def estimateQualityMns(image_input, vector_cut_input, vector_sample_input_list, vector_sample_points_input, raster_input_dico, vector_output, no_data_value, path_time_log, format_raster='GTiff', epsg=2154, format_vector='ESRI Shapefile', extension_raster=".tif", extension_vector=".shp", save_results_intermediate=False, overwrite=True): # Mise à jour du Log starting_event = "estimateQualityMns() : Masks creation starting : " timeLine(path_time_log, starting_event) print(endC) print(bold + green + "## START : CREATE HEIGHT POINTS FILE FROM MNS" + endC) print(endC) if debug >= 2: print(bold + green + "estimateQualityMns() : Variables dans la fonction" + endC) print(cyan + "estimateQualityMns() : " + endC + "image_input : " + str(image_input) + endC) print(cyan + "estimateQualityMns() : " + endC + "vector_cut_input : " + str(vector_cut_input) + endC) print(cyan + "estimateQualityMns() : " + endC + "vector_sample_input_list : " + str(vector_sample_input_list) + endC) print(cyan + "estimateQualityMns() : " + endC + "vector_sample_points_input : " + str(vector_sample_points_input) + endC) print(cyan + "estimateQualityMns() : " + endC + "raster_input_dico : " + str(raster_input_dico) + endC) print(cyan + "estimateQualityMns() : " + endC + "vector_output : " + str(vector_output) + endC) print(cyan + "estimateQualityMns() : " + endC + "no_data_value : " + str(no_data_value)) print(cyan + "estimateQualityMns() : " + endC + "path_time_log : " + str(path_time_log) + endC) print(cyan + "estimateQualityMns() : " + endC + "epsg : " + str(epsg) + endC) print(cyan + "estimateQualityMns() : " + endC + "format_raster : " + str(format_raster) + endC) print(cyan + "estimateQualityMns() : " + endC + "format_vector : " + str(format_vector) + endC) print(cyan + "estimateQualityMns() : " + endC + "extension_raster : " + str(extension_raster) + endC) print(cyan + "estimateQualityMns() : " + endC + "extension_vector : " + str(extension_vector) + endC) print(cyan + "estimateQualityMns() : " + endC + "save_results_intermediate : " + str(save_results_intermediate) + endC) print(cyan + "estimateQualityMns() : " + endC + "overwrite : " + str(overwrite) + endC) # Définion des constantes EXT_DBF = '.dbf' EXT_CSV = '.csv' CODAGE = "uint16" SUFFIX_STUDY = '_study' SUFFIX_CUT = '_cut' SUFFIX_TEMP = '_temp' SUFFIX_CLEAN = '_clean' SUFFIX_SAMPLE = '_sample' ATTRIBUTE_ID = "ID" ATTRIBUTE_Z_INI = "Z_INI" ATTRIBUTE_Z_FIN = "Z_FIN" ATTRIBUTE_PREC_ALTI = "PREC_ALTI" ATTRIBUTE_Z_REF = "Z_Ref" ATTRIBUTE_Z_MNS = "Z_Mns" ATTRIBUTE_Z_DELTA = "Z_Delta" ERODE_EDGE_POINTS = -1.0 ERROR_VALUE = -99.0 ERROR_MIN_VALUE = -9999 ERROR_MAX_VALUE = 9999 # ETAPE 0 : PREPARATION DES FICHIERS INTERMEDIAIRES # Si le fichier de sortie existe on ecrase check = os.path.isfile(vector_output) if check and not overwrite: # Si un fichier de sortie avec le même nom existe déjà, et si l'option ecrasement est à false, alors FIN print(cyan + "estimateQualityMns() : " + bold + yellow + "Create file %s already exist : no actualisation" % (vector_output) + endC) return if os.path.isfile(os.path.splitext(vector_output)[0] + EXT_CSV): removeFile(os.path.splitext(vector_output)[0] + EXT_CSV) repertory_output = os.path.dirname(vector_output) base_name = os.path.splitext(os.path.basename(vector_output))[0] vector_output_temp = repertory_output + os.sep + base_name + SUFFIX_TEMP + extension_vector raster_study = repertory_output + os.sep + base_name + SUFFIX_STUDY + extension_raster vector_study = repertory_output + os.sep + base_name + SUFFIX_STUDY + extension_vector vector_study_clean = repertory_output + os.sep + base_name + SUFFIX_STUDY + SUFFIX_CLEAN + extension_vector image_cut = repertory_output + os.sep + base_name + SUFFIX_CUT + extension_raster vector_sample_temp = repertory_output + os.sep + base_name + SUFFIX_SAMPLE + SUFFIX_TEMP + extension_vector vector_sample_temp_clean = repertory_output + os.sep + base_name + SUFFIX_SAMPLE + SUFFIX_TEMP + SUFFIX_CLEAN + extension_vector # Utilisation des données raster externes raster_cut_dico = {} for raster_input in raster_input_dico: base_name_raster = os.path.splitext(os.path.basename(raster_input))[0] raster_cut = repertory_output + os.sep + base_name_raster + SUFFIX_CUT + extension_raster raster_cut_dico[raster_input] = raster_cut if os.path.exists(raster_cut): removeFile(raster_cut) # ETAPE 1 : DEFINIR UN SHAPE ZONE D'ETUDE if (not vector_cut_input is None) and (vector_cut_input != "") and ( os.path.isfile(vector_cut_input)): cutting_action = True vector_study = vector_cut_input else: cutting_action = False createVectorMask(image_input, vector_study) # ETAPE 2 : DECOUPAGE DU RASTEUR PAR LE VECTEUR D'ETUDE SI BESOIN ET REECHANTILLONAGE SI BESOIN if cutting_action: # Identification de la tailles de pixels en x et en y du fichier MNS de reference pixel_size_x, pixel_size_y = getPixelWidthXYImage(image_input) # Si le fichier de sortie existe deja le supprimer if os.path.exists(image_cut): removeFile(image_cut) # Commande de découpe if not cutImageByVector(vector_study, image_input, image_cut, pixel_size_x, pixel_size_y, no_data_value, 0, format_raster, format_vector): print( cyan + "estimateQualityMns() : " + bold + red + "Une erreur c'est produite au cours du decoupage de l'image : " + image_input + endC, file=sys.stderr) raise if debug >= 2: print(cyan + "estimateQualityMns() : " + bold + green + "DECOUPAGE DU RASTER %s AVEC LE VECTEUR %s" % (image_input, vector_study) + endC) else: image_cut = image_input # Definir l'emprise du fichier MNS de reference # Decoupage de chaque raster de la liste des rasters for raster_input in raster_input_dico: raster_cut = raster_cut_dico[raster_input] if not cutImageByVector(vector_study, raster_input, raster_cut, pixel_size_x, pixel_size_y, no_data_value, 0, format_raster, format_vector): raise NameError( cyan + "estimateQualityMns() : " + bold + red + "Une erreur c'est produite au cours du decoupage du raster : " + raster_input + endC) # Gémotrie de l'image pixel_size_x, pixel_size_y = getPixelWidthXYImage(image_cut) cols, rows, bands = getGeometryImage(image_cut) xmin, xmax, ymin, ymax = getEmpriseImage(image_cut) if debug >= 3: print("Geometrie Image : ") print(" cols = " + str(cols)) print(" rows = " + str(rows)) print(" xmin = " + str(xmin)) print(" xmax = " + str(xmax)) print(" ymin = " + str(ymin)) print(" ymax = " + str(ymax)) print(" pixel_size_x = " + str(pixel_size_x)) print(" pixel_size_y = " + str(pixel_size_y)) print("\n") # Création du dico coordonnées des points en systeme cartographique points_random_value_dico = {} # liste coordonnées des points au format matrice image brute points_coordonnees_image_list = [] # Selon que l'on utilise le fichier de points d'echantillons ou que l'on recréé a partir des sommets des vecteurs lignes if (vector_sample_points_input is None) or (vector_sample_points_input == ""): # ETAPE 3 : DECOUPAGES DES VECTEURS DE REFERENCE D'ENTREE PAR LE VECTEUR D'ETUDE ET LEUR FUSION ET # LECTURE D'UN VECTEUR DE LIGNES ET SAUVEGARDE DES COORDONNEES POINTS DES EXTREMITEES ET LEUR HAUTEUR # Découpage des vecteurs de bd réference avec le vecteur zone d'étude vector_sample_input_cut_list = [] for vector_sample in vector_sample_input_list: