class Model(object): def __init__(self, config, debug_information=False, is_train=True): self.debug = debug_information self.XO={} self.pen=None self.config = config self.batch_size = self.config.batch_size self.img_size = self.config.data_info[0] self.c_dim = self.config.data_info[2] self.q_dim = self.config.data_info[3] self.a_dim = self.config.data_info[4] self.conv_info = self.config.conv_info self.acc=0 self.feat_count = 64 self.ilp_params = None # create placeholders for the input self.img = tf.placeholder( name='img', dtype=tf.float32, shape=[self.batch_size, self.img_size, self.img_size, self.c_dim], ) self.q = tf.placeholder( name='q', dtype=tf.float32, shape=[self.batch_size, self.q_dim], ) self.a = tf.placeholder( name='a', dtype=tf.float32, shape=[self.batch_size, self.a_dim], ) self.is_training = tf.placeholder_with_default(bool(is_train), [], name='is_training') self.build(is_train=is_train) def load_ilp_config(self): parser = argparse.ArgumentParser() batch_size = self.batch_size # extra_feat_count=16 # parser.add_argument('--CHECK_CONVERGENCE',default=1,help='Check for convergence',type=int) # parser.add_argument('--SHOW_PRED_DETAILS',default=0,help='Print predicates definition details',type=int) parser.add_argument('--BS',default=16,help='Batch Size',type=int) parser.add_argument('--T',default=1 ,help='Number of forward chain',type=int) # parser.add_argument('--LR_SC', default={ (-1000,2):.005 , (2,1e5):.01} , help='Learning rate schedule',type=dict) # parser.add_argument('--BINARAIZE', default=1 , help='Enable binrizing at fast convergence',type=int) # parser.add_argument('--MAX_DISP_ITEMS', default=10 , help='Max number of facts to display',type=int) # parser.add_argument('--DISP_BATCH_VALUES',default=[],help='Batch Size',type=list) # parser.add_argument('--W_DISP_TH', default=.2 , help='Display Threshold for weights',type=int) # parser.add_argument('--ITER', default=400000, help='Maximum number of iteration',type=int) # parser.add_argument('--ITER2', default=200, help='Epoch',type=int) # parser.add_argument('--PRINTPRED',default=1,help='Print predicates',type=int) # parser.add_argument('--PRINT_WEIGHTS',default=0,help='Print raw weights',type=int) parser.add_argument('--MAXTERMS',default=6 ,help='Maximum number of terms in each clause',type=int) parser.add_argument('--L1',default=0 ,help='Penalty for maxterm',type=float) parser.add_argument('--L2',default=0 ,help='Penalty for distance from binary for weights',type=float) parser.add_argument('--L3',default=0 ,help='Penalty for distance from binary for each term',type=float) parser.add_argument('--L2LOSS',default=0,help='Use L2 instead of cross entropy',type=int) parser.add_argument('--SYNC',default=0,help='Synchronized Update',type=int) # parser.add_argument('--ALLTIMESTAMP',default=0 ,help='Add loss for each timestamp',type=int) # parser.add_argument('--FILT_TH_MEAN', default=.5 , help='Fast convergence total loss threshold MEAN',type=float) # parser.add_argument('--FILT_TH_MAX', default=.5 , help='Fast convergence total loss threshold MAX',type=float) # parser.add_argument('--OPT_TH', default=.05 , help='Per value accuracy threshold',type=float) # parser.add_argument('--PLOGENT', default=.50 , help='Crossentropy coefficient',type=float) # parser.add_argument('--BETA1', default=.90 , help='ADAM Beta1',type=float) # parser.add_argument('--BETA2', default=.999 , help='ADAM Beta2',type=float) # parser.add_argument('--EPS', default=1e-6, help='ADAM Epsillon',type=float) parser.add_argument('--GPU', default=1, help='Use GPU',type=int) # parser.add_argument('--LOGDIR', default='./logs/Logic', help='Log Dir',type=str) parser.add_argument('--TB', default=0, help='Use Tensorboard',type=int) parser.add_argument('--SEED',default=0,help='Random seed',type=int) # parser.add_argument('--ADDGRAPH', default=1, help='Add graph to Tensorboard',type=int) # parser.add_argument('--CLIP_NORM', default=0, help='Clip gradient',type=float) self.args_ilp = parser.parse_args() def define_preds(self): nC=6 nD=16 C = ['%d'%i for i in range(nC)] D = ['%d'%i for i in range(nD)] self.Constants = dict( { 'C':C, 'D':D}) #, 'N':['%d'%i for i in range(6)] }) self.predColl = PredCollection (self.Constants) self.predColl.add_pred(dname='pos' ,arguments=['C','D' ]) self.predColl.add_pred(dname='question' ,arguments=['C']) self.predColl.add_pred(dname='eq' ,arguments=['D','D' ]) self.predColl.add_pred(dname='ltD' ,arguments=['D','D','D']) self.predColl.add_pred(dname='gtD' ,arguments=['D','D','D']) self.predColl.add_pred(dname='left' ,arguments=['D']) self.predColl.add_pred(dname='button' ,arguments=['D']) for i in range(self.q_dim): self.predColl.add_pred(dname='is_q_%d'%i ,arguments=[]) for i in range(nC): self.predColl.add_pred(dname='is_color_%d'%i ,arguments=['C']) # ,pFunc = # DNF('obj',terms=1,init=[1,.1,-1,.1],sig=2,init_terms=['is_l_0(A)'],predColl=self.predColl,fast=True) , use_neg=False, Fam='or') self.predColl.add_pred(dname='rectangle' ,arguments=['C']) self.predColl.add_pred(dname='exist' ,arguments=['C']) self.predColl.add_pred(dname='eqC' ,arguments=['C','C'],variables=['D','D'] ,pFunc = DNF('eqC',terms=1,init=[1,.1,-1,.1],sig=2,init_terms=['pos(A,C), pos(B,D), eq(C,D)'],predColl=self.predColl,fast=True) , use_neg=True, Fam='or') self.predColl.add_pred(dname='closer',arguments=['C','C','C'], variables=['D','D','D'] ,pFunc = DNF('closer',terms=1,init=[1,.1,-1,.1],sig=2,init_terms=['pos(A,D), pos(B,E), pos(C,F), exist(A), exist(B), exist(C), ltD(D,E,F)'],predColl=self.predColl,fast=True) , use_neg=False, Fam='or') self.predColl.add_pred(dname='farther',arguments=['C','C','C'], variables=['D','D','D'] ,pFunc = DNF('farther',terms=1,init=[1,.1,-1,.1],sig=2,init_terms=['pos(A,D), pos(B,E), pos(C,F), exist(A), exist(B), exist(C), gtD(D,E,F)'],predColl=self.predColl,fast=True) , use_neg=False, Fam='or') self.predColl.add_pred(dname='closest',arguments=['C','C'], variables=['C'] ,pFunc = DNF('closest',terms=4,init=[1,.1,-1,.1],sig=2,init_terms=['closer(A,C,B)','not exist(A)','not exist(B)','eqC(A,B)'],predColl=self.predColl,fast=True,neg=True) , use_neg=True, Fam='eq') self.predColl.add_pred(dname='farthest',arguments=['C','C'], variables=['C'] ,pFunc = DNF('farthest',terms=4,init=[1,.1,-1,.1],sig=2,init_terms=['farther(A,C,B)','not exist(A)','not exist(B)','eqC(A,B)'],predColl=self.predColl,fast=True,neg=True) , use_neg=True, Fam='eq') exc = ['CL_%d'%i for i in range(self.a_dim)] exc=[] for k in range(0,self.a_dim): # # # # exc = ['CL_%d'%i for i in range(k,self.a_dim)] # # # # self.predColl.add_pred(dname='CL0_%d'%k,oname='CL_%d'%k,arguments=[] , variables=[] , pFunc = DNF('CL0_%d'%k,predColl=self.predColl,terms=10 ,init=[-1,.1,-1,.1],sig=2) ,use_neg=True, Fam='eq', exc_preds=exc ) # # self.predColl.add_pred(dname='CL1_%d'%k,oname='CL_%d'%k,arguments=[] , variables=['D'] , pFunc = DNF('CL1_%d'%k,predColl=self.predColl,terms=6 ,init=[-1,.1,-1,.1],sig=2) ,use_neg=True, Fam='eq',exc_conds=[('*','rep1') ] ) if k==0: post_terms=[] else: post_terms=[ ('and', 'not CL_%d()'%j ) for j in range(k)] post_terms=[] self.predColl.add_pred(dname='CL_%d'%k,oname='CL_%d'%k,arguments=[] , variables=['C','C','D'] , pFunc = DNF('CL_%d'%k,predColl=self.predColl,terms=14,init=[-1,-1,-1,.1],sig=2, post_terms=post_terms) ,use_neg=True, Fam='eq',exc_conds=[('*','rep1') ] ,exc_preds=exc ) # # # # # self.predColl.add_pred(dname='CL_%d'%k,oname='CL_%d'%k,arguments=[] , variables=['D','D'] , pFunc = MLP('CL_%d'%k,dims=[200,1], acts=[tf.nn.relu,tf.sigmoid] ) ,use_neg=False, Fam='eq', exc_preds=exc ) self.predColl.initialize_predicates() self.bg = Background( self.predColl ) # self.bg.add_backgroud('notExist', ('%d'%(nD-1),)) for i in range(nC): self.bg.add_backgroud('is_color_%d'%i, ('%d'%i,)) for i in range(nD): ri,ci=int(i//4),int(i%4) if ri>=2: self.bg.add_backgroud('button', ('%d'%i,)) if ci<2: self.bg.add_backgroud('left', ('%d'%i,)) # self.bg.add_backgroud('-%d'%i , ('%d'%i,) ) self.bg.add_backgroud('eq', ('%d'%i,'%d'%i)) for j in range(nD): rj,cj=int(j//4),int(j%4) for k in range(nD): rk,ck=int(k//4),int(k%4) d1=(ri-rj)**2+(ci-cj)**2 d2=(ri-rk)**2+(ci-ck)**2 if(d1<d2 and i!