.ENERGY_CONV / mn_energy
    jf16m_numpy_array = {}
    from_gpu_amplitudes_cuda = {}
    print(
        "\n<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>")
    print("\tBreakdown:")
    for shapetype in ["gauss_argchk", "gauss"]:
        BEG = time()
        print(gpu_channels_singleton.get_deviceID(), "device", shapetype)
        Famp_is_uninitialized = (gpu_channels_singleton.get_nchannels() == 0)
        if Famp_is_uninitialized:
            F_P1 = Fmerge.expand_to_p1()
            for x in range(
                    1
            ):  # in this scenario, amplitudes are independent of lambda
                gpu_channels_singleton.structure_factors_to_GPU_direct(
                    x, F_P1.indices(), F_P1.data())
        assert gpu_channels_singleton.get_nchannels() == 1

        JF16M_numpy_array, TIME_BG, TIME_BRAGG, _ = multipanel_sim(
            CRYSTAL=crystal,
            DETECTOR=detector,
            BEAM=beam,
            Famp=gpu_channels_singleton,
            energies=list(energies),
            fluxes=list(weights),
            background_wavelengths=[mn_wave],
            background_wavelength_weights=[1],
            background_total_flux=total_flux,
            background_sample_thick_mm=0.5,
            cuda=True,
            oversample=oversample,
            Ncells_abc=Ncells_abc,
            mos_dom=mosaic_spread_samples,
            mos_spread=mosaic_spread,
            beamsize_mm=beamsize_mm,
            profile=shapetype,
            show_params=show_params,
            time_panels=time_panels,
            verbose=verbose,
            spot_scale_override=spot_scale,
            include_background=include_background,
            context=params.context)
        TIME_EXA = time() - BEG
        jf16m_numpy_array[shapetype] = JF16M_numpy_array
        from_gpu_amplitudes_cuda[shapetype] = TIME_BRAGG

        print(
            "\t\tExascale: time for bkgrd sim: %.4fs; Bragg sim: %.4fs; total: %.4fs"
            % (TIME_BG, TIME_BRAGG, TIME_EXA))
    ratio = from_gpu_amplitudes_cuda["gauss"] / from_gpu_amplitudes_cuda[
        "gauss_argchk"]
    print(
        "<><><><><><><><><ratio<%.2f><><><><><><><><><><><><><><><><><><><>\n"
        % (ratio))

    # assertion on elapsed time:
    assert ratio > 1.0, "ratio is %.3f, experiment %d" % (ratio, i_exp)

    # assertion on equality:
    abs_diff = np.abs(jf16m_numpy_array["gauss"] - \
                      jf16m_numpy_array["gauss_argchk"]).max()
    assert np.allclose(jf16m_numpy_array["gauss"], \
                       jf16m_numpy_array["gauss_argchk"]), \
    "max per-pixel difference: %f photons, experiment %d"%(abs_diff,i_exp)
Example #7
0
  def job_runner(self,expt,alt_expt,params,mask_array=None,i_exp=0,spectra={},mos_aniso=None):

    # Fixed hyperparameters
    mosaic_spread_samples = 250
    beamsize_mm = 0.000886226925452758 # sqrt beam focal area
    spot_scale = 500.
    oversample = 1  # factor 1,2, or 3 probably enough
    verbose = 0  # leave as 0, unless debug
    shapetype = "gauss_argchk"

    if mask_array is not None:
      assert type(mask_array) is flex.bool # type check intending to convert active-pixel-bools to whitelist-ints
      active_pixels = flex.int()
      for i, x in enumerate(mask_array):
        if x: active_pixels.append(i)
      mask_array = active_pixels

    detector = expt.detector
    flat = True  # enforce that the camera has 0 thickness
    if flat:
        from dxtbx_model_ext import SimplePxMmStrategy
        for panel in detector:
            panel.set_px_mm_strategy(SimplePxMmStrategy())
            panel.set_mu(0)
            panel.set_thickness(0)
        assert detector[0].get_thickness() == 0

    alt_crystal = alt_expt.crystal

    beam = expt.beam
    spec = expt.imageset.get_spectrum(0)
    energies_raw = spec.get_energies_eV().as_numpy_array()
    weights_raw = spec.get_weights().as_numpy_array()
    from LS49.adse13_187.adse13_221.explore_spectrum import method3
    energies, weights, _ = method3(energies_raw, weights_raw,); weights = 5000000.*weights
    energies = list(energies); weights = list(weights)