vector_name = os.path.splitext(os.path.basename(vector_sample))[0] vector_sample_cut = repertory_output + os.sep + vector_name + SUFFIX_CUT + extension_vector vector_sample_input_cut_list.append(vector_sample_cut) cutoutVectors(vector_study, vector_sample_input_list, vector_sample_input_cut_list, format_vector) # Fusion des vecteurs de bd réference découpés fusionVectors(vector_sample_input_cut_list, vector_sample_temp, format_vector) # Preparation des colonnes names_column_start_point_list = [ ATTRIBUTE_ID, ATTRIBUTE_Z_INI, ATTRIBUTE_PREC_ALTI ] names_column_end_point_list = [ ATTRIBUTE_ID, ATTRIBUTE_Z_FIN, ATTRIBUTE_PREC_ALTI ] fields_list = [ ATTRIBUTE_ID, ATTRIBUTE_PREC_ALTI, ATTRIBUTE_Z_INI, ATTRIBUTE_Z_FIN ] multigeometries2geometries(vector_sample_temp, vector_sample_temp_clean, fields_list, "MULTILINESTRING", format_vector) points_coordinates_dico = readVectorFileLinesExtractTeminalsPoints( vector_sample_temp_clean, names_column_start_point_list, names_column_end_point_list, format_vector) else: # ETAPE 3_BIS : DECOUPAGE DE VECTEURS D'ECHANTILLONS POINTS PAR LE VECTEUR D'EMPRISE ET # LECTURE DES COORDONNES D'ECHANTILLONS DURECTEMENT DANS LE FICHIER VECTEUR POINTS # Liste coordonnées des points au format matrice image brute cutVectorAll(vector_study, vector_sample_points_input, vector_sample_temp, format_vector) points_coordinates_dico = readVectorFilePoints(vector_sample_temp, format_vector) # ETAPE 4 : PREPARATION DU VECTEUR DE POINTS for index_key in points_coordinates_dico: # Recuperer les valeurs des coordonnees coord_info_list = points_coordinates_dico[index_key] coor_x = coord_info_list[0] coor_y = coord_info_list[1] attribut_dico = coord_info_list[2] # Coordonnées des points au format matrice image pos_x = int(round((coor_x - xmin) / abs(pixel_size_x)) - 1) pos_y = int(round((ymax - coor_y) / abs(pixel_size_y)) - 1) if pos_x < 0: pos_x = 0 if pos_x >= cols: pos_x = cols - 1 if pos_y < 0: pos_y = 0 if pos_y >= rows: pos_y = rows - 1 coordonnees_list = [pos_x, pos_y] points_coordonnees_image_list.append(coordonnees_list) value_ref = 0.0 if ATTRIBUTE_Z_INI in attribut_dico.keys(): value_ref = float(attribut_dico[ATTRIBUTE_Z_INI]) if ATTRIBUTE_Z_FIN in attribut_dico.keys(): value_ref = float(attribut_dico[ATTRIBUTE_Z_FIN]) precision_alti = 0.0 if ATTRIBUTE_PREC_ALTI in attribut_dico.keys(): precision_alti = float(attribut_dico[ATTRIBUTE_PREC_ALTI]) point_attr_dico = { ATTRIBUTE_ID: index_key, ATTRIBUTE_Z_REF: value_ref, ATTRIBUTE_PREC_ALTI: precision_alti, ATTRIBUTE_Z_MNS: 0.0, ATTRIBUTE_Z_DELTA: 0.0 } for raster_input in raster_input_dico: field_name = raster_input_dico[raster_input][0][0] point_attr_dico[field_name] = 0.0 points_random_value_dico[index_key] = [[coor_x, coor_y], point_attr_dico] # ETAPE 5 : LECTURE DES DONNEES DE HAUTEURS ISSU DU MNS et autre raster # Lecture dans le fichier raster des valeurs values_height_list = getPixelsValueListImage( image_cut, points_coordonnees_image_list) values_others_dico = {} for raster_input in raster_input_dico: raster_cut = raster_cut_dico[raster_input] values_list = getPixelsValueListImage(raster_cut, points_coordonnees_image_list) values_others_dico[raster_input] = values_list for i in range(len(points_random_value_dico)): value_mns = values_height_list[i] value_ref = points_random_value_dico[i][1][ATTRIBUTE_Z_REF] points_random_value_dico[i][1][ATTRIBUTE_Z_MNS] = float(value_mns) precision_alti = points_random_value_dico[i][1][ATTRIBUTE_PREC_ALTI] points_random_value_dico[i][1][ATTRIBUTE_PREC_ALTI] = float( precision_alti) value_diff = value_ref - value_mns points_random_value_dico[i][1][ATTRIBUTE_Z_DELTA] = float(value_diff) for raster_input in raster_input_dico: field_name = raster_input_dico[raster_input][0][0] value_other = values_others_dico[raster_input][i] points_random_value_dico[i][1][field_name] = float(value_other) # ETAPE 6 : CREATION D'UN VECTEUR DE POINTS AVEC DONNEE COORDONNES POINT ET HAUTEUR REFERENCE ET MNS # Suppression des points contenant des valeurs en erreur et en dehors du filtrage points_random_value_dico_clean = {} for i in range(len(points_random_value_dico)): value_ref = points_random_value_dico[i][1][ATTRIBUTE_Z_REF] if value_ref != ERROR_VALUE and value_ref > ERROR_MIN_VALUE and value_ref < ERROR_MAX_VALUE: points_is_valid = True for raster_input in raster_input_dico: if len(raster_input_dico[raster_input]) > 1 and len( raster_input_dico[raster_input][1]) > 1: threshold_min = float( raster_input_dico[raster_input][1][0]) threshold_max = float( raster_input_dico[raster_input][1][1]) field_name = raster_input_dico[raster_input][0][0] value_raster = float( points_random_value_dico[i][1][field_name]) if value_raster < threshold_min or value_raster > threshold_max: points_is_valid = False if points_is_valid: points_random_value_dico_clean[i] = points_random_value_dico[i] # Définir les attibuts du fichier résultat attribute_dico = { ATTRIBUTE_ID: ogr.OFTInteger, ATTRIBUTE_PREC_ALTI: ogr.OFTReal, ATTRIBUTE_Z_REF: ogr.OFTReal, ATTRIBUTE_Z_MNS: ogr.OFTReal, ATTRIBUTE_Z_DELTA: ogr.OFTReal } for raster_input in raster_input_dico: field_name = raster_input_dico[raster_input][0][0] attribute_dico[field_name] = ogr.OFTReal createPointsFromCoordList(attribute_dico, points_random_value_dico_clean, vector_output_temp, epsg, format_vector) # Suppression des points en bord de zone d'étude bufferVector(vector_study, vector_study_clean, ERODE_EDGE_POINTS, "", 1.0, 10, format_vector) cutVectorAll(vector_study_clean, vector_output_temp, vector_output, True, format_vector) # ETAPE 7 : TRANSFORMATION DU FICHIER .DBF EN .CSV dbf_file = repertory_output + os.sep + base_name + EXT_DBF csv_file = repertory_output + os.sep + base_name + EXT_CSV if debug >= 2: print(cyan + "estimateQualityMns() : " + bold + green + "Conversion du fichier DBF %s en fichier CSV %s" % (dbf_file, csv_file) + endC) convertDbf2Csv(dbf_file, csv_file) # ETAPE 8 : SUPPRESIONS FICHIERS INTERMEDIAIRES INUTILES # Suppression des données intermédiaires if not save_results_intermediate: if cutting_action: if os.path.isfile(image_cut): removeFile(image_cut) else: if os.path.isfile(vector_study): removeVectorFile(vector_study) for raster_input in raster_input_dico: raster_cut = raster_cut_dico[raster_input] if os.path.isfile(raster_cut): removeFile(raster_cut) if os.path.isfile(vector_output_temp): removeVectorFile(vector_output_temp) if os.path.isfile(vector_study_clean): removeVectorFile(vector_study_clean) if os.path.isfile(vector_sample_temp): removeVectorFile(vector_sample_temp) if os.path.isfile(vector_sample_temp_clean): removeVectorFile(vector_sample_temp_clean) for vector_file in vector_sample_input_cut_list: if os.path.isfile(vector_file): removeVectorFile(vector_file) print(bold + green + "## END : CREATE HEIGHT POINTS FILE FROM MNSE" + endC) # Mise à jour du Log ending_event = "estimateQualityMns() : Masks creation ending : " timeLine(path_time_log, ending_event) return