=j and i!=k and j!=k): self.bg.add_backgroud('ltD', ('%d'%i,'%d'%j,'%d'%k)) if(d1>d2 and i!=j and i!=k and j!=k): self.bg.add_backgroud('gtD', ('%d'%i,'%d'%j,'%d'%k)) a = '%d'%i # self.bg.add_backgroud('is_c_%d'%i , (a,) ) # self.bg.add_backgroud('is_r_%d'%i , (a,) ) # self.bg.add_backgroud('eqC' , (a,a) ) # self.bg.add_backgroud('eqR' , (a,a) ) # for j in range(nC): # if i<j: # self.bg.add_backgroud('ltC', ('%d'%i, '%d'%j)) # self.bg.add_backgroud('ltR', ('%d'%i, '%d'%j)) bg_set=[] self.X0=OrderedDict() for p in self.predColl.outpreds: if p.oname not in bg_set: tmp = tf.expand_dims( tf.constant( self.bg.get_X0(p.oname) ,tf.float32) , 0) self.X0[p.oname] = tf.tile( tmp , [self.batch_size,1] ) print('displaying config setting...') # for arg in vars(args): # print( '{}-{}'.format ( arg, getattr(args, arg) ) ) self.mdl = ILPRLEngine( args=self.args_ilp ,predColl=self.predColl ,bgs=None ) def get_feed_dict(self, batch_chunk, step=None, is_training=None): fd = { self.img: batch_chunk['img'], # [B, h, w, c] self.q: batch_chunk['q'], # [B, n] self.a: batch_chunk['a'], # [B, m] } if is_training is not None: fd[self.is_training] = is_training return fd def build(self, is_train=True): n = self.a_dim conv_info = self.conv_info # build loss and accuracy {{{ def build_loss(logits, labels): # Cross-entropy loss loss = tf.nn.softmax_cross_entropy_with_logits(logits=logits*10, labels=labels) # loss = tf.reduce_sum( neg_ent_loss (labels,logits) , -1 ) # Classification accuracy correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1)) self.acc = tf.cast(correct_prediction, tf.float32) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) return tf.reduce_mean(loss), accuracy # }}} # def concat_coor(o, i, d): # coor = tf.tile(tf.expand_dims( # [float(int(i / d)) / d, (i % d) / d], axis=0), [self.batch_size, 1]) # o = tf.concat([o, tf.to_float(coor)], axis=1) # return o # def g_theta(o_i, o_j, q, scope='g_theta', reuse=True): # with tf.variable_scope(scope, reuse=reuse) as scope: # if not reuse: log.warn(scope.name) # g_1 = fc(tf.concat([o_i, o_j, q], axis=1), 256, name='g_1') # g_2 = fc(g_1, 256, name='g_2') # g_3 = fc(g_2, 256, name='g_3') # g_4 = fc(g_3, 256, name='g_4') # return g_4 # Classifier: takes images as input and outputs class label [B, m] def CONV(img, q, scope='CONV'): nD = 16 nC=6 with tf.variable_scope(scope) as scope: log.warn(scope.name) self.X0['question'] = q[:,:nC] x1 = tf.layers.conv2d( img, 32*2, 3, strides=(2,2) , activation='tanh', padding='valid') x2 = tf.layers.conv2d( x1, 32*2, 3, strides=(2,2), activation='tanh' , padding='valid' ) x2 = tf.layers.conv2d( x2, 32*2, 3, strides=(2,2), activation='tanh' , padding='valid' ) sz=x2.shape[1].value feat = tf.reshape(x2, [-1,sz*sz,32*2]) def feat2scores2(feat,nX,nF): # pos = tf.constant( np.eye(nF) , tf.float32 ) w = weight_variable( [ feat.shape[-1].value,nF] ) b = bias_variable([nF,]) m = tf.matmul( feat,w+b) # mm = tf.matmul( m , pos) mm = tf.nn.softmax( m,1) mmm = tf.transpose( mm, [0,2,1] ) return tf.layers.dense( mmm, nX, tf.nn.softmax ) with tf.variable_scope('conv_pos') as scope: # Fs = feat2scores2(feat,nC) # rect = tf.layers.dense( Fs, 3, tf.nn.softmax ) rect = feat2scores2(feat,nC,3) rect = tf.transpose( rect, [0,2,1] ) # with tf.variable_scope('obj'): # # obj = tf.layers.dense( obj, 2, tf.nn.softmax ) with tf.variable_scope('cl'): pos = feat2scores2(feat,nC,nD) # Fs = feat2scores2(feat,nC) # pos = tf.layers.dense( feat, nD, tf.nn.softmax ) pos = tf.transpose( pos, [0,2,1] ) # cl1,cl2 = get_conv(1,[nL1,nL2],24) # self.X0['obj'] = obj[:,0,:] self.X0['rectangle'] = rect[:,:,1] self.X0['exist'] = 1.0-rect[:,:,0] self.X0['pos'] = tf.reshape( pos, [-1, nC*nD]) for i in range(self.q_dim): self.X0['is_q_%d'%i] = q[:,i:(i+1)] with tf.variable_scope('myscope'): self.XO,L3 = self.mdl.getTSteps(self.X0) os = tf.concat( [self.XO['CL_%d'%i] for i in range(self.a_dim)],-1) return os # return fc(os, self.a_dim, activation_fn=None, name='fc_3') # # os=os+ fc(os, 1, activation_fn=tf.sigmoid, name='fc_2')*0 # # return os # all_g = tf.concat( [self.XO[i.oname] for i in self.predColl.outpreds],-1) # all_g = fc( 2*all_g-1, 256, activation_fn=tf.nn.relu, name='fc_1') # # all_g = slim.dropout(all_g, keep_prob=0.5, is_training=is_train, scope='fc_3/') # all_g = fc(all_g, 256, activation_fn=tf.nn.relu, name='fc_2') # # all_g = slim.dropout(all_g, keep_prob=0.8, is_training=is_train, scope='fc_2') # return fc(all_g, self.a_dim, activation_fn=None, name='fc_3') # # all_g = tf.concat( [XO[i.oname] for i in self.predColl.outpreds if 'aux' in i.dname],-1) # os = tf.concat( [self.XO['CL_%d'%i] for i in range(self.a_dim)],-1) # # os=os+ fc(os, 1, activation_fn=tf.sigmoid, name='fc_2')*0 # return os*5 # return all_g # return all_g def f_phi(g, scope='f_phi'): with tf.variable_scope(scope) as scope: log.warn(scope.name) fc_1 = fc(g, 256, name='fc_1') fc_2 = fc(fc_1, 256, name='fc_2') # fc_2 = slim.dropout(fc_2, keep_prob=0.5, is_training=is_train, scope='fc_3/') fc_3 = fc(fc_2, n, activation_fn=None, name='fc_3') return fc_3 self.load_ilp_config() self.define_preds() logits = CONV(self.img, self.q, scope='CONV') # logits = f_phi(g, scope='f_phi') self.all_preds = tf.nn.softmax(logits) self.loss, self.accuracy = build_loss(logits, self.a) # Add summaries def draw_iqa(img, q, target_a, pred_a): fig, ax = tfplot.subplots(figsize=(6, 6)) ax.imshow(img) ax.set_title(question2str(q)) ax.set_xlabel(answer2str(target_a)+answer2str(pred_a, 'Predicted')) return fig try: tfplot.summary.plot_many('IQA/', draw_iqa, [self.img, self.q, self.a, self.all_preds], max_outputs=4, collections=["plot_summaries"]) except: pass tf.summary.scalar("loss/accuracy", self.accuracy) tf.summary.scalar("loss/cross_entropy", self.loss) log.warn('Successfully loaded the model.')
