Example #1
0
 def result(self, state, action, player):
     newState = []
     T = [state[0] + 1]
     A, A1, A2, IA = list(state[1]), list(state[2]), list(state[3]), list(state[4])
     A.append(action[1])
     IA.remove(action[1])
     if player == self.PLAYERS[0]:
         A1.append(action[1])
         newState = Spreading(A, A1, A2, IA)
     else:
         A2.append(action[1])
         newState = Spreading(A, A1, A2, IA)
     newState = T + newState
     return newState
Example #2
0
def breadth_first_search(R, T, buf, M):
    global args
    K = args.seed_size
    TURNS = K + 1
    SEED = []
    fileName = "Path.csv"
    output = open(fileName, "w")
    cnt = R
    SEED = []
    for x in range(7):
        SEED.append(buf[x][1])
        output.write("{0},{1},{2}\n".format(x + 1, buf[x][1], buf[x][0]))
    Active = []
    Active_1 = []
    Active_2 = []
    TREND = []
    Inactive = list(setting.data.threshold.keys())
    for i in range(K):
        Active.append(SEED[i])
        Inactive.remove(SEED[i])
        if i % 2 == 0:
            Active_1.append(SEED[i])
        else:
            Active_2.append(SEED[i])
        (Active, Active_1, Active_2,
         Inactive) = Spreading(Active, Active_1, Active_2, Inactive)
        if i % 2 == 1:
            TREND.append(len(Active) / len(setting.data.threshold))
    output.write("{0}\n{1}\n{2}\n".format(len(Active), len(Active_1),
                                          len(Active_2)))
    output.write("MCT Construction time: {0}\n".format(T))
    for t in TREND:
        output.write("{0},".format("{:.2%}".format(t)))
    output.write("\n\n")
    output.close()
    METHODS = ['MaxWeight', 'MajorityWeight', 'MaxPageRank', 'MaxLDAG']
    INDEX = METHODS.index(M.__name__)
    output = open("Result.csv", "w")
    for i in range(4):
        STR = 'AI'
        output.write(M.__name__ + ' VS ' + METHODS[i] + '\n')
        outcome = AIVSSTUPID(M.__name__, METHODS[i], None)
        output.write('p1:{0},p2:{1}\n'.format(outcome[0], outcome[1]))

        output.write(METHODS[i] + ' VS ' + M.__name__ + '\n')
        outcome = AIVSSTUPID(METHODS[i], M.__name__, None)
        output.write('p1:{0},p2:{1}\n'.format(outcome[0], outcome[1]))

        output.write('AI VS ' + METHODS[i] + '\n')
        outcome1 = AIVSSTUPID(STR, METHODS[i], fileName)
        output.write('p1:{0},p2:{1}\n\n'.format(outcome1[0], outcome1[1]))