def addDataBaseExo(image_input, image_classif_add_output, class_file_dico, class_buffer_dico, class_sql_dico, path_time_log, format_vector='ESRI Shapefile', extension_raster=".tif", extension_vector=".shp", save_results_intermediate=False, overwrite=True, simplifie_param=10.0): # Mise à jour du Log starting_event = "addDataBaseExo() : Add data base exogene to classification starting : " timeLine(path_time_log, starting_event) # Print if debug >= 3: print(bold + green + "Variables dans la fonction" + endC) print(cyan + "addDataBaseExo() : " + endC + "image_input : " + str(image_input) + endC) print(cyan + "addDataBaseExo() : " + endC + "image_classif_add_output : " + str(image_classif_add_output) + endC) print(cyan + "addDataBaseExo() : " + endC + "class_file_dico : " + str(class_file_dico) + endC) print(cyan + "addDataBaseExo() : " + endC + "class_buffer_dico : " + str(class_buffer_dico) + endC) print(cyan + "addDataBaseExo() : " + endC + "class_sql_dico : " + str(class_sql_dico) + endC) print(cyan + "addDataBaseExo() : " + endC + "path_time_log : " + str(path_time_log) + endC) print(cyan + "addDataBaseExo() : " + endC + "format_vector : " + str(format_vector) + endC) print(cyan + "addDataBaseExo() : " + endC + "extension_raster : " + str(extension_raster) + endC) print(cyan + "addDataBaseExo() : " + endC + "extension_vector : " + str(extension_vector) + endC) print(cyan + "addDataBaseExo() : " + endC + "save_results_intermediate : " + str(save_results_intermediate) + endC) print(cyan + "addDataBaseExo() : " + endC + "overwrite : " + str(overwrite) + endC) # Constantes FOLDER_MASK_TEMP = 'Mask_' FOLDER_FILTERING_TEMP = 'Filt_' FOLDER_CUTTING_TEMP = 'Cut_' FOLDER_BUFF_TEMP = 'Buff_' SUFFIX_MASK_CRUDE = '_mcrude' SUFFIX_MASK = '_mask' SUFFIX_FUSION = '_info' SUFFIX_VECTOR_FILTER = "_filt" SUFFIX_VECTOR_CUT = '_decoup' SUFFIX_VECTOR_BUFF = '_buff' CODAGE = "uint16" # ETAPE 1 : NETTOYER LES DONNEES EXISTANTES if debug >= 2: print(cyan + "addDataBaseExo() : " + bold + green + "NETTOYAGE ESPACE DE TRAVAIL..." + endC) # Nom de base de l'image image_name = os.path.splitext(os.path.basename(image_input))[0] # Nettoyage d'anciennes données résultat # Si le fichier résultat existent deja et que overwrite n'est pas activé check = os.path.isfile(image_classif_add_output) if check and not overwrite: print(bold + yellow + "addDataBaseExo() : " + endC + image_classif_add_output + " has already added bd exo and will not be added again." + endC) else: if check: try: removeFile(image_classif_add_output ) # Tentative de suppression du fichier except Exception: pass # Si le fichier ne peut pas être supprimé, on suppose qu'il n'existe pas et on passe à la suite # Définition des répertoires temporaires repertory_output = os.path.dirname(image_classif_add_output) repertory_mask_temp = repertory_output + os.sep + FOLDER_MASK_TEMP + image_name repertory_samples_filtering_temp = repertory_output + os.sep + FOLDER_FILTERING_TEMP + image_name repertory_samples_cutting_temp = repertory_output + os.sep + FOLDER_CUTTING_TEMP + image_name repertory_samples_buff_temp = repertory_output + os.sep + FOLDER_BUFF_TEMP + image_name if debug >= 4: print(repertory_mask_temp) print(repertory_samples_filtering_temp) print(repertory_samples_cutting_temp) print(repertory_samples_buff_temp) # Creer les répertoires temporaire si ils n'existent pas if not os.path.isdir(repertory_output): os.makedirs(repertory_output) if not os.path.isdir(repertory_mask_temp): os.makedirs(repertory_mask_temp) if not os.path.isdir(repertory_samples_filtering_temp): os.makedirs(repertory_samples_filtering_temp) if not os.path.isdir(repertory_samples_cutting_temp): os.makedirs(repertory_samples_cutting_temp) if not os.path.isdir(repertory_samples_buff_temp): os.makedirs(repertory_samples_buff_temp) # Nettoyer les répertoires temporaire si ils ne sont pas vide cleanTempData(repertory_mask_temp) cleanTempData(repertory_samples_filtering_temp) cleanTempData(repertory_samples_cutting_temp) cleanTempData(repertory_samples_buff_temp) if debug >= 2: print(cyan + "addDataBaseExo() : " + bold + green + "... FIN NETTOYAGE" + endC) # ETAPE 2 : CREER UN SHAPE DE DECOUPE if debug >= 2: print(cyan + "addDataBaseExo() : " + bold + green + "SHAPE DE DECOUPE..." + endC) # 2.1 : Création des masques délimitant l'emprise de la zone par image vector_mask = repertory_mask_temp + os.sep + image_name + SUFFIX_MASK_CRUDE + extension_vector createVectorMask(image_input, vector_mask) # 2.2 : Simplification du masque global vector_simple_mask_cut = repertory_mask_temp + os.sep + image_name + SUFFIX_MASK + extension_vector simplifyVector(vector_mask, vector_simple_mask_cut, simplifie_param, format_vector) if debug >= 2: print(cyan + "addDataBaseExo() : " + bold + green + "...FIN SHAPE DE DECOUPEE" + endC) # ETAPE 3 : DECOUPER BUFFERISER LES VECTEURS ET FUSIONNER if debug >= 2: print(cyan + "addDataBaseExo() : " + bold + green + "MISE EN PLACE DES TAMPONS..." + endC) image_combined_list = [] # Parcours du dictionnaire associant les macroclasses aux noms de fichiers for macroclass_label in class_file_dico: vector_fusion_list = [] for index_info in range(len(class_file_dico[macroclass_label])): input_vector = class_file_dico[macroclass_label][index_info] vector_name = os.path.splitext( os.path.basename(input_vector))[0] output_vector_filtered = repertory_samples_filtering_temp + os.sep + vector_name + SUFFIX_VECTOR_FILTER + extension_vector output_vector_cut = repertory_samples_cutting_temp + os.sep + vector_name + SUFFIX_VECTOR_CUT + extension_vector output_vector_buff = repertory_samples_buff_temp + os.sep + vector_name + SUFFIX_VECTOR_BUFF + extension_vector sql_expression = class_sql_dico[macroclass_label][index_info] buffer_str = class_buffer_dico[macroclass_label][index_info] buff = 0.0 col_name_buf = "" try: buff = float(buffer_str) except: col_name_buf = buffer_str print( cyan + "addDataBaseExo() : " + bold + green + "Pas de valeur buffer mais un nom de colonne pour les valeur à bufferiser : " + endC + col_name_buf) if os.path.isfile(input_vector): if debug >= 3: print(cyan + "addDataBaseExo() : " + endC + "input_vector : " + str(input_vector) + endC) print(cyan + "addDataBaseExo() : " + endC + "output_vector_filtered : " + str(output_vector_filtered) + endC) print(cyan + "addDataBaseExo() : " + endC + "output_vector_cut : " + str(output_vector_cut) + endC) print(cyan + "addDataBaseExo() : " + endC + "output_vector_buff : " + str(output_vector_buff) + endC) print(cyan + "addDataBaseExo() : " + endC + "buff : " + str(buff) + endC) print(cyan + "addDataBaseExo() : " + endC + "sql : " + str(sql_expression) + endC) # 3.0 : Recuperer les vecteurs d'entrée et filtree selon la requete sql par ogr2ogr if sql_expression != "": names_attribut_list = getAttributeNameList( input_vector, format_vector) column = "'" for name_attribut in names_attribut_list: column += name_attribut + ", " column = column[0:len(column) - 2] column += "'" ret = filterSelectDataVector(input_vector, output_vector_filtered, column, sql_expression, format_vector) if not ret: print( cyan + "addDataBaseExo() : " + bold + yellow + "Attention problème lors du filtrage des BD vecteurs l'expression SQL %s est incorrecte" % (sql_expression) + endC) output_vector_filtered = input_vector else: print(cyan + "addDataBaseExo() : " + bold + green + "Pas de filtrage sur le fichier du nom : " + endC + output_vector_filtered) output_vector_filtered = input_vector # 