class ILP_MODEL(object): def __init__(self, DIM1, DIM2, F_COUNT=3): self.DIM1 = DIM1 self.DIM2 = DIM2 self.F_COUNT = F_COUNT self.args = self.load_ilp_config() self.define_preds() self.Xo = None self.X0 = None def load_ilp_config(self): param = dotdict({}) param.BS = 1 param.T = 1 param.W_DISP_TH = .2 param.GPU = 1 return param def define_preds(self): X = ['%d' % i for i in range(self.DIM1)] Y = ['%d' % i for i in range(self.DIM2)] self.Constants = dict({'N': X, 'Y': Y}) self.predColl = PredCollection(self.Constants) self.predColl.add_pred(dname='sameX', arguments=['N', 'N']) self.predColl.add_pred(dname='sameY', arguments=['Y', 'Y']) self.predColl.add_pred(dname='X_U', arguments=['N']) self.predColl.add_pred(dname='X_D', arguments=['N']) self.predColl.add_pred(dname='Y_L', arguments=['Y']) self.predColl.add_pred(dname='Y_R', arguments=['Y']) self.predColl.add_pred(dname='ltY', arguments=['Y', 'Y']) self.predColl.add_pred(dname='close', arguments=['Y', 'Y']) self.predColl.add_pred(dname='agent', arguments=['N', 'Y']) self.predColl.add_pred(dname='predLR', arguments=['N', 'Y']) self.predColl.add_pred(dname='predRL', arguments=['N', 'Y']) self.predColl.add_pred(dname='food', arguments=['N', 'Y']) count_type = 'max' self.predColl.add_pred(dname='pred', arguments=['N', 'Y'], variables=[], pFunc=DNF( 'pred', init_terms=['predLR(A,B)', 'predRL(A,B)'], predColl=self.predColl, fast=True), use_neg=False, Fam='eq', count_type='or', arg_funcs=[]) self.predColl.add_pred(dname='agentX', arguments=['N'], variables=['Y'], pFunc=DNF('agentX', init_terms=['agent(A,B)'], predColl=self.predColl, fast=True), use_neg=False, Fam='eq', count_type='or', arg_funcs=[]) self.predColl.add_pred(dname='agentY', arguments=['Y'], variables=['N'], pFunc=DNF('agentY', init_terms=['agent(B,A)'], predColl=self.predColl, fast=True), use_neg=False, Fam='eq', count_type='or', arg_funcs=[]) self.predColl.add_pred( dname='C1', arguments=[], variables=['N', 'N'], pFunc=DNF('C1', terms=1, init=[-1, .1, -1, .1], sig=2, init_terms=['agentX(A), agentX(B), not sameX(A,B)'], predColl=self.predColl, fast=True), use_neg=True, Fam='eq', count_type='max', arg_funcs=[]) self.predColl.add_pred( dname='C2', arguments=[], variables=['Y', 'Y'], pFunc=DNF('C2', terms=1, init=[-1, .1, -1, .1], sig=2, init_terms=['agentY(A), agentY(B), not close(A,B)'], predColl=self.predColl, fast=True), use_neg=True, Fam='eq', count_type='max', arg_funcs=[]) self.predColl.add_pred(dname='C3', arguments=[], variables=['N', 'Y'], pFunc=DNF('C3', terms=1, init=[-1, .1, -1, .1], sig=2, init_terms=[ 'predLR(A,B), predRL(A,B)', 'agent(A,B), predRL(A,B)', 'agent(A,B), predLR(A,B)', ], predColl=self.predColl, fast=True), use_neg=True, Fam='eq', count_type='max', arg_funcs=[]) self.predColl.add_pred(dname='C4', arguments=[], variables=['N', 'Y'], pFunc=DNF('C4', terms=1, init=[-1, .1, -1, .1], sig=2, init_terms=['agent(A,B)'], predColl=self.predColl, fast=True), use_neg=False, Fam='eq', count_type='max', arg_funcs=[]) excs = [ 'action_noop', 'action_up', 'action_down', 'action_left', 'action_right', 'Q' ] w = [-1, .1, -3, .1] self.predColl.add_pred(dname='en_up', arguments=[], variables=['N', 'Y', 'Y'], pFunc=DNF( 'en_up', terms=1, init=[-1, .1, -1, .1], sig=2, init_terms=[ 'agent(A,B), X_U(A)', 'agent(A,B), pred(M_A,C), close(B,C)' ], predColl=self.predColl, fast=True), use_neg=False, Fam='eq', count_type=count_type, count_th=100, arg_funcs=['M']) self.predColl.add_pred(dname='en_down', arguments=[], variables=['N', 'Y', 'Y'], pFunc=DNF( 'en_down', terms=1, init=[-1, .1, -1, .1], sig=2, init_terms=[ 'agent(A,B), X_D(A)', 'agent(A,B), pred(P_A,C), close(B,C)' ], predColl=self.predColl, fast=True), use_neg=False, Fam='eq', count_type=count_type, count_th=100, arg_funcs=['P']) self.predColl.add_pred( dname='en_right', arguments=[], variables=['N', 'Y', 'Y'], pFunc=DNF('en_right', terms=1, init=[-1, .1, -1, .1], sig=2, init_terms=[ 'agent(A,B), Y_R(B)', 'agent(A,B), pred(A,C), close(B,C), ltY(B,C)' ], predColl=self.predColl, fast=True), use_neg=False, Fam='eq', count_type=count_type, count_th=100, arg_funcs=[]) self.predColl.add_pred( dname='en_left', arguments=[], variables=['N', 'Y', 'Y'], pFunc=DNF('en_left', terms=1, init=[-1, .1, -1, .1], sig=2, init_terms=[ 'agent(A,B), Y_L(B)', 'agent(A,B), pred(A,C), close(B,C), ltY(C,B)' ], predColl=self.predColl, fast=True), use_neg=False, Fam='eq', count_type=count_type, count_th=100, arg_funcs=[]) self.predColl.add_pred( dname='en_noop', arguments=[], variables=[], pFunc=DNF( 'en_noop', terms=1, init=[-1, .1, -1, .1], sig=2, #init_terms=['agent(A,B), predRL(A,C), ltY(C,B)','agent(A,B), predLR(A,C), ltY(B,C)' ], init_terms=['en_right()', 'en_left()'], predColl=self.predColl, fast=True), use_neg=False, Fam='eq', count_type=count_type, count_th=100) pt = [('and', 'not en_noop()')] self.predColl.add_pred(dname='action_noop', arguments=[], variables=['N', 'Y', 'Y'], pFunc=DNF('action_noop', terms=8, init=w, sig=2, predColl=self.predColl, fast=False, post_terms=pt), use_neg=True, Fam='eq', exc_preds=excs, count_type=count_type, arg_funcs=['M']) pt = [('and', 'not en_up()')] self.predColl.add_pred(dname='action_up', arguments=[], variables=['N', 'Y', 'Y'], pFunc=DNF('action_up', terms=8, init=w, sig=2, predColl=self.predColl, fast=False, post_terms=pt), use_neg=True, Fam='eq', exc_preds=excs, count_type=count_type, count_th=100, arg_funcs=['M']) pt = [('and', 'not en_right()')] self.predColl.add_pred(dname='action_right', arguments=[], variables=['N', 'Y', 'Y'], pFunc=DNF('action_right', terms=8, init=w, sig=2, predColl=self.predColl, fast=False, post_terms=pt), use_neg=True, Fam='eq', exc_preds=excs, count_type=count_type, arg_funcs=['M']) pt = [('and', 'not en_left()')] self.predColl.add_pred(dname='action_left', arguments=[], variables=['N', 'Y', 'Y'], pFunc=DNF('action_left', terms=8, init=w, sig=2, predColl=self.predColl, fast=False, post_terms=pt), use_neg=True, Fam='eq', exc_preds=excs, count_type=count_type, arg_funcs=['M']) pt = [('and', 'not en_down()')] self.predColl.add_pred(dname='action_down', arguments=[], variables=['N', 'Y', 'Y'], pFunc=DNF('action_down', terms=8, init=w, sig=2, predColl=self.predColl, fast=False, post_terms=pt), use_neg=True, Fam='eq', exc_preds=excs, count_type=count_type, arg_funcs=['M']) self.predColl.initialize_predicates() self.bg = Background(self.predColl) self.bg.add_backgroud('X_U', ('%d' % 0, )) self.bg.add_backgroud('X_D', ('%d' % (self.DIM1 - 1), )) self.bg.add_backgroud('Y_L', ('%d' % 0, )) self.bg.add_backgroud('Y_R', ('%d' % (self.DIM2 - 1), )) for i in range(self.DIM1): self.bg.add_backgroud('sameX', ( '%d' % i, '%d' % i, )) for i in range(self.DIM2): self.bg.add_backgroud('sameY', ( '%d' % i, '%d' % i, )) for i in range(self.DIM2): for j in range(self.DIM2): if i < j: self.bg.add_backgroud('ltY', ( '%d' % i, '%d' % j, )) if abs(i - j) < 2: self.bg.add_backgroud('close', ( '%d' % i, '%d' % j, )) print('displaying config setting...') self.mdl = ILPRLEngine(args=self.args, predColl=self.predColl, bgs=None) def run(self, states): bs = tf.shape(states[0])[0] self.X0 = OrderedDict() for p in self.predColl.outpreds: tmp = tf.expand_dims( tf.constant(self.bg.get_X0(p.oname), tf.float32), 0) self.X0[p.oname] = tf.tile(tmp, [bs, 1]) self.X0['agent'] = states[0] self.X0['predLR'] = states[1] self.X0['predRL'] = states[2] self.X0['food'] = states[3] self.Xo, L3 = self.mdl.getTSteps(self.X0) xo_r = {} for p in self.Xo: xo_r[p] = tf.reshape(self.Xo[p], [-1] + [ len(self.predColl.constants[i]) for i in self.predColl[p].arguments ]) move = [ self.Xo[i] for i in [ 'action_noop', 'action_up', 'action_right', 'action_left', 'action_down' ] ] # move = [ 1.0-self.Xo[i] for i in ['en_noop','en_up','en_right','en_left', 'en_down']] # move[0] = tf.zeros_like( move[0] )-5 return tf.concat(move, -1), self.X0, self.Xo, xo_r