    device_Id = 0
    if self.gpu_channels_singleton is not None:
      device_Id = self.gpu_channels_singleton.get_deviceID()

    print("\n<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>")
    print("\tBreakdown:")
    for shapetype in ["gauss_argchk"]:
      BEG=time()
      print (self.gpu_channels_singleton.get_deviceID(),"device",shapetype)
      Famp_is_uninitialized = ( self.gpu_channels_singleton.get_nchannels() == 0 )
      if Famp_is_uninitialized:
        F_P1 = self.amplitudes
        for x in range(1):  # in this scenario, amplitudes are independent of lambda
          self.gpu_channels_singleton.structure_factors_to_GPU_direct(
          x, F_P1.indices(), F_P1.data())
      assert self.gpu_channels_singleton.get_nchannels() == 1

      # Variable parameters
      mosaic_spread = params.mosaic_spread.value
      Ncells_abc = params.Nabc.value

      JF16M_numpy_array, TIME_BG, TIME_BRAGG, _ = multipanel_sim(
        CRYSTAL=alt_crystal, DETECTOR=detector, BEAM=beam,
        Famp = self.gpu_channels_singleton,
        energies=energies, fluxes=weights,
        cuda=True,
        oversample=oversample, Ncells_abc=Ncells_abc,
        mos_dom=mosaic_spread_samples, mos_spread=mosaic_spread,
        mos_aniso = mos_aniso,
        beamsize_mm=beamsize_mm,
        profile=shapetype,
        show_params=False,
        time_panels=False, verbose=verbose,
        spot_scale_override=spot_scale,
        include_background=False,
        mask_file=mask_array)
      TIME_EXA = time()-BEG

      print("\t\tExascale: time for bkgrd sim: %.4fs; Bragg sim: %.4fs; total: %.4fs" % (TIME_BG, TIME_BRAGG, TIME_EXA))
    print("<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>\n")
    return JF16M_numpy_array
Example #8
0
    def chain_runner(self,
                     expt,
                     alt_expt,
                     params,
                     mask_array=None,
                     n_cycles=100,
                     s_cycles=0,
                     Zscore_callback=None,
                     rmsd_callback=None):

        self.model_plot_enable = params.plot
        if mask_array is not None:
            assert type(
                mask_array
            ) is flex.bool  # type check intending to convert active-pixel-bools to whitelist-ints
            active_pixels = flex.int()
            for i, x in enumerate(mask_array):
                if x: active_pixels.append(i)
        mask_array = active_pixels

        # Fixed hyperparameters
        mosaic_spread_samples = 250
        beamsize_mm = 0.000886226925452758  # sqrt beam focal area
        spot_scale = 500.
        oversample = 1  # factor 1,2, or 3 probably enough
        verbose = 0  # leave as 0, unless debug
        shapetype = "gauss_argchk"

        detector = expt.detector
        flat = True  # enforce that the camera has 0 thickness
        if flat:
            from dxtbx_model_ext import SimplePxMmStrategy
            for panel in detector:
                panel.set_px_mm_strategy(SimplePxMmStrategy())
                panel.set_mu(0)
                panel.set_thickness(0)
            assert detector[0].get_thickness() == 0

        alt_crystal = copy.deepcopy(
            alt_expt.crystal)  # avoid perturbing the original dials cell

        beam = expt.beam
        spec = expt.imageset.get_spectrum(0)
        energies_raw = spec.get_energies_eV().as_numpy_array()
        weights_raw = spec.get_weights().as_numpy_array()
        from LS49.adse13_187.adse13_221.explore_spectrum import method3
        energies, weights, _ = method3(
            energies_raw,
            weights_raw,
        )
        weights = 5000000. * weights
        energies = list(energies)
        weights = list(weights)

        device_Id = 0  # XXX revisit for multiprocess service
        assert self.gpu_channels_singleton is not None
        device_Id = self.gpu_channels_singleton.get_deviceID()
        print(device_Id, "device", shapetype)
        Famp_is_uninitialized = (
            self.gpu_channels_singleton.get_nchannels() == 0)
        if Famp_is_uninitialized:
            F_P1 = self.amplitudes
            for x in range(
                    1
            ):  # in this scenario, amplitudes are independent of lambda
                self.gpu_channels_singleton.structure_factors_to_GPU_direct(
                    x, F_P1.indices(), F_P1.data())
        assert self.gpu_channels_singleton.get_nchannels() == 1