3.1 : Découper le vecteur selon l'empise de l'image d'entrée cutoutVectors(vector_simple_mask_cut, [output_vector_filtered], [output_vector_cut], format_vector) # 3.2 : Bufferiser lesvecteurs découpé avec la valeur défini dans le dico ou trouver dans la base du vecteur lui même si le nom de la colonne est passée dans le dico if os.path.isfile(output_vector_cut) and ( (buff != 0) or (col_name_buf != "")): bufferVector(output_vector_cut, output_vector_buff, buff, col_name_buf, 1.0, 10, format_vector) else: print(cyan + "addDataBaseExo() : " + bold + green + "Pas de buffer sur le fichier du nom : " + endC + output_vector_cut) output_vector_buff = output_vector_cut # 3.3 : Si un shape résulat existe l'ajouté à la liste de fusion if os.path.isfile(output_vector_buff): vector_fusion_list.append(output_vector_buff) if debug >= 3: print("file for fusion : " + output_vector_buff) else: print(bold + yellow + "pas de fichiers avec ce nom : " + endC + output_vector_buff) else: print(cyan + "addDataBaseExo() : " + bold + yellow + "Pas de fichier du nom : " + endC + input_vector) # 3.4 : Fusionner les shapes transformés d'une même classe, rasterization et labelisations des vecteurs # Si une liste de fichier shape existe if not vector_fusion_list: print(bold + yellow + "Pas de fusion sans donnee a fusionnee" + endC) else: # Rasterization et BandMath des fichiers shapes raster_list = [] for vector in vector_fusion_list: if debug >= 3: print(cyan + "addDataBaseExo() : " + endC + "Rasterization : " + vector + " label : " + macroclass_label) raster_output = os.path.splitext( vector)[0] + extension_raster # Rasterisation rasterizeBinaryVector(vector, image_input, raster_output, macroclass_label, CODAGE) raster_list.append(raster_output) if debug >= 3: print(cyan + "addDataBaseExo() : " + endC + "nombre d'images a combiner : " + str(len(raster_list))) # Liste les images raster combined and sample image_combined = repertory_output + os.sep + image_name + '_' + str( macroclass_label) + SUFFIX_FUSION + extension_raster image_combined_list.append(image_combined) # Fusion des images raster en une seule mergeListRaster(raster_list, image_combined, CODAGE) if debug >= 2: print(cyan + "addDataBaseExo() : " + bold + green + "FIN DE L AFFECTATION DES TAMPONS" + endC) # ETAPE 4 : ASSEMBLAGE DE L'IMAGE CLASSEE ET DES BD EXOS if debug >= 2: print(cyan + "addDataBaseExo() : " + bold + green + "ASSEMBLAGE..." + endC) # Ajout de l'image de classification a la liste des image bd conbinées image_combined_list.append(image_input) # Fusion les images avec la classification mergeListRaster(image_combined_list, image_classif_add_output, CODAGE) if debug >= 2: print(cyan + "addDataBaseExo() : " + bold + green + "FIN" + endC) # ETAPE 5 : SUPPRESIONS FICHIERS INTERMEDIAIRES INUTILES # Suppression des données intermédiaires if not save_results_intermediate: image_combined_list.remove(image_input) for to_delete in image_combined_list: removeFile(to_delete) # Suppression des repertoires temporaires deleteDir(repertory_mask_temp) deleteDir(repertory_samples_filtering_temp) deleteDir(repertory_samples_cutting_temp) deleteDir(repertory_samples_buff_temp) # Mise à jour du Log ending_event = "addDataBaseExo() : Add data base exogene to classification ending : " timeLine(path_time_log, ending_event) return
def comparareClassificationToReferenceGrid(image_input, vector_cut_input, vector_sample_input, vector_grid_input, vector_grid_output, size_grid, field_value_verif, no_data_value, path_time_log, epsg=2154, format_raster='GTiff', format_vector="ESRI Shapefile", extension_raster=".tif", extension_vector=".shp", save_results_intermediate=False, overwrite=True): # Mise à jour du Log starting_event = "comparareClassificationToReferenceGrid() : starting : " timeLine(path_time_log, starting_event) print(endC) print(bold + green + "## START : COMPARE QUALITY FROM CLASSIF IMAGE BY GRID" + endC) print(endC) if debug >= 2: print( bold + green + "comparareClassificationToReferenceGrid() : Variables dans la fonction" + endC) print(cyan + "comparareClassificationToReferenceGrid() : " + endC + "image_input : " + str(image_input) + endC) print(cyan + "comparareClassificationToReferenceGrid() : " + endC + "vector_cut_input : " + str(vector_cut_input) + endC) print(cyan + "comparareClassificationToReferenceGrid() : " + endC + "vector_sample_input : " + str(vector_sample_input) + endC) print(cyan + "comparareClassificationToReferenceGrid() : " + endC + "vector_grid_input : " + str(vector_grid_input) + endC) print(cyan + "comparareClassificationToReferenceGrid() : " + endC + "vector_grid_output : " + str(vector_grid_output) + endC) print(cyan + "comparareClassificationToReferenceGrid() : " + endC + "size_grid : " + str(size_grid) + endC) print(cyan + "comparareClassificationToReferenceGrid() : " + endC + "field_value_verif : " + str(field_value_verif)) print(cyan + "comparareClassificationToReferenceGrid() : " + endC + "no_data_value : " + str(no_data_value)) print(cyan + "comparareClassificationToReferenceGrid() : " + endC + "path_time_log : " + str(path_time_log) + endC) print(cyan + "comparareClassificationToReferenceGrid() : " + endC + "epsg : " + str(epsg) + endC) print(cyan + "comparareClassificationToReferenceGrid() : " + endC + "format_raster : " + str(format_raster) + endC) print(cyan + "comparareClassificationToReferenceGrid() : " + endC + "format_vector : " + str(format_vector) + endC) print(cyan + "comparareClassificationToReferenceGrid() : " + endC + "extension_raster : " + str(extension_raster) + endC) print(cyan + "comparareClassificationToReferenceGrid() : " + endC + "extension_vector : " + str(extension_vector) + endC) print(cyan + "comparareClassificationToReferenceGrid() : " + endC + "save_results_intermediate : " + str(save_results_intermediate) + endC) print(cyan + "comparareClassificationToReferenceGrid() : " + endC + "overwrite : " + str(overwrite) + endC) # ETAPE 0 : PREPARATION DES FICHIERS INTERMEDIAIRES' CODAGE = "uint16" SUFFIX_STUDY = '_study' SUFFIX_TEMP = '_temp' SUFFIX_FUSION = '_other_fusion' NONE_VALUE_QUANTITY = -1.0 FIELD_VALUE_OTHER = 65535 FIELD_NAME_ID = "id" FIELD_NAME_RATE_BUILD = "rate_build" FIELD_NAME_RATE_OTHER = "rate_other" FIELD_NAME_SREF_BUILD = "sref_build" FIELD_NAME_SCLA_BUILD = "scla_build" FIELD_NAME_SREF_OTHER = "sref_other" FIELD_NAME_SCLA_OTHER = "scla_other" FIELD_NAME_KAPPA = "kappa" FIELD_NAME_ACCURACY = "accuracy" pixel_size_x, pixel_size_y = getPixelWidthXYImage(image_input) repertory_output = os.path.dirname(vector_grid_output) base_name = os.path.splitext(os.path.basename(vector_grid_output))[0] vector_study = repertory_output + os.sep + base_name + SUFFIX_STUDY + extension_vector vector_grid_temp = repertory_output + os.sep + base_name + SUFFIX_TEMP + extension_vector image_raster_other_fusion = repertory_output + os.sep + base_name + SUFFIX_FUSION + extension_raster # ETAPE 0 : VERIFICATION # Verification de la valeur de la nomemclature à verifier if field_value_verif >= FIELD_VALUE_OTHER: print( cyan + "comparareClassificationToReferenceGrid() : " + bold + red + "Attention de valeur de nomenclature à vérifier : " + str(field_value_verif) + " doit être inferieur à la valeur de