class ILP_MODEL(object): def __init__(self, num_box, is_train=True): self.num_box = num_box self.args = self.load_ilp_config() self.define_preds() self.Xo = None self.X0 = None def load_ilp_config(self): param = dotdict({}) param.BS = 1 param.T = 1 param.W_DISP_TH = .1 param.GPU = 1 return param def define_preds(self): Box = ['%d' % i for i in range(self.num_box + 1)] Ds = ['%d' % i for i in range(self.num_box + 1)] self.Constants = dict({'C': Box, 'D': Ds}) self.predColl = PredCollection(self.Constants) self.predColl.add_pred(dname='posH', arguments=['C', 'D']) self.predColl.add_pred(dname='posV', arguments=['C', 'D']) self.predColl.add_pred(dname='is_one', arguments=['D']) self.predColl.add_pred(dname='lt', arguments=['D', 'D']) self.predColl.add_pred(dname='inc', arguments=['D', 'D']) self.predColl.add_pred(dname='same', arguments=['C', 'C']) self.predColl.add_pred(dname='is_floor', arguments=['C']) self.predColl.add_pred(dname='is_blue', arguments=['C']) self.predColl.add_pred(dname='same_col', arguments=['C', 'C'], variables=['D'], pFunc=DNF('same_col', terms=1, init=[1, .1, -1, .1], sig=2, init_terms=['posH(A,C), posH(B,C)'], predColl=self.predColl, fast=True), use_neg=False, Fam='eq') self.predColl.add_pred( dname='above', arguments=['C', 'C'], variables=['D', 'D'], pFunc=DNF( 'above', terms=1, init=[1, .1, -1, .1], sig=2, init_terms=['same_col(A,B), posV(A,C), posV(B,D), lt(D,C)'], predColl=self.predColl, fast=True), use_neg=False, Fam='eq') self.predColl.add_pred( dname='below', arguments=['C', 'C'], variables=['D', 'D'], pFunc=DNF( 'below', terms=1, init=[1, .1, -1, .1], sig=2, init_terms=['same_col(A,B), posV(A,C), posV(B,D), lt(C,D)'], predColl=self.predColl, fast=True), use_neg=False, Fam='eq') self.predColl.add_pred( dname='on', arguments=['C', 'C'], variables=['D', 'D'], pFunc=DNF('on', terms=2, init=[1, .1, -1, .1], sig=2, init_terms=[ 'is_floor(B), posV(A,C), is_one(C)', 'same_col(A,B), posV(A,C), posV(B,D), inc(D,C)' ], predColl=self.predColl, fast=True), use_neg=False, Fam='eq') self.predColl.add_pred(dname='isCovered', arguments=['C'], variables=['C'], pFunc=DNF( 'isCovered', terms=1, init=[1, .1, -1, .1], sig=2, init_terms=['on(B,A), not is_floor(A)'], predColl=self.predColl, fast=True), use_neg=True, Fam='eq') self.predColl.add_pred( dname='lower', oname='lower', arguments=['C', 'C'], variables=['D', 'D'], pFunc=DNF('lower', terms=1, init=[1, .1, -1, .1], sig=2, init_terms=['posV(A,C), posV(B,D), lt(C,D)'], predColl=self.predColl, fast=True), use_neg=True, Fam='eq') self.predColl.add_pred( dname='moveable', oname='moveable', arguments=['C', 'C'], variables=[], pFunc=DNF( 'moveable', terms=1, init=[1, .1, -1, .1], sig=2, init_terms=[ 'not isCovered(A), not isCovered(B), not same(A,B), not is_floor(A), not on(A,B), not is_blue(A), not is_floor(B), not lower(B,A)' ], predColl=self.predColl, fast=True), use_neg=True, Fam='eq') pt = [ ('and', 'moveable(A,B)'), ] self.predColl.add_pred(dname='move', oname='move', arguments=['C', 'C'], variables=[], pFunc=DNF('move', terms=4, init=[1, -1, -1, .1], sig=2, predColl=self.predColl, fast=False, post_terms=pt), use_neg=True, Fam='eq', exc_preds=[], exc_conds=[('*', 'rep1')]) self.predColl.initialize_predicates() self.bg = Background(self.predColl) #define backgrounds self.bg.add_backgroud('is_floor', ('0', )) self.bg.add_backgroud('is_one', ('1', )) self.bg.add_backgroud('is_blue', ('1', )) for i in range(self.num_box + 1): self.bg.add_backgroud('same', ('%d' % i, '%d' % i)) if '%d' % (i + 1) in Ds: self.bg.add_backgroud('inc', ('%d' % i, '%d' % (i + 1))) for i in range(self.num_box + 1): for j in range(self.num_box + 1): if i < j: self.bg.add_backgroud('lt', ('%d' % i, '%d' % (j))) print('displaying config setting...') self.mdl = ILPRLEngine(args=self.args, predColl=self.predColl, bgs=None) def run(self, state_in_x, state_in_y): bs = tf.shape(state_in_x)[0] self.X0 = OrderedDict() for p in self.predColl.outpreds: tmp = tf.expand_dims( tf.constant(self.bg.get_X0(p.oname), tf.float32), 0) self.X0[p.oname] = tf.tile(tmp, [bs, 1]) flx = np.zeros((self.num_box + 1, self.num_box + 1), dtype=np.float32) flx[0, :] = 1 xx = tf.pad(state_in_x, [[0, 0], [1, 0], [1, 0]]) + flx[np.newaxis, :, :] self.X0['posH'] = tf.reshape(xx, [-1, (self.num_box + 1)**2]) fly = np.zeros((self.num_box + 1, self.num_box + 1), dtype=np.float32) fly[0, 0] = 1 yy = tf.pad(state_in_y, [[0, 0], [1, 0], [1, 0]]) + fly[np.newaxis, :, :] self.X0['posV'] = tf.reshape(yy, [-1, (self.num_box + 1)**2]) self.Xo, L3 = self.mdl.getTSteps(self.X0) return self.Xo
class ILP_MODEL(object): def __init__(self, num_box, is_train=True): self.num_box = num_box self.args = self.load_ilp_config() self.define_preds() self.Xo = None self.X0 = None self.has_key = None def reset(self): self.has_key = None def load_ilp_config(self): param = dotdict({}) param.BS = 1 param.T = 1 param.W_DISP_TH = .1 param.GPU = 1 return param def define_preds(self): nCOLOR = 10 Colors = [i for i in range(nCOLOR)] Pos = [i for i in range(12)] # Ds = ['%d'%i for i in range(self.num_box)] self.Constants = dict({ 'C': Colors, 'P': Pos, 'Q': Pos }) #, 'N':['%d'%i for i in range(6)] }) self.predColl = PredCollection(self.Constants) self.predColl.add_pred(dname='color', arguments=['P', 'Q', 'C']) for i in range(nCOLOR): self.predColl.add_pred(dname='is%d' % i, arguments=['C']) # self.predColl.add_pred(dname='Pos0' ,arguments=['P']) # self.predColl.add_pred(dname='Pos11' ,arguments=['P']) self.predColl.add_pred(dname='has_key', arguments=['C']) self.predColl.add_pred(dname='neq', arguments=['C', 'C']) # self.predColl.add_pred(dname='lt' ,arguments=['P','P']) # self.predColl.add_pred(dname='incp' ,arguments=['P','P']) self.predColl.add_pred(dname='incq', arguments=['Q', 'Q']) self.predColl.add_pred(dname='isBK', arguments=['P', 'Q'], variables=['C'], pFunc=DNF('isBK', terms=1, init=[1, .1, -1, .1], sig=2, init_terms=['color(A,B,C), is0(C)'], predColl=self.predColl, fast=True), use_neg=False, Fam='eq') self.predColl.add_pred(dname='isAgent', arguments=['P', 'Q'], variables=['C'], pFunc=DNF('isAgent', terms=1, init=[1, .1, -1, .1], sig=2, init_terms=['color(A,B,C), is1(C)'], predColl=self.predColl, fast=True), use_neg=False, Fam='eq') self.predColl.add_pred(dname='isGem', arguments=['P', 'Q'], variables=['C'], pFunc=DNF('isGem', terms=1, init=[1, .1, -1, .1], sig=2, init_terms=['color(A,B,C), is2(C)'], predColl=self.predColl, fast=True), use_neg=False, Fam='eq') self.predColl.add_pred( dname='isItem', arguments=['P', 'Q'], variables=[], pFunc=DNF('isItem', terms=1, init=[1, .1, -1, .1], sig=2, init_terms=['not isBK(A,B), not isAgent(A,B)'], predColl=self.predColl, fast=True), use_neg=True, Fam='eq') # self.predColl.add_pred(dname='sameColor' ,arguments=['P','P','P','P'], variables=['C'] ,pFunc = # DNF('sameColor',terms=1,init=[1,.1,-1,.1],sig=2,init_terms=['color(A,B,E), color(C,D,E)'],predColl=self.predColl,fast=True) , use_neg=False, Fam='or') self.predColl.add_pred( dname='locked', arguments=['P', 'Q'], variables=['Q'], pFunc=DNF('locked', terms=1, init=[1, .1, -1, .1], sig=2, init_terms=['isItem(A,B), isItem(A,C), incq(B,C)'], predColl=self.predColl, fast=True), use_neg=False, Fam='eq') self.predColl.add_pred( dname='isLock', arguments=['P', 'Q'], variables=['Q'], pFunc=DNF('isLock', terms=1, init=[1, .1, -1, .1], sig=2, init_terms=['isItem(A,B), isItem(A,C), incq(C,B)'], predColl=self.predColl, fast=True), use_neg=False, Fam='eq') # self.predColl.add_pred(dname='locked1' ,arguments=['P','P'], variables=['P'] ,pFunc = # DNF('locked1',terms=1,init=[1,.1,-1,.1],sig=2,init_terms=['isItem(A,B), isItem(C,B), inc(C,B)'],predColl=self.predColl,fast=True) , use_neg=False, Fam='or') #self.predColl.add_pred(dname='LockColor' ,arguments=['C','C'], variables=['P','Q','Q'] ,pFunc = # DNF('LockColor',terms=1,init=[1,.1,-1,.1],sig=2,init_terms=['isItem(C,D), isItem(C,E), color(C,D,A), color(C,E,B), incq(D,E)'],predColl=self.predColl,fast=True) , use_neg=False, Fam='eq') #self.predColl.add_pred(dname='loosekey' ,arguments=['P','Q'], variables=[] ,pFunc = # DNF('loosekey',terms=1,init=[1,.1,-1,.1],sig=2,init_terms=['isItem(A,B), not isLock(A,B), not locked(A,B)'],predColl=self.predColl,fast=True) , use_neg=True, Fam='eq') #self.predColl.add_pred(dname='key_color' ,arguments=['P','Q','C'], variables=['Q'] ,pFunc = ## DNF('key_color',terms=1,init=[1,.1,-1,.1],sig=2,init_terms=['isItem(A,B), isLock(A,B), color(A,B,C)', # 'isItem(A,B), locked(A,D), incq(D,B), color(A,D,C)' ],predColl=self.predColl,fast=True) , use_neg=True, Fam='eq') #self.predColl.add_pred(dname='inGoal' ,arguments=['C'], variables=['C'] ,pFunc = # DNF('inGoal',terms=2,init=[1,.1,-1,.1],sig=2,init_terms=['is2(A)' , 'inGoal(B), LockColor(B,A)'],predColl=self.predColl,fast=True) , use_neg=False, Fam='or') # self.predColl.add_pred(dname='valid',oname='valid',arguments=['P','P'] , variables=['C'] ,pFunc = # DNF('valid',terms=2,init_terms=['loosekey(A,B)', 'isItem(A,B), isLock(A,B), color(A,B,C), has_key(C)'],sig=2,predColl=self.predColl,fast=True ) , use_neg=True, Fam='eq') #,post_terms=[('and','isItem(A,B)')] ) # self.predColl.add_pred(dname='move',oname='move',arguments=['P','P'] , variables=['C'] ,pFunc = # DNF('move',terms=4,init=[-1,.1,-1,.1],sig=2,predColl=self.predColl,fast=False,post_terms=[('and','not isBK(A,B)')]) , use_neg=True, Fam='eq') # self.predColl.add_pred(dname='move',oname='move',arguments=['P','P'] , variables=['C','C'] ,pFunc = # DNF('move',terms=8,init=[1,-1,-2,.3],sig=1,predColl=self.predColl,fast=False,post_terms=[('and','isItem(A,B)')]) , use_neg=True, Fam='eq', exc_preds=['move']+[ 'is%d'%i for i in range(nCOLOR)],exc_conds=[('*','rep1') ]) # DNF('move',terms=5,init=[1,-3,-1,.1],sig=2,predColl=self.predColl,fast=False,post_terms=[('and','isItem(A,B)')]) , use_neg=False, Fam='eq', exc_preds=['move']+[ 'is%d'%i for i in range(nCOLOR)],exc_conds=[('*','rep1') ]) # DNF('move',terms=10,init=[1,-1,-1,.1],sig=2,predColl=self.predColl,fast=False,post_terms=[('and','isItem(A,B)'),('or','loosekey(A,B)')]) , use_neg=True, Fam='eq', exc_preds=['move', 'color']) # DNF('move',terms=5,init_terms=['color(A,B,C), inGoal(C), loosekey(A,B)','key_color(A,B,D), color(A,B,C), inGoal(D), isLock(A,B), inGoal(D), LockColor(D,C), has_key(C)'],sig=2,predColl=self.predColl,fast=True ) , use_neg=True, Fam='eq') # DNF('move',terms=2,init_terms=['loosekey(A,B)', 'isLock(A,B), color(A,B,C), has_key(C)'],sig=2,predColl=self.predColl,fast=True ) , use_neg=True, Fam='eq') # for i in range(10): # self.predColl.add_pred(dname='aux%d'%i,oname='aux%d'%i,arguments=['P','Q'] , variables=['C','C'] ,pFunc = # CONJ('aux%d'%i,init=[-1,1],init_terms=[],sig=1,predColl=self.predColl,post_terms=[]) , use_neg=False, Fam='eq', exc_preds=['move']+[ '%d'%i for i in range(nCOLOR)]+['aux%d'%i for i in range(10)],exc_conds=[('*','rep1') ]) # it=[] #self.predColl.add_pred(dname='Q',oname='Q',arguments=['P','Q'] , variables=['P', 'C' ] ,pFunc = # DNF('Q',terms=6,init=[-1,.1,-1,1],init_terms=[],sig=1,predColl=self.predColl ) , use_neg=True, Fam='eq', exc_preds=['move','Q']+[ 'is%d'%i for i in range(nCOLOR)],exc_conds=[('*','rep1') ]) #self.predColl.add_pred(dname='move',oname='move',arguments=['P','Q'] , variables=['C' ] ,pFunc = # DNF('move',terms=6,init=[1,-1,-2,1],init_terms=[],sig=2,predColl=self.predColl,post_terms=[('and','isItem(A,B)'),('and','inGoal(C)') ]) , use_neg=True, Fam='eq', exc_preds=['move','Q']+[ 'is%d'%i for i in range(nCOLOR)],exc_conds=[('*','rep1') ]) pt = [('and', 'isItem(A,B)')] pt = [] self.predColl.add_pred(dname='move', oname='move', arguments=['P', 'Q'], variables=['C'], pFunc=DNF('move', terms=6, init=[-1, .1, -1, .1], init_terms=[], sig=1, predColl=self.predColl, post_terms=pt), use_neg=True, Fam='eq', exc_preds=['move', 'Q'] + ['is%d' % i for i in range(nCOLOR)], exc_conds=[('*', 'rep1')]) # for i in range(5): # if i==0: # tp="eq" # # it=['color(A,B,C), inGoal(C), loosekey(A,B)'] # else: # tp="or" # it=[] # vvv=1 # vv=-1 # Vars = ['C','C' ] # if i==5: # Vars=['C','C'] # vvv=2 # vv=-1 # # if i==1: # # it=['key_color(A,B,D), color(A,B,C), isLock(A,B), inGoal(D), LockColor(D,C), has_key(C)'] # self.predColl.add_pred(dname='move%d'%i,oname='move',arguments=['P','Q'] , variables=Vars ,pFunc = # CONJ('move%d'%i,init=[vv,vvv],init_terms=it,sig=1,predColl=self.predColl,post_terms=[('and','isItem(A,B)')]) , use_neg=False, Fam=tp, exc_preds=['move']+[ '%d'%i for i in range(nCOLOR)],exc_conds=[('*','rep1') ]) # self.predColl.add_pred(dname='move2',oname='move',arguments=['P','P'] , variables=['C'] ,pFunc = # CONJ('move2',init=[-1,.1],sig=2,predColl=self.predColl,fast=False) , use_neg=True, Fam='eq', exc_preds=['move'],exc_conds=[('*','rep1') ]) # MLP('move',dims=[64,64,1], acts=[relu1,relu1,tf.nn.sigmoid] ) , use_neg=False, Fam='eq') # DNF('move',terms=10,init=[1,-1,-1,.1],sig=2,predColl=self.predColl,fast=False,post_terms=[('and','isItem(A,B)'),('or','loosekey(A,B)')]) , use_neg=True, Fam='eq', exc_preds=['move', 'color']) # self.predColl.add_pred(dname='move',oname='move',arguments=['P','P'] , variables=['C'] ,pFunc = # DNF('move',terms=2,init_terms=['loosekey(A,B)', 'isLock(A,B), color(A,B,C), has_key(C)'],sig=2,predColl=self.predColl,fast=True ) , use_neg=True, Fam='eq') # self.predColl.add_pred(dname='has_key' ,arguments=['C'], variables=['P','P'] ,pFunc = # DNF('has_key',terms=1,init=[1,.1,-1,.1],sig=2,init_terms=['loosekey(B,C), move(B,C), color(B,C,A)'],predColl=self.predColl,fast=True) , use_neg=True, Fam='or') # self.predColl.add_pred(dname='enableLeft' ,arguments=['P','P'], variables=['P'] ,pFunc = # DNF('enableLeft',terms=1,init=[1,.1,-1,.1],sig=2,init_terms=['agent(A,B), inc(C,A), not pos0(C)'],predColl=self.predColl,fast=True) , use_neg=True, Fam='or') # self.predColl.add_pred(dname='enableRight' ,arguments=['P','P'], variables=['P'] ,pFunc = # DNF('enableRight',terms=1,init=[1,.1,-1,.1],sig=2,init_terms=['agent(A,B), not locked(A,B), not Pos0(A)'],predColl=self.predColl,fast=True) , use_neg=True, Fam='or') # self.predColl.add_pred(dname='enableLeft' ,arguments=['P','P'], variables=['P'] ,pFunc = # DNF('enableLeft',terms=1,init=[1,.1,-1,.1],sig=2,init_terms=['agent(A,B), not locked(A,B), not Pos0(A)'],predColl=self.predColl,fast=True) , use_neg=True, Fam='or') # self.predColl.add_pred(dname='enableLeft' ,arguments=['P','P'], variables=['P'] ,pFunc = # DNF('enableLeft',terms=1,init=[1,.1,-1,.1],sig=2,init_terms=['agent(A,B), not locked(A,B), not Pos0(A)'],predColl=self.predColl,fast=True) , use_neg=True, Fam='or') # self.predColl.add_pred(dname='moveLeft',oname='moveLeft',arguments=[] , variables=['P','P','C'] ,pFunc = # DNF('moveLeft',terms=6,init=[1,.1,-1,.1],sig=2,predColl=self.predColl,fast=False) , use_neg=True, Fam='eq') # self.predColl.add_pred(dname='moveRight',oname='moveRight',arguments=[] , variables=['P','P','C'] ,pFunc = # DNF('moveRight',terms=6,init=[1,.1,-1,.1],sig=2,predColl=self.predColl,fast=False) , use_neg=True, Fam='eq') # self.predColl.add_pred(dname='moveLeft',oname='moveLeft',arguments=[] , variables=['P','P','C'] ,pFunc = # DNF('moveLeft',terms=6,init=[1,.1,-1,.1],sig=2,predColl=self.predColl,fast=False) , use_neg=True, Fam='eq') # self.predColl.add_pred(dname='moveLeft',oname='moveLeft',arguments=[] , variables=['P','P','C'] ,pFunc = # DNF('moveLeft',terms=6,init=[1,.1,-1,.1],sig=2,predColl=self.predColl,fast=False) , use_neg=True, Fam='eq') self.predColl.initialize_predicates() self.bg = Background(self.predColl) #define backgrounds self.bg.add_backgroud('Pos0', (0, )) self.bg.add_backgroud('Pos11', (11, )) for i in range(nCOLOR): self.bg.add_backgroud('is%d' % i, (i, )) for j in range(nCOLOR): if i != j: self.bg.add_backgroud('neq', (i, i)) for i in range(12): self.bg.add_backgroud('eq', (i, i)) for j in range(12): if i < j: self.bg.add_backgroud('lt', (i, j)) if j == i + 1: # self.bg.add_backgroud('incp',(i,j) ) self.bg.add_backgroud('incq', (i, j)) print('displaying config setting...') self.mdl = ILPRLEngine(args=self.args, predColl=self.predColl, bgs=None) def run(self, state): has_key, color = state bs = tf.shape(has_key)[0] self.X0 = OrderedDict() for p in self.predColl.outpreds: tmp = tf.expand_dims( tf.constant(self.bg.get_X0(p.oname), tf.float32), 0) self.X0[p.oname] = tf.tile(tmp, [bs, 1]) self.X0['color'] = color self.X0['has_key'] = has_key # if self.has_key is not None: # self.X0['has_key'] = has_key self.Xo, L3 = self.mdl.getTSteps(self.X0) # self.has_key = self.X0['has_key'] return self.Xo["move"] def runtest(self, state): has_key, color = state bs = tf.shape(has_key)[0] self.X0 = OrderedDict() for p in self.predColl.outpreds: tmp = tf.expand_dims( tf.constant(self.bg.get_X0(p.oname), tf.float32), 0) self.X0[p.oname] = tf.tile(tmp, [bs, 1]) # if self.has_key is not None: # self.X0['has_key'] = has_key self.X0['color'] = color self.X0['has_key'] = has_key self.Xo, L3 = self.mdl.getTSteps(self.X0) # self.has_key = self.X0['has_key'] L1 = 0 L2 = 0 def get_pen(x): return tf.nn.relu(2 * x - 2) - 2 * tf.nn.relu(2 * x - 1) + tf.nn.relu( 2 * x) # for p in self.predColl.preds: # vs = tf.get_collection( p.dname) # # for wi in vs: # if '_AND' in wi.name: # wi = p.pFunc.conv_weight(wi) # # L2 += tf.reduce_mean( wi*(1.0-wi)) # L2 += tf.reduce_mean( get_pen(wi)) # s = tf.reduce_sum( wi,-1) # # L1 += tf.reduce_mean( tf.nn.relu( s-7) ) # s = tf.reduce_max( wi,-1) # L1 += tf.reduce_mean( tf.nn.relu( 1-s) ) return self.Xo, L2 * 0
class ILP_MODEL(object): def __init__(self, num_box,is_train=True): self.num_box = num_box self.args = self.load_ilp_config() self.define_preds() self.Xo=None self.X0=None self.has_key=None def reset(self): self.has_key=None def load_ilp_config(self): param = dotdict({}) param.BS = 1 param.T = 1 param.W_DISP_TH = .1 param.GPU = 1 return param def define_preds(self): nCOLOR = 10 Colors=[i for i in range(nCOLOR)] Pos = [i for i in range(12)] # Ds = ['%d'%i for i in range(self.num_box)] self.Constants = dict( {'C':Colors,'P':Pos,'Q':Pos}) #, 'N':['%d'%i for i in range(6)] }) self.predColl = PredCollection (self.Constants) self.predColl.add_pred(dname='color' ,arguments=['P','Q','C']) for i in range(nCOLOR): self.predColl.add_pred(dname='is%d'%i ,arguments=['C']) self.predColl.add_pred(dname='has_key' ,arguments=['C'] ) self.predColl.add_pred(dname='neq' ,arguments=['C','C']) self.predColl.add_pred(dname='incq' ,arguments=['Q','Q']) self.predColl.add_pred(dname='isBK' ,arguments=['P','Q'], variables=['C'] ,pFunc = DNF('isBK',terms=1,init=[1,.1,-1,.1],sig=2,init_terms=['color(A,B,C), is0(C)'],predColl=self.predColl,fast=True) , use_neg=False, Fam='eq') self.predColl.add_pred(dname='isAgent' ,arguments=['P','Q'], variables=['C'] ,pFunc = DNF('isAgent',terms=1,init=[1,.1,-1,.1],sig=2,init_terms=['color(A,B,C), is1(C)'],predColl=self.predColl,fast=True) , use_neg=False, Fam='eq') self.predColl.add_pred(dname='isGem' ,arguments=['P','Q'], variables=['C'] ,pFunc = DNF('isGem',terms=1,init=[1,.1,-1,.1],sig=2,init_terms=['color(A,B,C), is2(C)'],predColl=self.predColl,fast=True) , use_neg=False, Fam='eq') self.predColl.add_pred(dname='isItem' ,arguments=['P','Q'], variables=[] ,pFunc = DNF('isItem',terms=1,init=[1,.1,-1,.1],sig=2,init_terms=['not isBK(A,B), not isAgent(A,B)'],predColl=self.predColl,fast=True) , use_neg=True, Fam='eq') pt=[] self.predColl.add_pred(dname='move',oname='move',arguments=['P','Q'] , variables=['C' ] ,pFunc = DNF('move',terms=6,init=[-1,.1,-1,.1],init_terms=[],sig=1,predColl=self.predColl,post_terms=pt) , use_neg=True, Fam='eq', exc_preds=['move','Q']+[ 'is%d'%i for i in range(nCOLOR)],exc_conds=[('*','rep1') ]) self.predColl.initialize_predicates() self.bg = Background( self.predColl ) #define backgrounds self.bg.add_backgroud('Pos0',(0,) ) self.bg.add_backgroud('Pos11',(11,) ) for i in range(nCOLOR): self.bg.add_backgroud('is%d'%i , (i,)) for j in range(nCOLOR): if i!=j: self.bg.add_backgroud('neq',(i,i) ) for i in range(12): self.bg.add_backgroud('eq',(i,i) ) for j in range(12): if i<j: self.bg.add_backgroud('lt',(i,j) ) if j==i+1: # self.bg.add_backgroud('incp',(i,j) ) self.bg.add_backgroud('incq',(i,j) ) print('displaying config setting...') self.mdl = ILPRLEngine( args=self.args ,predColl=self.predColl ,bgs=None ) def run( self, state): has_key,color = state bs= tf.shape(has_key)[0] self.X0=OrderedDict() for p in self.predColl.outpreds: tmp = tf.expand_dims( tf.constant( self.bg.get_X0(p.oname) ,tf.float32) , 0) self.X0[p.oname] = tf.tile( tmp , [bs,1] ) self.X0['color'] = color self.X0['has_key'] = has_key # if self.has_key is not None: # self.X0['has_key'] = has_key self.Xo,L3 = self.mdl.getTSteps(self.X0) # self.has_key = self.X0['has_key'] return self.Xo["move"] def runtest( self, state): has_key,color = state bs= tf.shape(has_key)[0] self.X0=OrderedDict() for p in self.predColl.outpreds: tmp = tf.expand_dims( tf.constant( self.bg.get_X0(p.oname) ,tf.float32) , 0) self.X0[p.oname] = tf.tile( tmp , [bs,1] ) # if self.has_key is not None: # self.X0['has_key'] = has_key self.X0['color'] = color self.X0['has_key'] = has_key self.Xo,L3 = self.mdl.getTSteps(self.X0) # self.has_key = self.X0['has_key'] L1=0 L2=0 def get_pen(x): return tf.nn.relu(2*x-2)-2*tf.nn.relu(2*x-1)+tf.nn.relu(2*x) # for p in self.predColl.preds: # vs = tf.get_collection( p.dname) # # for wi in vs: # if '_AND' in wi.name: # wi = p.pFunc.conv_weight(wi) # # L2 += tf.reduce_mean( wi*(1.0-wi)) # L2 += tf.reduce_mean( get_pen(wi)) # s = tf.reduce_sum( wi,-1) # # L1 += tf.reduce_mean( tf.nn.relu( s-7) ) # s = tf.reduce_max( wi,-1) # L1 += tf.reduce_mean( tf.nn.relu( 1-s) ) return self.Xo,L2*0