        # Variable parameters
        mosaic_spread = params.mosaic_spread.value
        Ncells_abc = params.Nabc.value

        from LS49.adse13_187.adse13_221.parameters import variable_mosaicity
        from LS49.adse13_187.adse13_221.parameters import covariant_cell, covariant_rot, covariant_ncells
        self.parameters = {}
        self.parameters["cell"] = covariant_cell.from_covariance(
            alt_crystal, params.cell)
        self.parameters["etaa"] = variable_mosaicity(
            mosaic_spread, label="η a", params=params.mosaic_spread)
        self.parameters["etab"] = variable_mosaicity(
            mosaic_spread, label="η b", params=params.mosaic_spread)
        self.parameters["etac"] = variable_mosaicity(
            mosaic_spread, label="η c", params=params.mosaic_spread)
        self.parameters2 = {}
        if params.rot.refine:
            self.parameters2["rot"] = covariant_rot(alt_crystal, params.rot)
        if params.Nabc.refine:
            self.parameters2["ncells"] = covariant_ncells(params.Nabc)
        self.ref_params = {}
        self.ref_params.update(self.parameters)
        self.ref_params.update(self.parameters2)
        # XXX TO DO list (Nick/Dan discuss)
        # 1) change the variable mosaicity model to use updated aniso Derek model (Nick)
        # 2) add rotx/roty/rotz.  Covariant excursion values from Sauter 2014 paper: rotz 0.02° rotx 0.03° roty 0.03°
        # 3) refine ncells a b c

        self.rmsd_chain = flex.double()
        self.sigz_chain = flex.double()
        self.llg_chain = flex.double()
        self.cycle_list = [key for key in self.ref_params]
        self.accept = flex.int()

        self.beginning_iteration = 0
        if s_cycles > 0:
            from LS49.adse13_187.adse13_221.simplex_method import simplex_detail
            # initialize prior to simplex
            whitelist_only, TIME_BG, TIME_BRAGG, self.exascale_mos_blocks = multipanel_sim(
                CRYSTAL=alt_crystal,
                DETECTOR=detector,
                BEAM=beam,
                Famp=self.gpu_channels_singleton,
                energies=energies,
                fluxes=weights,
                cuda=True,
                oversample=oversample,
                Ncells_abc=Ncells_abc,
                mos_dom=mosaic_spread_samples,
                mos_spread=self.parameters["etaa"].proposal,
                mos_aniso=(self.parameters["etaa"].proposal,
                           self.parameters["etab"].proposal,
                           self.parameters["etac"].proposal),
                beamsize_mm=beamsize_mm,
                profile=shapetype,
                show_params=False,
                time_panels=False,
                verbose=verbose,
                spot_scale_override=spot_scale,
                include_background=False,
                mask_file=mask_array,
                skip_numpy=True,
                relevant_whitelist_order=self.relevant_whitelist_order)
            Rmsd, sigZ, LLG = Zscore_callback(kernel_model=whitelist_only,
                                              plot=False)
            self.accept.append(1)
            self.rmsd_chain.append(Rmsd)
            self.sigz_chain.append(sigZ)
            self.llg_chain.append(LLG)

            PP = dict(detector=detector,
                      beam=beam,
                      energies=energies,
                      weights=weights,
                      oversample=oversample,
                      mosaic_spread_samples=mosaic_spread_samples,
                      beamsize_mm=beamsize_mm,
                      shapetype=shapetype,
                      verbose=verbose,
                      spot_scale=spot_scale,
                      mask_array=mask_array,
                      Z=Zscore_callback)