fusion des valeur autre arbitraire de : " + str(FIELD_VALUE_OTHER) + endC, file=sys.stderr) sys.exit(1) #exit with an error code # ETAPE 1 : DEFINIR UN SHAPE ZONE D'ETUDE if (not vector_cut_input is None) and (vector_cut_input != "") and ( os.path.isfile(vector_cut_input)): cutting_action = True vector_study = vector_cut_input else: cutting_action = False createVectorMask(image_input, vector_study) # ETAPE 2 : UNIFORMISATION DE LA ZONE OTHER # Réalocation des valeurs de classification pour les valeurs autre que le bati change_reaff_value_list = [] reaff_value_list = identifyPixelValues(image_input) if field_value_verif in reaff_value_list: reaff_value_list.remove(field_value_verif) if no_data_value in reaff_value_list: reaff_value_list.remove(no_data_value) for elem in reaff_value_list: change_reaff_value_list.append(FIELD_VALUE_OTHER) reallocateClassRaster(image_input, image_raster_other_fusion, reaff_value_list, change_reaff_value_list) # ETAPE 3 : CREATION DE LA GRILLE SUR LA ZONE D'ETUDE # Définir les attibuts du fichier attribute_dico = { FIELD_NAME_ID: ogr.OFTInteger, FIELD_NAME_RATE_BUILD: ogr.OFTReal, FIELD_NAME_RATE_OTHER: ogr.OFTReal, FIELD_NAME_SREF_BUILD: ogr.OFTReal, FIELD_NAME_SCLA_BUILD: ogr.OFTReal, FIELD_NAME_SREF_OTHER: ogr.OFTReal, FIELD_NAME_SCLA_OTHER: ogr.OFTReal, FIELD_NAME_KAPPA: ogr.OFTReal, FIELD_NAME_ACCURACY: ogr.OFTReal } nb_polygon = 0 if (not vector_grid_input is None) and (vector_grid_input != "") and ( os.path.isfile(vector_grid_input)): # Utilisation du fichier grille d'entrée # Recopie du fichier grille d'entrée vers le fichier grille de sortie copyVectorFile(vector_grid_input, vector_grid_output) # Ajout des champs au fichier grille de sortie for field_name in attribute_dico: addNewFieldVector(vector_grid_output, field_name, attribute_dico[field_name], None, None, None, format_vector) # Mettre le champs "id" identifiant du carré de l'élément de la grille nb_polygon = updateIndexVector(vector_grid_output, FIELD_NAME_ID, format_vector) else: # Si il n'existe pas de fichier grille on en créer un avec la valeur de size_grid # Creer le fichier grille nb_polygon = createGridVector(vector_study, vector_grid_temp, size_grid, size_grid, attribute_dico, overwrite, epsg, format_vector) # Découper la grille avec le shape zone d'étude cutVectorAll(vector_study, vector_grid_temp, vector_grid_output, format_vector) # ETAPE 4 : CALCUL DE L'INDICATEUR DE QUALITE POUR CHAQUE CASE DE LA GRILLE if debug >= 2: print(bold + "nb_polygon = " + endC + str(nb_polygon) + "\n") # Pour chaque polygone existant sum_rate_quantity_build = 0 nb_rate_sum = 0 size_area_pixel = abs(pixel_size_x * pixel_size_y) for id_polygon in range(nb_polygon): geom_list = getGeomPolygons(vector_grid_output, FIELD_NAME_ID, id_polygon, format_vector) if geom_list is not None and geom_list != []: # and (id_polygon == 24 or id_polygon == 30): if debug >= 1: print(cyan + "comparareClassificationToReferenceGrid() : " + bold + green + "Calcul de la matrice pour le polygon n°: " + str(id_polygon) + endC) geom = geom_list[0] class_ref_list, class_pro_list, rate_quantity_list, kappa, accuracy, matrix = computeQualityIndiceRateQuantity( image_raster_other_fusion, vector_sample_input, repertory_output, base_name + str(id_polygon), geom, size_grid, pixel_size_x, pixel_size_y, field_value_verif, FIELD_VALUE_OTHER, no_data_value, epsg, format_raster, format_vector, extension_raster, extension_vector, overwrite, save_results_intermediate) # Si les calculs indicateurs de qualité sont ok if debug >= 2: print(matrix) if matrix != None and matrix != [] and matrix[0] != []: # Récuperer la quantité de bati et calcul de la surface de référence et de la surface de classification (carreau entier ou pas!) if len(class_ref_list) == 2 and len( class_pro_list ) == 2: # Cas ou l'on a des pixels de build et other (en ref et en prod) rate_quantity_build = rate_quantity_list[0] rate_quantity_other = rate_quantity_list[1] size_area_ref_build = (matrix[0][0] + matrix[0][1]) * size_area_pixel size_area_classif_build = (matrix[0][0] + matrix[1][0]) * size_area_pixel size_area_ref_other = (matrix[1][0] + matrix[1][1]) * size_area_pixel size_area_classif_other = (matrix[0][1] + matrix[1][1]) * size_area_pixel sum_rate_quantity_build += rate_quantity_build nb_rate_sum += 1 else: # Cas ou l'on a uniquement des pixels de build OU uniquement des pixels de other if class_ref_list[ 0] == field_value_verif: # Cas ou l'on a uniquement des pixels references build rate_quantity_build = rate_quantity_list[0] rate_quantity_other = NONE_VALUE_QUANTITY size_area_ref_other = 0 if len( class_pro_list ) == 2: # Cas ou l'on a des pixels de prod build et other size_area_ref_build = ( matrix[0][0] + matrix[0][1]) * size_area_pixel size_area_classif_build = matrix[0][ 0] * size_area_pixel size_area_classif_other = matrix[0][ 1] * size_area_pixel else: size_area_ref_build = matrix[0][0] * size_area_pixel if class_pro_list[ 0] == field_value_verif: # Cas ou l'on a uniquement des pixels prod build size_area_classif_build = matrix[0][ 0] * size_area_pixel size_area_classif_other = 0 else: # Cas ou l'on a uniquement des pixels prod other size_area_classif_build = 0 size_area_classif_other = matrix[0][ 0] * size_area_pixel else: # Cas ou l'on a uniquement des pixels references other rate_quantity_build = NONE_VALUE_QUANTITY rate_quantity_other = rate_quantity_list[0] size_area_ref_build = 0 if len( class_pro_list ) == 2: # Cas ou l'on a des pixels de prod build et other size_area_ref_other = ( matrix[0][0] + matrix[0][1]) * size_area_pixel size_area_classif_build = matrix[0][ 0] * size_area_pixel size_area_classif_other = matrix[0][ 1] * size_area_pixel else: size_area_ref_other = matrix[0][0] * size_area_pixel if class_pro_list[ 0] == field_value_verif: # Cas ou l'on a uniquement des pixels prod build size_area_classif_build = matrix[0][ 0] * size_area_pixel size_area_classif_other = 0 else: # Cas ou l'on a uniquement des pixels prod other size_area_classif_build = 0 size_area_classif_other = matrix[0][ 0] * size_area_pixel # Mettre à jour ses éléments du carré de la grille setAttributeValues( vector_grid_output, FIELD_NAME_ID, id_polygon, { FIELD_NAME_RATE_BUILD: rate_quantity_build, FIELD_NAME_RATE_OTHER: rate_quantity_other, FIELD_NAME_SREF_BUILD: size_area_ref_build, FIELD_NAME_SCLA_BUILD: size_area_classif_build, FIELD_NAME_SREF_OTHER: size_area_ref_other, FIELD_NAME_SCLA_OTHER: size_area_classif_other, FIELD_NAME_KAPPA: kappa, FIELD_NAME_ACCURACY: accuracy }, format_vector) # Calcul de la moyenne if nb_rate_sum != 0: average_quantity_build = sum_rate_quantity_build / nb_rate_sum else: average_quantity_build = 0 if debug >= 2: print(bold + "nb_polygon_used = " + endC + str(nb_rate_sum)) print(bold + "average_quantity_build = " + endC + str(average_quantity_build) + "\n") # ETAPE 5 : SUPPRESIONS FICHIERS INTERMEDIAIRES INUTILES # Suppression des données intermédiairess if not save_results_intermediate: if not cutting_action: if os.path.isfile(vector_study): removeVectorFile(vector_study) if os.path.isfile(image_raster_other_fusion): removeFile(image_raster_other_fusion) if os.path.isfile(vector_grid_temp): removeVectorFile(vector_grid_temp) print(endC) print(bold + green + "## END : COMPARE QUALITY FROM CLASSIF IMAGE BY GRID" + endC) print(endC) # Mise à jour du Log ending_event = "comparareClassificationToReferenceGrid() : ending : " timeLine(path_time_log, ending_event) return average_quantity_build