class ILP_MODEL(object): def __init__(self, DIM1,DIM2,F_COUNT=3): self.DIM1=DIM1 self.DIM2=DIM2 self.F_COUNT=F_COUNT self.args = self.load_ilp_config() self.define_preds() self.Xo=None self.X0=None def load_ilp_config(self): param = dotdict({}) param.BS = 1 param.T = 1 param.W_DISP_TH = .2 param.GPU = 1 return param def define_preds(self): X = ['%d'%i for i in range(self.DIM1)] Y = ['%d'%i for i in range(self.DIM2)] self.Constants = dict( {'N':X,'Y':Y}) self.predColl = PredCollection (self.Constants) # self.predColl.add_pred(dname='agentX' ,arguments=['N']) # self.predColl.add_pred(dname='agentY' ,arguments=['Y']) for i in range(self.DIM1): if i==0 or i==self.DIM1-1: self.predColl.add_pred(dname='X_%d'%i,arguments=['N']) for i in range(self.DIM2): if i==0 or i==self.DIM2-1: self.predColl.add_pred(dname='Y_%d'%i,arguments=['Y']) # self.predColl.add_pred(dname='f_1',arguments=['N','Y'], variables=[ ],pFunc = # DNF('f_1',init_terms=['agentX(A), agentY(B)' ],predColl=self.predColl,fast=True) , use_neg=False, Fam='eq') self.predColl.add_pred(dname='f_1',arguments=['N','Y']) self.predColl.add_pred(dname='f_2',arguments=['N','Y']) self.predColl.add_pred(dname='f_3',arguments=['N','Y']) self.predColl.add_pred(dname='f_4',arguments=['N','Y']) self.predColl.add_pred(dname='ltY',arguments=['Y','Y']) self.predColl.add_pred(dname='close',arguments=['Y','Y']) count_type = 'max' excs = ['action_noop', 'action_up', 'action_down','action_left','action_right', 'Q'] w = [-1,.1,-2,.1] Alicount_type = None self.predColl.add_pred(dname='en_up' ,arguments=[], variables=[ 'N','Y', 'Y'],pFunc = DNF('en_up',terms=1,init=[-1,.1,-1,.1],sig=2, init_terms=['f_1(A,B), X_0(A)','f_1(A,B), f_3(M_A,C), close(B,C), ltY(B,C)', 'f_1(A,B), f_2(M_A,C), close(B,C), ltY(C,B)' ], predColl=self.predColl,fast=True) , use_neg=False, Fam='eq',count_type=count_type, count_th=100,arg_funcs=['M']) self.predColl.add_pred(dname='en_down' ,arguments=[ ], variables=['N','Y', 'Y'],pFunc = DNF('en_down',terms=1,init=[-1,.1,-1,.1],sig=2, init_terms=['f_1(A,B), X_%d(A)'%(self.DIM1-1) , 'f_1(A,B), f_3(P_A,C), close(B,C), ltY(B,C)', 'f_1(A,B), f_2(P_A,C), close(B,C), ltY(C,B)' ] ,predColl=self.predColl,fast=True) , use_neg=False, Fam='eq',count_type=count_type, count_th=100,arg_funcs=['P']) self.predColl.add_pred(dname='en_right' ,arguments=[ ], variables=['N','Y','Y'],pFunc = DNF('en_right',terms=1,init=[-1,.1,-1,.1],sig=2, init_terms=['f_1(A,B), Y_%d(B)'%(self.DIM2-1) ,'f_1(A,B), f_3(A,C), close(B,C), ltY(B,C)' ,'f_1(A,B), f_2(A,C), close(B,C), ltY(B,C)' ], predColl=self.predColl,fast=True) , use_neg=False, Fam='eq',count_type=count_type, count_th=100,arg_funcs=[ ]) self.predColl.add_pred(dname='en_left' ,arguments=[ ], variables=['N','Y','Y'],pFunc = DNF('en_left',terms=1,init=[-1,.1,-1,.1],sig=2, init_terms=['f_1(A,B), Y_%d(B)'%0, 'f_1(A,B), f_2(A,C), close(B,C), ltY(C,B)','f_1(A,B), f_3(A,C), close(B,C), ltY(C,B)' ], predColl=self.predColl,fast=True) , use_neg=False, Fam='eq',count_type=count_type, count_th=100,arg_funcs=[ ]) self.predColl.add_pred(dname='en_noop' ,arguments=[ ], variables=[],pFunc = DNF('en_noop',terms=1,init=[-1,.1,-1,.1],sig=2, #init_terms=['f_1(A,B), f_3(A,C), ltY(C,B)','f_1(A,B), f_2(A,C), ltY(B,C)' ], init_terms=['en_right()','en_left()' ], predColl=self.predColl,fast=True) , use_neg=False, Fam='eq',count_type=count_type, count_th=100) pt = [('and', 'not en_noop()') ] self.predColl.add_pred(dname='action_noop',arguments=[] , variables=['N','Y','Y' ] ,pFunc = DNF('action_noop',terms=8,init=w,sig=2,predColl=self.predColl,fast=False,post_terms=pt) , use_neg=True, Fam='eq' , exc_preds=excs,count_type=count_type,arg_funcs=['M']) pt = [('and', 'not en_up()') ] self.predColl.add_pred(dname='action_up',arguments=[] , variables=['N','Y','Y' ] ,pFunc = DNF('action_up',terms=8,init=w,sig=2,predColl=self.predColl,fast=False,post_terms=pt) , use_neg=True, Fam='eq' , exc_preds=excs,count_type=count_type, count_th=100,arg_funcs=[ 'M']) pt = [('and', 'not en_right()') ] self.predColl.add_pred(dname='action_right',arguments=[] , variables=['N','Y','Y' ] ,pFunc = DNF('action_right',terms=8,init=w,sig=2,predColl=self.predColl,fast=False,post_terms=pt) , use_neg=True, Fam='eq' , exc_preds=excs,count_type=count_type,arg_funcs=['M']) pt = [('and', 'not en_left()') ] self.predColl.add_pred(dname='action_left',arguments=[] , variables=['N','Y', 'Y' ] ,pFunc = DNF('action_left',terms=8,init=w,sig=2,predColl=self.predColl,fast=False,post_terms=pt) , use_neg=True, Fam='eq' , exc_preds=excs,count_type=count_type, arg_funcs=['M']) pt = [('and', 'not en_down()') ] self.predColl.add_pred(dname='action_down',arguments=[] , variables=['N','Y','Y' ] ,pFunc = DNF('action_down',terms=8,init=w,sig=2,predColl=self.predColl,fast=False,post_terms=pt) , use_neg=True, Fam='eq' , exc_preds=excs,count_type=count_type, arg_funcs=['M']) self.predColl.initialize_predicates() self.bg = Background( self.predColl ) #define backgrounds self.bg.add_backgroud('X_%d'%0 ,('%d'%0,) ) self.bg.add_backgroud('X_%d'%(self.DIM1-1) ,('%d'%(self.DIM1-1),) ) self.bg.add_backgroud('Y_%d'%0 ,('%d'%0,) ) self.bg.add_backgroud('Y_%d'%(self.DIM2-1) ,('%d'%(self.DIM2-1),) ) self.bg.add_backgroud('Y_%d'%0 ,('%d'%1,) ) self.bg.add_backgroud('Y_%d'%(self.DIM2-1) ,('%d'%(self.DIM2-2),) ) for i in range(self.DIM2): for j in range(self.DIM2): if i<=j+1: self.bg.add_backgroud('ltY' ,('%d'%i,'%d'%j,) ) if abs(i-j)<3: self.bg.add_backgroud('close' ,('%d'%i,'%d'%j,) ) print('displaying config setting...') self.mdl = ILPRLEngine( args=self.args ,predColl=self.predColl ,bgs=None ) def run( self, states): bs= tf.shape(states[0])[0] self.X0=OrderedDict() for p in self.predColl.outpreds: tmp = tf.expand_dims( tf.constant( self.bg.get_X0(p.oname) ,tf.float32) , 0) self.X0[p.oname] = tf.tile( tmp , [bs,1] ) self.X0['f_1'] = states[0] self.X0['f_2'] = states[1] self.X0['f_3'] = states[2] self.X0['f_4'] = states[3] self.Xo,L3 = self.mdl.getTSteps(self.X0) move = [ self.Xo[i] for i in ['action_noop','action_up','action_right','action_left', 'action_down']] # move[0] = tf.zeros_like( move[0] )-5 return tf.concat(move,-1),self.X0,self.Xo
class Model(object): def __init__(self, config, debug_information=False, is_train=True): self.debug = debug_information self.XO = {} self.pen = None self.config = config self.batch_size = self.config.batch_size self.img_size = self.config.data_info[0] self.c_dim = self.config.data_info[2] self.q_dim = self.config.data_info[3] self.a_dim = self.config.data_info[4] self.conv_info = self.config.conv_info self.acc = 0 self.feat_count = 64 self.ilp_params = None # create placeholders for the input self.img = tf.placeholder( name='img', dtype=tf.float32, shape=[self.batch_size, self.img_size, self.img_size, self.c_dim], ) self.q = tf.placeholder( name='q', dtype=tf.float32, shape=[self.batch_size, self.q_dim], ) self.a = tf.placeholder( name='a', dtype=tf.float32, shape=[self.batch_size, self.a_dim], ) self.is_training = tf.placeholder_with_default(bool(is_train), [], name='is_training') self.build(is_train=is_train) def load_ilp_config(self): parser = argparse.ArgumentParser() batch_size = self.batch_size parser.add_argument('--BS', default=16 * 2, help='Batch Size', type=int) parser.add_argument('--T', default=1, help='Number of forward chain', type=int) parser.add_argument('--MAXTERMS', default=6, help='Maximum number of terms in each clause', type=int) parser.add_argument('--L1', default=0, help='Penalty for maxterm', type=float) parser.add_argument( '--L2', default=0, help='Penalty for distance from binary for weights', type=float) parser.add_argument( '--L3', default=0, help='Penalty for distance from binary for each term', type=float) parser.add_argument('--L2LOSS', default=0, help='Use L2 instead of cross entropy', type=int) parser.add_argument('--SYNC', default=0, help='Synchronized Update', type=int) parser.add_argument('--GPU', default=1, help='Use GPU', type=int) parser.add_argument('--TB', default=0, help='Use Tensorboard', type=int) parser.add_argument('--SEED', default=0, help='Random seed', type=int) self.args_ilp = parser.parse_args() def define_preds(self): nL = 6 nD = 16 D = ['%d' % i for i in range(nD)] self.Constants = dict({'D': D}) self.predColl = PredCollection(self.Constants) self.predColl.add_pred(dname='eq', arguments=['D', 'D']) self.predColl.add_pred(dname='ltD', arguments=['D', 'D', 'D']) self.predColl.add_pred(dname='gtD', arguments=['D', 'D', 