            MIN = simplex_detail(alt_crystal,
                                 Ncells_abc,
                                 host_runner=self,
                                 PP=PP,
                                 n_cycles=n_cycles,
                                 s_cycles=s_cycles)
            self.beginning_iteration = MIN.iteration + 1

        for macro_iteration in range(self.beginning_iteration, n_cycles):
            BEG = time()
            turn = self.cycle_list[macro_iteration % len(self.cycle_list)]
            if turn == "cell":
                alt_crystal = self.parameters[
                    "cell"].get_current_crystal_model(alt_crystal)
            elif turn == "rot":
                alt_crystal = self.parameters2[
                    "rot"].get_current_crystal_model(alt_crystal)
            elif turn == "ncells":
                Ncells_abc = self.parameters2["ncells"].get_current_model()

            whitelist_only, TIME_BG, TIME_BRAGG, self.exascale_mos_blocks = multipanel_sim(
                CRYSTAL=alt_crystal,
                DETECTOR=detector,
                BEAM=beam,
                Famp=self.gpu_channels_singleton,
                energies=energies,
                fluxes=weights,
                cuda=True,
                oversample=oversample,
                Ncells_abc=Ncells_abc,
                mos_dom=mosaic_spread_samples,
                mos_spread=self.parameters["etaa"].proposal,
                mos_aniso=(self.parameters["etaa"].proposal,
                           self.parameters["etab"].proposal,
                           self.parameters["etac"].proposal),
                beamsize_mm=beamsize_mm,
                profile=shapetype,
                show_params=False,
                time_panels=False,
                verbose=verbose,
                spot_scale_override=spot_scale,
                include_background=False,
                mask_file=mask_array,
                skip_numpy=True,
                relevant_whitelist_order=self.relevant_whitelist_order)
            Rmsd, sigZ, LLG = Zscore_callback(kernel_model=whitelist_only,
                                              plot=False)
            if macro_iteration == self.beginning_iteration:
                for key in self.ref_params:
                    self.ref_params[key].accept()
                self.accept.append(1)
                self.rmsd_chain.append(Rmsd)
                self.sigz_chain.append(sigZ)
                self.llg_chain.append(LLG)
            else:
                print("Old NLL ", self.llg_chain[-1], "NEW LLG", LLG, "diff",
                      self.llg_chain[-1] - LLG)
                this_cycle_key = self.cycle_list[(macro_iteration) %
                                                 len(self.cycle_list)]
                acceptance_prob = min(
                    1.,
                    math.exp((self.llg_chain[-1] - LLG) /
                             len(whitelist_only))  # normalize by no. of pixels
                    * self.ref_params[this_cycle_key].
                    transition_probability_ratio  # q(X|Y)/q(Y|X), Y=proposal, X=last value
                )
                if random.random() < acceptance_prob:
                    for key in self.ref_params:
                        if key == turn: self.ref_params[key].accept()
                        else: self.ref_params[key].reject()
                    self.accept.append(1)
                    self.rmsd_chain.append(Rmsd)
                    self.sigz_chain.append(sigZ)
                    self.llg_chain.append(LLG)
                else:
                    for key in self.ref_params:
                        self.ref_params[key].reject()
                    self.accept.append(0)
                    self.rmsd_chain.append(self.rmsd_chain[-1])
                    self.sigz_chain.append(self.sigz_chain[-1])
                    self.llg_chain.append(self.llg_chain[-1])
            P = Profiler("%40s" % "key maintenance")

            for key in self.ref_params:
                if key == self.cycle_list[(macro_iteration + 1) %
                                          len(self.cycle_list)]:
                    self.ref_params[key].generate_next_proposal()
            P = Profiler("%40s" % "plot all")
            self.plot_all(macro_iteration + 1, of=n_cycles)
            del P
            TIME_EXA = time() - BEG
            print("\t\tExascale: time for Bragg sim: %.4fs; total: %.4fs\n" %
                  (TIME_BRAGG, TIME_EXA))
        print("MCMC <RMSD> %.2f" %
              (flex.mean(self.rmsd_chain[len(self.rmsd_chain) // 2:])))
        print("MCMC <sigz> %.2f" %
              (flex.mean(self.sigz_chain[len(self.sigz_chain) // 2:])))
        print("MCMC <-LLG> %.2f" %
              (flex.mean(self.llg_chain[len(self.llg_chain) // 2:])))
        for key in self.ref_params:
            self.ref_params[key].show()
        if self.model_plot_enable:
            plt.close(self.fig)
            plt.close(self.fig2)
            plt.close(self.fig3)
            plt.ioff()
        print(flush=True)