Example #1
0
def find_ridges(x):
    if 'time' in x.dims:
        x = x.isel(time=0)
    return find_ridges_spherical_hessian(x,
                                         sigma=4,
                                         tolerance_threshold=0.0015e-3,
                                         scheme='second_order',
                                         return_eigvectors=True)[return_idx]
        ftle_local = ftle_local.isel(time=0)
        ftle = ftle.isel(time=0)
        from skimage.filters import threshold_otsu, threshold_local
        from skimage.segmentation import watershed
        from skimage.feature import peak_local_max
        from scipy import ndimage as ndi
        block_size = 301
        local_thresh = ftle_local.copy(data=threshold_local(ftle_local.values, block_size,
                                                            offset=-.8))

        binary_local = ftle_local > local_thresh
        ftle_local_high=binary_local

        distance = binary_local
        ridges, eigmin, eigvectors = find_ridges_spherical_hessian(ftle,
                                                                   sigma=1.2,
                                                                   scheme='second_order',
                                                                   angle=20 * coarse_factor, return_eigvectors=True)

        ridges = ridges.copy(data=skeletonize(ridges.values))
        ridges.plot()
        plt.show()
        ridges = filter_ridges(ridges, ftle, criteria=['mean_intensity', 'major_axis_length'],
                               thresholds=[1.2, 30 / coarse_factor])

        ridges = ridges.where(~xr.ufuncs.isnan(ridges), 0)

        mslpres_coarse = mslpres_coarse.interp(latitude=ridges.latitude.values,
                                            longitude=ridges.longitude.values,
                                            method='linear')
        dpdx = mslpres_coarse.isel(time=-1).differentiate('longitude')
        dpdy = mslpres_coarse.isel(time=-1).differentiate('latitude')
Example #3
0
    days = config['lcs_time_len'] / 4
    print(file)
    da = xr.open_dataarray(file)
    da = np.log(da) / days
    ridges_l = []
    for idx, time in enumerate(da.time.values):
        print(f'Doing time {idx} of {da.time.values.shape[0]}')
        da_ = da.sel(time=time)
        # ridges, _ = find_ridges_spherical_hessian(da_,
        #                                           sigma=1,
        #                                           scheme='second_order',
        #                                           angle=20)
        if relaxed:
            ridges, eigmin = find_ridges_spherical_hessian(
                da_,
                sigma=None,
                tolerance_threshold=0.5,
                return_eigvectors=False)
            ridges = ridges.where(eigmin < eigmin.quantile(.2)).where(
                da_ > 1.5)

        else:
            ridges, eigmin = find_ridges_spherical_hessian(
                da_,
                tolerance_threshold=0.0015e-3,
                sigma=None,
                scheme='second_order')
            ridges = ridges.where(eigmin < -.8e-11, 0)

            ridges = filter_ridges(ridges,
                                   da_,
Example #4
0
tmp.plot()
plt.show()

def_tensor = flowmap_gradient(da, da, sigma=1.5)
def_tensor = def_tensor.stack({'points': ['latitude', 'longitude']})
def_tensor = def_tensor.dropna(dim='points')

vals = def_tensor.transpose(..., 'points').values
vals = vals.reshape([2, 2, def_tensor.shape[-1]])
def_tensor_norm_tmp = norm(vals, axis=(0, 1), ord=2)
def_tensor_norm_tmp = def_tensor.isel(derivatives=0).drop('derivatives').copy(
    data=def_tensor_norm_tmp)
def_tensor_norm_tmp = def_tensor_norm_tmp.unstack('points')
def_tensor_norm_tmp.plot()
plt.show()
ridges_tmp, eivals_temp, eigvectors_tmp = find_ridges_spherical_hessian(
    da, sigma=1.2, scheme='second_order', angle=50, return_eigvectors=True)
u_tmp = eigvectors_tmp.isel(eigvectors=1) * da / 30
v_tmp = eigvectors_tmp.isel(eigvectors=0) * da / 30
u_tmp_lowres = u_tmp.coarsen(latitude=5, longitude=5, boundary='trim').mean()
v_tmp_lowres = v_tmp.coarsen(latitude=5, longitude=5, boundary='trim').mean()

fig, axs = plt.subplots(
    1,
    2,
    subplot_kw={'projection': ccrs.PlateCarree()},
)
da.plot(ax=axs[0],
        transform=ccrs.PlateCarree(),
        add_colorbar=False,
        robust=True)
da.plot(ax=axs[1], add_colorbar=False, robust=True)
Example #5
0
import matplotlib.pyplot as plt
from skimage.filters import hessian
import cartopy.crs as ccrs

def gen_data(xx, yy):
    return np.cos(xx * np.pi/180)*np.cos(12*yy * np.pi/180)

dshape = [150, 100]
da = xr.DataArray(np.ones(dshape), dims=['latitude', 'longitude'], coords={
    'latitude': np.linspace(-50, 0, 150), 'longitude': np.linspace(-90, -30, 100)}
                  )