'D']) self.predColl.add_pred(dname='left', arguments=['D']) self.predColl.add_pred(dname='button', arguments=['D']) # self.predColl.add_pred(dname='top' ,arguments=['D']) # self.predColl.add_pred(dname='right' ,arguments=['D']) self.predColl.add_pred(dname='obj', arguments=['D']) self.predColl.add_pred(dname='rectangle', arguments=['D']) #instead of color(D,C) we define a set of is_ for i in range(nL): self.predColl.add_pred(dname='is_color_%d' % i, arguments=['D']) # for i in range(nD): # self.predColl.add_pred(dname='is_d_%d'%i ,arguments=['D']) for i in range(self.q_dim): self.predColl.add_pred(dname='is_q_%d' % i, arguments=[]) self.predColl.add_pred( dname='closer', arguments=['D', 'D', 'D'], variables=[], pFunc=DNF('closer', terms=1, init=[1, .1, -1, .1], sig=2, init_terms=['obj(A), obj(B), obj(C), ltD(A,B,C)'], predColl=self.predColl, fast=True), use_neg=False, Fam='or') self.predColl.add_pred( dname='farther', arguments=['D', 'D', 'D'], variables=[], pFunc=DNF('farther', terms=1, init=[1, .1, -1, .1], sig=2, init_terms=['obj(A), obj(B), obj(C), gtD(A,B,C)'], predColl=self.predColl, fast=True), use_neg=False, Fam='or') self.predColl.add_pred(dname='notClosest', arguments=['D', 'D'], variables=['D'], pFunc=DNF('notClosest', terms=3, init=[1, .1, -1, .1], sig=2, init_terms=[ 'closer(A,C,B)', 'not obj(A)', 'not obj(B)', 'eq(A,B)' ], predColl=self.predColl, fast=True, neg=True), use_neg=True, Fam='eq') self.predColl.add_pred(dname='notFarthest', arguments=['D', 'D'], variables=['D'], pFunc=DNF('notFarthest', terms=3, init=[1, .1, -1, .1], sig=2, init_terms=[ 'farther(A,C,B)', 'not obj(A)', 'not obj(B)', 'eq(A,B)' ], predColl=self.predColl, fast=True, neg=True), use_neg=True, Fam='eq') exc = ['CL_%d' % i for i in range(self.a_dim)] self.predColl.add_pred( dname='qa', oname='qa', arguments=['D'], variables=[], pFunc=DNF('qa', predColl=self.predColl, init_terms=[ 'is_q_0(), is_color_0(A)', 'is_q_1(), is_color_1(A)', 'is_q_2(), is_color_2(A)', 'is_q_3(), is_color_3(A)', 'is_q_4(), is_color_4(A)', 'is_q_5(), is_color_5(A)' ], fast=True), use_neg=True, Fam='eq', exc_conds=[('*', 'rep1')], exc_preds=exc) for k in range(0, 10): post_term = [('and', 'qa(A)')] if k == 6: post_term.append(('and', 'not rectangle(A)')) if k == 7: post_term.append(('and', 'rectangle(A)')) post_terms = [] self.predColl.add_pred(dname='CL_%d' % k, oname='CL_%d' % k, arguments=[], variables=['D', 'D'], pFunc=DNF('CL_%d' % k, terms=12, init=[-1, -1, -1, -1], sig=1, predColl=self.predColl, post_terms=post_term), use_neg=True, Fam='eq', exc_preds=exc + ['eq', 'ltD', 'gtD']) self.predColl.initialize_predicates() self.bg = Background(self.predColl) for i in range(nD): self.bg.add_backgroud('eq', ('%d' % i, '%d' % i)) ri, ci = int(i // 4), int(i % 4) Y1 = (ri + 0.5) * 28 + ri**2 X1 = (ci + 0.5) * 28 + ci**2 if Y1 > 64: self.bg.add_backgroud('button', ('%d' % i, )) if X1 < 64: self.bg.add_backgroud('left', ('%d' % i, )) for j in range(nD): rj, cj = int(j // 4), int(j % 4) for k in range(nD): rk, ck = int(k // 4), int(k % 4) Y2 = (rj + 0.5) * 28 + rj**2 X2 = (cj + 0.5) * 28 + cj**2 Y3 = (rk + 0.5) * 28 + rk**2 X3 = (ck + 0.5) * 28 + ck**2 d1 = 1.1 * (X1 - X2)**2 + (Y1 - Y2)**2 d2 = 1.1 * (X1 - X3)**2 + (Y1 - Y3)**2 if (d1 < d2 and i != j and i != k and j != k): self.bg.add_backgroud('ltD', ('%d' % i, '%d' % j, '%d' % k)) if (d1 > d2 and i != j and i != k and j != k): self.bg.add_backgroud('gtD', ('%d' % i, '%d' % j, '%d' % k)) bg_set = [] self.X0 = OrderedDict() for p in self.predColl.outpreds: if p.oname not in bg_set: tmp = tf.expand_dims( tf.constant(self.bg.get_X0(p.oname), tf.float32), 0) self.X0[p.oname] = tf.tile(tmp, [self.batch_size, 1]) print('displaying config setting...') self.mdl = ILPRLEngine(args=self.args_ilp, predColl=self.predColl, bgs=None) def get_feed_dict(self, batch_chunk, step=None, is_training=None): fd = { self.img: batch_chunk['img'], # [B, h, w, c] self.q: batch_chunk['q'], # [B, n] self.a: batch_chunk['a'], # [B, m] } if is_training is not None: fd[self.is_training] = is_training return fd def build(self, is_train=True): n = self.a_dim conv_info = self.conv_info # build loss and accuracy {{{ def build_loss(logits, labels): # Cross-entropy loss loss = tf.nn.softmax_cross_entropy_with_logits( logits=logits, labels=labels) + .02 * self.pen correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1)) self.acc = tf.cast(correct_prediction, tf.float32) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) return tf.reduce_mean(loss), accuracy def concat_coor(o, i, d): coor = tf.tile( tf.expand_dims([float(int(i / d)) / d, (i % d) / d], axis=0), [self.batch_size, 1]) o = tf.concat([o, tf.to_float(coor)], axis=1) return o def CONV(img, q, scope='CONV'): with tf.variable_scope(scope) as scope: log.warn(scope.name) conv_1 = conv2d(img, conv_info[0], is_train, s_h=3, s_w=3, name='conv_1', batch_norm=True, activation_fn=tf.nn.relu) conv_2 = conv2d(conv_1, conv_info[1], is_train, s_h=3, s_w=3, name='conv_2', batch_norm=True, activation_fn=tf.nn.relu) conv_3 = conv2d(conv_2, conv_info[2], is_train, name='conv_3', batch_norm=True, activation_fn=tf.nn.relu) conv_4 = conv2d(conv_3, conv_info[3] * 2, is_train, name='conv_4', batch_norm=True, activation_fn=tf.nn.relu) d = conv_4.get_shape().as_list()[1] all_g = [] for i in range(d * d): o_i = conv_4[:, int(i / d), int(i % d), :] all_g.append(o_i) feat = tf.stack(all_g, axis=1) nD = 16 nL = 6 for i in range(self.q_dim): self.X0['is_q_%d' % i] = q[:, i:(i + 1)] def makebin(x, t, fn): #return fn(x) fw = tf.cast(tf.greater_equal(x, t), tf.float32) return custom_grad(fw, fn(x)) f = tf.layers.dense(feat, 1) self.X0['rectangle'] = makebin(f[:, :, 0], 0.0, tf.sigmoid) #self.pen = tf.reduce_mean( self.X0['rectangle']*(1.0-self.X0['rectangle'])) f = tf.layers.dense(feat, 7, tf.nn.softmax) #self.pen += tf.reduce_mean( f*(1.0-f)) for i in range(6): self.X0['is_color_%d' % i] = makebin( f[:, :, i + 1], .5, tf.identity) self.X0['obj'] = (1.0 - makebin(f[:, :, 0], .5, tf.identity)) #self.pen = tf.reduce_mean ( tf.square( tf.reduce_sum(self.X0['obj'],-1)-4.0 ))*.01 with tf.variable_scope('myscope'): self.XO, L3 = self.mdl.getTSteps(self.X0) loss_w = 0 loss_sum = 0 vs = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='CONV/myscope') for v in vs: if v is None: continue print(v) w = tf.sigmoid(2 * v) loss_w += tf.reduce_mean(w * (1 - .0 - w)) loss_sum += tf.reduce_mean( tf.nn.relu(tf.reduce_sum(w, -1) - 6)) self.pen = loss_w + loss_sum os = tf.concat( [self.XO['CL_%d' % i] for i in range(self.a_dim)], -1) #os = tf.concat( [ custom_grad( sharp_sigmoid(self.XO['CL_%d'%i]-.5,7),self.XO['CL_%d'%i] ) for i in range(self.a_dim)],-1) return 10 * os self.load_ilp_config() self.define_preds() logits = CONV(self.img, self.q, scope='CONV') # logits = f_phi(g, scope='f_phi') self.all_preds = tf.nn.softmax(logits) self.loss, self.accuracy = build_loss(logits, self.a) # Add summaries def draw_iqa(img, q, target_a, pred_a): fig, ax = tfplot.subplots(figsize=(6, 6)) ax.imshow(img) ax.set_title(question2str(q)) ax.set_xlabel( answer2str(target_a) + answer2str(pred_a, 'Predicted')) return fig try: tfplot.summary.plot_many( 'IQA/', draw_iqa, [self.img, self.q, self.a, self.all_preds], max_outputs=4, collections=["plot_summaries"]) except: pass tf.summary.scalar("loss/accuracy", self.accuracy) tf.summary.scalar("loss/cross_entropy", self.loss) log.warn('Successfully loaded the model.')