def estimateQualityClassification(image_input, vector_cut_input, vector_sample_input, vector_output, nb_dot, no_data_value, column_name_vector, column_name_ref, column_name_class, path_time_log, epsg=2154, format_raster='GTiff', format_vector="ESRI Shapefile", extension_raster=".tif", extension_vector=".shp", save_results_intermediate=False, overwrite=True): # Mise à jour du Log starting_event = "estimateQualityClassification() : Masks creation starting : " timeLine(path_time_log, starting_event) print(endC) print(bold + green + "## START : CREATE PRINT POINTS FILE FROM CLASSIF IMAGE" + endC) print(endC) if debug >= 2: print(bold + green + "estimateQualityClassification() : Variables dans la fonction" + endC) print(cyan + "estimateQualityClassification() : " + endC + "image_input : " + str(image_input) + endC) print(cyan + "estimateQualityClassification() : " + endC + "vector_cut_input : " + str(vector_cut_input) + endC) print(cyan + "estimateQualityClassification() : " + endC + "vector_sample_input : " + str(vector_sample_input) + endC) print(cyan + "estimateQualityClassification() : " + endC + "vector_output : " + str(vector_output) + endC) print(cyan + "estimateQualityClassification() : " + endC + "nb_dot : " + str(nb_dot) + endC) print(cyan + "estimateQualityClassification() : " + endC + "no_data_value : " + str(no_data_value) + endC) print(cyan + "estimateQualityClassification() : " + endC + "column_name_vector : " + str(column_name_vector) + endC) print(cyan + "estimateQualityClassification() : " + endC + "column_name_ref : " + str(column_name_ref) + endC) print(cyan + "estimateQualityClassification() : " + endC + "column_name_class : " + str(column_name_class) + endC) print(cyan + "estimateQualityClassification() : " + endC + "path_time_log : " + str(path_time_log) + endC) print(cyan + "estimateQualityClassification() : " + endC + "epsg : " + str(epsg) + endC) print(cyan + "estimateQualityClassification() : " + endC + "format_raster : " + str(format_raster) + endC) print(cyan + "estimateQualityClassification() : " + endC + "format_vector : " + str(format_vector) + endC) print(cyan + "estimateQualityClassification() : " + endC + "extension_raster : " + str(extension_raster) + endC) print(cyan + "estimateQualityClassification() : " + endC + "extension_vector : " + str(extension_vector) + endC) print(cyan + "estimateQualityClassification() : " + endC + "save_results_intermediate : " + str(save_results_intermediate) + endC) print(cyan + "estimateQualityClassification() : " + endC + "overwrite : " + str(overwrite) + endC) # ETAPE 0 : PREPARATION DES FICHIERS INTERMEDIAIRES CODAGE = "uint16" SUFFIX_STUDY = '_study' SUFFIX_CUT = '_cut' SUFFIX_TEMP = '_temp' SUFFIX_SAMPLE = '_sample' repertory_output = os.path.dirname(vector_output) base_name = os.path.splitext(os.path.basename(vector_output))[0] vector_output_temp = repertory_output + os.sep + base_name + SUFFIX_TEMP + extension_vector raster_study = repertory_output + os.sep + base_name + SUFFIX_STUDY + extension_raster vector_study = repertory_output + os.sep + base_name + SUFFIX_STUDY + extension_vector raster_cut = repertory_output + os.sep + base_name + SUFFIX_CUT + extension_raster vector_sample_temp = repertory_output + os.sep + base_name + SUFFIX_SAMPLE + SUFFIX_TEMP + extension_vector # Mise à jour des noms de champs input_ref_col = "" val_ref = 0 if (column_name_vector != "") and (not column_name_vector is None): input_ref_col = column_name_vector if (column_name_ref != "") and (not column_name_ref is None): val_ref_col = column_name_ref if (column_name_class != "") and (not column_name_class is None): val_class_col = column_name_class # ETAPE 1 : DEFINIR UN SHAPE ZONE D'ETUDE if (not vector_cut_input is None) and (vector_cut_input != "") and ( os.path.isfile(vector_cut_input)): cutting_action = True vector_study = vector_cut_input else: cutting_action = False createVectorMask(image_input, vector_study) # ETAPE 2 : DECOUPAGE DU RASTEUR PAR LE VECTEUR D'EMPRISE SI BESOIN if cutting_action: # Identification de la tailles de pixels en x et en y pixel_size_x, pixel_size_y = getPixelWidthXYImage(image_input) # Si le fichier de sortie existe deja le supprimer if os.path.exists(raster_cut): removeFile(raster_cut) # Commande de découpe if not cutImageByVector(vector_study, image_input, raster_cut, pixel_size_x, pixel_size_y, no_data_value, 0, format_raster, format_vector): raise NameError( cyan + "estimateQualityClassification() : " + bold + red + "Une erreur c'est produite au cours du decoupage de l'image : " + image_input + endC) if debug >= 2: print(cyan + "estimateQualityClassification() : " + bold + green + "DECOUPAGE DU RASTER %s AVEC LE VECTEUR %s" % (image_input, vector_study) + endC) else: raster_cut = image_input # ETAPE 3 : CREATION DE LISTE POINTS AVEC DONNEE ISSU D'UN FICHIER RASTER # Gémotrie de l'image cols, rows, bands = getGeometryImage(raster_cut) xmin, xmax, ymin, ymax = getEmpriseImage(raster_cut) pixel_width, pixel_height = getPixelWidthXYImage(raster_cut) if debug >= 2: print("cols : " + str(cols)) print("rows : " + str(rows)) print("bands : " + str(bands)) print("xmin : " + str(xmin)) print("ymin : " + str(ymin)) print("xmax : " + str(xmax)) print("ymax : " + str(ymax)) print("pixel_width : " + str(pixel_width)) print("pixel_height : " + str(pixel_height)) # ETAPE 3-1 : CAS CREATION D'UN FICHIER DE POINTS PAR TIRAGE ALEATOIRE DANS LA MATRICE IMAGE if (vector_sample_input is None) or (vector_sample_input == ""): is_sample_file = False # Les dimensions de l'image nb_pixels = abs(cols * rows) # Tirage aléatoire des points drawn_dot_list = [] while len(drawn_dot_list) < nb_dot: val = random.randint(0, nb_pixels) if not val in drawn_dot_list: drawn_dot_list.append(val) # Creation d'un dico index valeur du tirage et attibuts pos_x, pos_y et value pixel points_random_value_dico = {} points_coordonnees_list = [] for point in drawn_dot_list: pos_y = point // cols pos_x = point % cols coordonnees_list = [pos_x, pos_y] points_coordonnees_list.append(coordonnees_list) # Lecture dans le fichier raster des valeurs values_list = getPixelsValueListImage(raster_cut, points_coordonnees_list) print(values_list) for idx_point in range(len(drawn_dot_list)): val_class = values_list[idx_point] coordonnees_list = points_coordonnees_list[idx_point] pos_x = coordonnees_list[0] pos_y = coordonnees_list[1] coor_x = xmin + (pos_x * abs(pixel_width)) coor_y = ymax - (pos_y * abs(pixel_height)) point_attr_dico = { "Ident": idx_point, val_ref_col: int(val_ref), val_class_col: int(val_class) } points_random_value_dico[idx_point] = [[coor_x, coor_y], point_attr_dico] if debug >= 4: print("idx_point : " + str(idx_point)) print("pos_x : " + str(pos_x)) print("pos_y : " + str(pos_y)) print("coor_x : " + str(coor_x)) print("coor_y : " + str(coor_y)) print("val_class : " + str(val_class)) print("") # ETAPE 3-2 : CAS D'UN FICHIER DE POINTS DEJA EXISTANT MISE A JOUR DE LA