xx, yy = np.meshgrid(da.longitude.values, da.latitude.values)
da = da.copy(data=gen_data(xx, yy))
ridges, eigmin, eigvectors , gradient= find_ridges_spherical_hessian(da, sigma=None,
                                                                           scheme='second_order',
                                                                           return_eigvectors=True)
ridges = ridges.where(eigmin<eigmin.quantile(.1))
# gradient = gradient.copy(data=np.gradient(da.values))
# gradient = gradient.unstack()
np.abs(ridges).plot()
da.plot()
plt.show()

fig, ax = plt.subplots(subplot_kw={'projection': ccrs.PlateCarree()})
da.plot.contour(ax=ax)
da.where(ridges>0).plot(add_colorbar=True, ax=ax)

ax.quiver(eigvectors.longitude.values,
          eigvectors.latitude.values,
          eigvectors.isel(eigvectors=0).values * eigmin.values,
Example #6
0
              transform=ccrs.PlateCarree(),
              add_colorbar=False)
    ax.set_title('')
    plt.savefig('../tempfigs/fig3_for_scheme.png',
                dpi=600,
                transparent=True,
                bbox_inches='tight',
                pad_inches=0)
    plt.close()

    ftle = ftle.isel(time=0)

    ridges, _ = find_ridges_spherical_hessian(ftle,
                                              sigma=1.2,
                                              scheme='second_order',
                                              angle=15,
                                              ds_wind=ds.isel(time=-1).sel(
                                                  latitude=ftle.latitude,
                                                  longitude=ftle.longitude,
                                                  method='nearest'))
    valleys, _ = find_ridges_spherical_hessian(-ftle,
                                               sigma=1.2,
                                               scheme='second_order',
                                               angle=15,
                                               ds_wind=ds.isel(time=-1).sel(
                                                   latitude=ftle.latitude,
                                                   longitude=ftle.longitude,
                                                   method='nearest'))
    ridges.plot()
    plt.show()
    # ridges = ridges.where(ridges < -9e-10, 0)  # Warning: sensitive to sigma
    # ridges = ridges.where(ridges >= -9e-10, 1)
Example #7
0
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import cmasher as cmr
import numpy as np

datapath = '/home/gab/phd/data/case_study_helen/'

files = glob.glob(datapath + 'ftle_1989*')
da = xr.open_mfdataset(files).to_array().isel(variable=0).drop('variable').load()

ridges_list = []
for idx, time in enumerate(da.time.values):
    da_ = da.isel(time=idx)
    da_ = np.log(da_)
    ridges, eigmin, ridges_, eigvectors, gradient, angle = find_ridges_spherical_hessian(da_, sigma=None,
                                                                                tolerance_threshold=0.5,
                                                                                return_eigvectors=True)
    ridges_valid = ridges.where(eigmin < eigmin.quantile(.2)).where(da_ > 1.5)

    fig, ax = plt.subplots(1, 1, subplot_kw={'projection': ccrs.NearsidePerspective(0, 45)})
    da_.plot(transform=ccrs.PlateCarree(), ax=ax, cmap=cmr.freeze, vmin=0, vmax=3, add_colorbar=False)
    ridges_valid.where(xr.ufuncs.isnan(ridges_valid), 1).plot(transform=ccrs.PlateCarree(), alpha=.5,
                                                              ax=ax, cmap='Reds', add_colorbar=False)
    ax.coastlines(color='red')
    plt.savefig(f'figs/{idx:02d}.png', dpi=400)
    plt.close()
    ridges_list.append(ridges_valid)

ridges = xr.concat(ridges_list, dim='time').drop('quantile')
ridges = ridges.where(xr.ufuncs.isnan(ridges), 1)
ridges.isel(time=0).plot()
Example #8
0
    preprocess=lambda x: x.isel(time=[-1])).assign_coords(time=das.time.values)
y_traj = xr.open_mfdataset(
    y_traj_files,
    preprocess=lambda x: x.isel(time=[-1])).assign_coords(time=das.time.values)
das = das['__xarray_dataarray_variable__'].load()

for time in das.time.values:
    ftle_ = .5 * np.log(das.sel(time=time))
    (ftle_).plot(
        vmin=0,
        vmax=3,
    )
    plt.show()
    x_traj_ = x_traj.sel(time=time)['u']
    y_traj_ = y_traj.sel(time=time)['u']
    protoridges, eigmin = find_ridges_spherical_hessian(
        ftle_, tolerance_threshold=0.01e-3, sigma=None, scheme='second_order')

    ridges = protoridges.where(eigmin < -1.2e-10, 0)
    ridges = ridges.where(ftle_ > 1.2, 0)
    ridges = ridges.where(ridges == 0, 1)
    ridges = filter_ridges(ridges,
                           ftle_,
                           criteria=[
                               'mean_intensity',
                               'area',
                           ],
                           thresholds=[.8, 20])

    # ridges = ridges.where(ftle_ > .9)
    # ridges.where(ftle_>1).plot()
    # plt.show()