        output.write(METHODS[i] + ' VS ' + 'AI' + '\n')
        outcome2 = AIVSSTUPID(METHODS[i], STR, fileName)
        output.write('p1:{0},p2:{1}\n\n'.format(outcome2[0], outcome2[1]))
    output.close()
Example #3
0
def resultofallmethods():
    Result = []
    METHODS = [MaxWeight, MajorityWeight, MaxPageRank, MaxLDAG]
    for M in METHODS:
        Active, Active1, Active2 = [], [], []
        Inactive = [x for x in setting.data.threshold.keys()]
        seed = []
        for i in range(10):
            X = M(list(Active), list(Active_1), list(Active_2), list(Inactive))
            Active.append(X)
            Active_1.append(X)
            Inactive.remove(X)
            (Active, Active_1, Active_2,
             Inactive) = Spreading(Active, Active_1, Active_2, Inactive)
        Result.append(len(Active_1))
    return Result
Example #4
0
 def simulation(self, METHOD):
     Actions = METHOD
     reward = 0.0
     for A in Actions:
         tmp_turn = self.state[0]
         st = [self.state[0], list(self.state[1]), list(self.state[2]), list(self.state[3]), list(self.state[4])]
         p1 = self.player
         before,before1 = 0,0
         if p1=='2':
             before = len(self.parent.state[2])
             before1 = len(self.parent.state[3])
         else:
             before = len(self.parent.state[3])
             before1 = len(self.parent.state[2])
         steps = 10
         while not self.ccim.terminal(tmp_turn):
             if p1 == '1':
                 #print("player1 selects--------------------")
                 if self.player=='1': action = A(list(st[1]),list(st[2]),list(st[3]),list(st[4]))
                 else:
                     action = A(list(st[1]),list(st[2]),list(st[3]),list(st[4]))
                 st[1].append(action)
                 st[2].append(action)
             else:
                 #print("player2 selects-------------------")
                 if self.player=='2': action = A(list(st[1]),list(st[3]),list(st[2]),list(st[4]))
                 else:
                     action = A(list(st[1]),list(st[3]),list(st[2]),list(st[4]))
                 st[1].append(action)
                 st[3].append(action)
             tmp = Spreading(st[1], st[2], st[3], st[4])
             tmp_turn += 1
             st = [tmp_turn]
             st.extend(tmp)
             steps -= 1
             if steps==0: break
             p1 = self.ccim.next_player(p1)
         Outcome = 0
         now_round = 0
         Outcome = self.ccim.outcome(st,p1)
         Outcome1 = self.ccim.outcome(st,self.ccim.next_player(p1))
         now_round = tmp_turn - 1
         reward += ((Outcome-before))
     reward /= len(Actions)
     return reward
Example #5
0
	def gen_random(active, my_active, your_active, inactive, left_turns):
		gen_seed = []
		for x in range(left_turns*2):
			seed = choice(inactive)
			print("Random seed: %s"%(seed))
			gen_seed.append(seed)
			active.append(seed)
			inactive.remove(seed)
			if x%2 == 0:
				my_active.append(seed)
			else:
				your_active.append(seed)
			cnt = Spreading(list(active), list(my_active), list(your_active), list(inactive))
			active = list(cnt[0])
			my_active = list(cnt[1])
			your_active = list(cnt[2])
			inactive = list(cnt[3])
		return Chromosome(gen_seed, Chromosome._update_fitness(my_active, your_active), list(active), list(my_active), list(your_active), list(inactive))
Example #6
0
	def _update_active_state(gene, active, my_active, your_active, inactive):
		tmp_active = list(active)
		tmp_my_active = list(my_active)
		tmp_your_active = list(your_active)
		tmp_inactive = list(inactive)
		for i in range(len(gene)):
			if gene[i] in tmp_active: continue
			tmp_active.append(gene[i])
			tmp_inactive.remove(gene[i])
			if i%2==0:
				tmp_my_active.append(gene[i])
			else:
				tmp_your_active.append(gene[i])
			cnt = Spreading(list(tmp_active), list(tmp_my_active), list(tmp_your_active), list(tmp_inactive))
			tmp_active = list(cnt[0])
			tmp_my_active = list(cnt[1])
			tmp_your_active = list(cnt[2])
			tmp_inactive = list(cnt[3])
		
		return [Chromosome._update_fitness(my_active, your_active), tmp_active, tmp_my_active, tmp_your_active, tmp_inactive]
            if x%2==0: Method.append(AI[x])
            else: Method.append(p2)
    elif p2=="AI":
        for x in range(20):
            if x%2==1: Method.append(AI[x])
            else: Method.append(p1)
    else:
        for x in range(20):
            if x%2==0: Method.append(p1)
                else: Method.append(p2)
    Active, Active_1, Active_2 = [], [], []
    Inactive = [x for x in setting.data.threshold.keys()]
    seed = '1'
    for x in range(20):
        if x%2==0:
            seed = DIC[Method[x]](list(Active),list(Active_1),list(Active_2),list(Inactive))
            if not seed: 
                seed = MaxWeight(list(Active),list(Active_1),list(Active_2),list(Inactive))
            Active.append(seed)
            Active_1.append(seed)
            Inactive.remove(seed)
        else:
            seed = DIC[Method[x]](list(Active),list(Active_2),list(Active_1),list(Inactive))
            if not seed:
                seed = MaxWeight(list(Active),list(Active_2),list(Active_1),list(Inactive))
            Active.append(seed)
            Active_2.append(seed)
            Inactive.remove(seed)
        (Active, Active_1, Active_2, Inactive) = Spreading(list(Active),list(Active_1),list(Active_2),list(Inactive))
    return (len(Active_1),len(Active_2))