DONNEE ISSU Du RASTER else: # Le fichier de points d'analyses existe is_sample_file = True cutVectorAll(vector_study, vector_sample_input, vector_sample_temp, format_vector) if input_ref_col != "": points_coordinates_dico = readVectorFilePoints( vector_sample_temp, [input_ref_col], format_vector) else: points_coordinates_dico = readVectorFilePoints( vector_sample_temp, [], format_vector) # Création du dico points_random_value_dico = {} points_coordonnees_list = [] for index_key in points_coordinates_dico: # Recuperer les valeurs des coordonnees coord_info_list = points_coordinates_dico[index_key] coor_x = coord_info_list[0] coor_y = coord_info_list[1] pos_x = int(round((coor_x - xmin) / abs(pixel_width))) pos_y = int(round((ymax - coor_y) / abs(pixel_height))) coordonnees_list = [pos_x, pos_y] points_coordonnees_list.append(coordonnees_list) # Lecture dans le fichier raster des valeurs values_list = getPixelsValueListImage(raster_cut, points_coordonnees_list) for index_key in points_coordinates_dico: # Récuperer les valeurs des coordonnees coord_info_list = points_coordinates_dico[index_key] coor_x = coord_info_list[0] coor_y = coord_info_list[1] # Récupérer la classe de référence dans le vecteur d'entrée if input_ref_col != "": label = coord_info_list[2] val_ref = label.get(input_ref_col) # Récupérer la classe issue du raster d'entrée val_class = values_list[index_key] # Création du dico contenant identifiant du point, valeur de référence, valeur du raster d'entrée point_attr_dico = { "Ident": index_key, val_ref_col: int(val_ref), val_class_col: int(val_class) } if debug >= 4: print("point_attr_dico: " + str(point_attr_dico)) points_random_value_dico[index_key] = [[coor_x, coor_y], point_attr_dico] # ETAPE 4 : CREATION ET DECOUPAGE DU FICHIER VECTEUR RESULTAT PAR LE SHAPE D'ETUDE # Creer le fichier de points if is_sample_file and os.path.exists(vector_sample_temp): attribute_dico = {val_class_col: ogr.OFTInteger} # Recopie du fichier removeVectorFile(vector_output_temp) copyVectorFile(vector_sample_temp, vector_output_temp) # Ajout des champs au fichier de sortie for field_name in attribute_dico: addNewFieldVector(vector_output_temp, field_name, attribute_dico[field_name], 0, None, None, format_vector) # Préparation des donnees field_new_values_list = [] for index_key in points_random_value_dico: point_attr_dico = points_random_value_dico[index_key][1] point_attr_dico.pop(val_ref_col, None) field_new_values_list.append(point_attr_dico) # Ajout des donnees setAttributeValuesList(vector_output_temp, field_new_values_list, format_vector) else: # Définir les attibuts du fichier résultat attribute_dico = { "Ident": ogr.OFTInteger, val_ref_col: ogr.OFTInteger, val_class_col: ogr.OFTInteger } createPointsFromCoordList(attribute_dico, points_random_value_dico, vector_output_temp, epsg, format_vector) # Découpage du fichier de points d'echantillons cutVectorAll(vector_study, vector_output_temp, vector_output, format_vector) # ETAPE 5 : SUPPRESIONS FICHIERS INTERMEDIAIRES INUTILES # Suppression des données intermédiaires if not save_results_intermediate: if cutting_action: removeFile(raster_cut) else: removeVectorFile(vector_study) removeFile(raster_study) if is_sample_file: removeVectorFile(vector_sample_temp) removeVectorFile(vector_output_temp) print(endC) print(bold + green + "## END : CREATE PRINT POINTS FILE FROM CLASSIF IMAGE" + endC) print(endC) # Mise à jour du Log ending_event = "estimateQualityClassification() : Masks creation ending : " timeLine(path_time_log, ending_event) return
def skyViewFactor(grid_input, grid_output, mns_input, classif_input, class_build_list, dim_grid_x, dim_grid_y, svf_radius, svf_method, svf_dlevel, svf_ndirs, epsg, no_data_value, path_time_log, format_raster='GTiff', format_vector='ESRI Shapefile', extension_raster=".tif", extension_vector=".shp", save_results_intermediate=False, overwrite=True): print(bold + yellow + "Début du calcul de l'indicateur Sky View Factor." + endC + "\n") timeLine(path_time_log, "Début du calcul de l'indicateur Sky View Factor : ") if debug >= 3: print(bold + green + "skyViewFactor() : Variables dans la fonction" + endC) print(cyan + "skyViewFactor() : " + endC + "grid_input : " + str(grid_input) + endC) print(cyan + "skyViewFactor() : " + endC + "grid_output : " + str(grid_output) + endC) print(cyan + "skyViewFactor() : " + endC + "mns_input : " + str(mns_input) + endC) print(cyan + "skyViewFactor() : " + endC + "class_build_list : " + str(class_build_list) + endC) print(cyan + "skyViewFactor() : " + endC + "classif_input : " + str(classif_input) + endC) print(cyan + "skyViewFactor() : " + endC + "dim_grid_x : " + str(dim_grid_x) + endC) print(cyan + "skyViewFactor() : " + endC + "dim_grid_y : " + str(dim_grid_y) + endC) print(cyan + "skyViewFactor() : " + endC + "svf_radius : " + str(svf_radius) + endC) print(cyan + "skyViewFactor() : " + endC + "svf_method : " + str(svf_method) + endC) print(cyan + "skyViewFactor() : " + endC + "svf_dlevel : " + str(svf_dlevel) + endC) print(cyan + "skyViewFactor() : " + endC + "svf_ndirs : " + str(svf_ndirs) + endC) print(cyan + "skyViewFactor() : " + endC + "epsg : " + str(epsg) + endC) print(cyan + "skyViewFactor() : " + endC + "no_data_value : " + str(no_data_value) + endC) print(cyan + "skyViewFactor() : " + endC + "path_time_log : " + str(path_time_log) + endC) print(cyan + "skyViewFactor() : " + endC + "format_raster : " + str(format_raster) + endC) print(cyan + "skyViewFactor() : " + endC + "format_vector : " + str(format_vector) + endC) print(cyan + "skyViewFactor() : " + endC + "extension_raster : " + str(extension_raster) + endC) print(cyan + "skyViewFactor() : " + endC + "extension_vector : " + str(extension_vector) + endC) print(cyan + "skyViewFactor() : " + endC + "save_results_intermediate : " + str(save_results_intermediate) + endC) print(cyan + "skyViewFactor() : " + endC + "overwrite : " + str(overwrite) + endC) # Constantes liées aux fichiers SKY_VIEW_FIELD = 'SkyView' BASE_FILE_TILE = 'tile_' BASE_FILE_POLY = 'poly_' SUFFIX_VECTOR_BUFF = '_buff' SUFFIX_VECTOR_TEMP = '_temp' # Constantes liées à l'arborescence FOLDER_SHP = 'SHP' FOLDER_SGRD = 'SGRD' FOLDER_TIF = 'TIF' SUB_FOLDER_DEM = 'DEM' SUB_FOLDER_SVF = 'SVF' SUB_SUB_FOLDER_BUF = 'BUF' if not os.path.exists(grid_output) or overwrite: ############################################ ### Préparation générale des traitements ### ############################################ if os.path.exists(grid_output): removeVectorFile(grid_output) temp_path = os.path.dirname(grid_output) + os.sep + "SkyViewFactor" sky_view_factor_raster = temp_path + os.sep + "sky_view_factor" + extension_raster cleanTempData(temp_path) os.makedirs(temp_path + os.sep + FOLDER_SHP) os.makedirs(temp_path + os.sep + FOLDER_SGRD + os.sep + SUB_FOLDER_DEM) os.makedirs(temp_path + os.sep + FOLDER_SGRD + os.sep + SUB_FOLDER_SVF) os.makedirs(temp_path + os.sep + FOLDER_TIF + os.sep + SUB_FOLDER_DEM) os.makedirs(temp_path + os.sep + FOLDER_TIF + os.sep + SUB_FOLDER_SVF) os.makedirs(temp_path + os.sep + FOLDER_TIF + os.sep + SUB_FOLDER_SVF + os.sep + SUB_SUB_FOLDER_BUF) # Récupération de la résolution du raster d'entrée pixel_size_x, pixel_size_y = getPixelWidthXYImage(mns_input) print(bold + "Taille de pixel du fichier '%s' :" % (mns_input) + endC) print(" pixel_size_x = " + str(pixel_size_x)) print(" pixel_size_y = " + str(pixel_size_y) + "\n") ############################################### ### Création des fichiers emprise et grille ### ############################################### print(bold + cyan + "Création des fichiers emprise et grille :" + endC) timeLine(path_time_log, " Création des fichiers emprise et grille : ") emprise_file = temp_path + os.sep + "emprise" + extension_vector quadrillage_file = temp_path + os.sep + "quadrillage" + extension_vector # Création du fichier d'emprise createVectorMask(mns_input, emprise_file, no_data_value, format_vector) # Création du fichier grille createGridVector(emprise_file, quadrillage_file, dim_grid_x, dim_grid_y, None, overwrite, epsg, format_vector) ############################################################# ### Extraction des carreaux de découpage et bufferisation ### ############################################################# print(bold + cyan + "Extraction des carreaux de découpage :" + endC) timeLine(path_time_log, " Extraction des carreaux de découpage : ") split_tile_vector_list = splitVector(quadrillage_file, temp_path + os.sep + FOLDER_SHP, "", epsg, format_vector, extension_vector) split_tile_vector_buff_list = [] # Boucle sur les fichiers polygones quadrillage for split_tile_vector in split_tile_vector_list: repertory_temp_output = os.path.dirname(split_tile_vector) base_name = os.path.splitext( os.path.basename(split_tile_vector))[0] split_tile_buff_vector = repertory_temp_output + os.sep + base_name + SUFFIX_VECTOR_BUFF + extension_vector split_tile_buff_vector_temp = repertory_temp_output + os.sep + base_name + SUFFIX_VECTOR_BUFF + SUFFIX_VECTOR_TEMP + extension_vector # Bufferisation bufferVector(split_tile_vector, split_tile_buff_vector_temp, svf_radius, "", 1.0, 10, format_vector) # Re-découpage avec l'emprise si la taille intersecte avec l'emprise if cutVector(emprise_file, split_tile_buff_vector_temp, split_tile_buff_vector, overwrite, format_vector): split_tile_vector_buff_list.append(split_tile_buff_vector) ########################################################## ### Découpage du MNS/MNH à l'emprise de chaque carreau ### ########################################################## print(bold + cyan + "Découpage du raster en tuiles :" + endC) timeLine(path_time_log, " Découpage du raster en tuiles : ") # Boucle sur les fichiers polygones quadrillage bufferisés for i in range(len(split_tile_vector_list)): print("Traitement de la tuile " + str(int(i) + 1) + str(len(split_tile_vector_list)) + "...") split_tile_vector = split_tile_vector_list[i] repertory_temp_output = os.path.dirname(split_tile_vector) base_name = os.path.splitext( os.path.basename(split_tile_vector))[0] split_tile_buff_vector = repertory_temp_output + os.sep + base_name + SUFFIX_VECTOR_BUFF + extension_vector dem_tif_file = temp_path + os.sep + FOLDER_TIF + os.sep + SUB_FOLDER_DEM + os.sep + BASE_FILE_TILE + str( i) + extension_raster if os.path.exists(split_tile_buff_vector): cutImageByVector(split_tile_buff_vector, mns_input, dem_tif_file, pixel_size_x, pixel_size_y, no_data_value, epsg, format_raster, format_vector) ################################################## ### Calcul du SVF pour chaque dalle du MNS/MNH ### ################################################## print(bold + cyan + "Calcul du SVF pour chaque tuile via SAGA :" + endC) timeLine(path_time_log, " Calcul du SVF pour chaque tuile via SAGA : ") svf_buf_tif_file_list = [] # Boucle sur les tuiles du raster d'entrée créées par chaque polygone quadrillage for i in range(len(split_tile_vector_list)): # Calcul de Sky View Factor par SAGA dem_tif_file = temp_path + os.sep + FOLDER_TIF + os.sep + SUB_FOLDER_DEM + os.sep + BASE_FILE_TILE + str( i) + extension_raster svf_buf_tif_file = temp_path + os.sep + FOLDER_TIF + os.sep + SUB_FOLDER_SVF + os.sep + SUB_SUB_FOLDER_BUF + os.sep + BASE_FILE_TILE + str( i) + extension_raster if os.path.exists(dem_tif_file): computeSkyViewFactor(dem_tif_file, svf_buf_tif_file, svf_radius, svf_method, svf_dlevel, svf_ndirs, save_results_intermediate) svf_buf_tif_file_list.append(svf_buf_tif_file) ################################################################### ### Re-découpage des tuiles du SVF avec les tuilles sans tampon ### ################################################################### print(bold + cyan + "Re-découpage des tuiles du SVF avec les tuilles sans tampon :" + endC) timeLine( path_time_log, " Re-découpage des tuiles du SVF avec les tuilles sans tampon : " ) folder_output_svf = temp_path + os.sep + FOLDER_TIF + os.sep + SUB_FOLDER_SVF + os.sep # Boucle sur les tuiles du SVF bufferisées for i in range(len(split_tile_vector_list)): print("Traitement de la tuile " + str(int(i) + 1) + "/" + str(len(split_tile_vector_list)) + "...") split_tile_vector = split_tile_vector_list[i] svf_buf_tif_file = temp_path + os.sep + FOLDER_TIF + os.sep + SUB_FOLDER_SVF + os.sep + SUB_SUB_FOLDER_BUF + os.sep + BASE_FILE_TILE + str( i) + extension_raster base_name = os.path.splitext(os.path.basename(svf_buf_tif_file))[0] svf_tif_file = folder_output_svf + os.sep + base_name + extension_raster if os.path.exists(svf_buf_tif_file): cutImageByVector(split_tile_vector, svf_buf_tif_file, svf_tif_file, pixel_size_x, pixel_size_y, no_data_value, epsg, format_raster, format_vector) #################################################################### ### Assemblage des tuiles du SVF et calcul de l'indicateur final ### #################################################################### print( bold + cyan + "Assemblage des tuiles du SVF et calcul de l'indicateur final :" + endC) timeLine( path_time_log, " Assemblage des tuiles du SVF et calcul de l'indicateur final : " ) classif_input_temp = temp_path + os.sep + FOLDER_TIF + os.sep + "classif_input" + SUFFIX_VECTOR_TEMP + extension_raster sky_view_factor_temp = temp_path + os.sep + FOLDER_TIF + os.sep + "sky_view_factor" + SUFFIX_VECTOR_TEMP + extension_raster # Issu de l'assemblage des dalles sky_view_factor_temp_temp = temp_path + os.sep + FOLDER_TIF + os.sep + "sky_view_factor" + SUFFIX_VECTOR_TEMP + SUFFIX_VECTOR_TEMP + extension_raster # Issu du redécoupage pour entrer correctement dans le BandMath sky_view_factor_temp_temp_temp = temp_path + os.sep + FOLDER_TIF + os.sep + "sky_view_factor" + SUFFIX_VECTOR_TEMP + SUFFIX_VECTOR_TEMP + SUFFIX_VECTOR_TEMP + extension_raster # Issu de la suppression des pixels bâti # Assemblage des tuiles du SVF créées précédemment pour ne former qu'un seul raster SVF selectAssembyImagesByHold( emprise_file, [folder_output_svf], sky_view_factor_temp, False, False, epsg, False, False, False, False, 1.0, pixel_size_x, pixel_size_y, no_data_value, "_", 2, 8, "", path_time_log, "_error", "_merge", "_clean", "_stack", format_raster, format_vector, extension_raster, extension_vector, save_results_intermediate, overwrite) # Suppression des valeurs de SVF pour les bâtiments cutImageByVector(emprise_file, classif_input, classif_input_temp, pixel_size_x, pixel_size_y, no_data_value, epsg, format_raster, format_vector) cutImageByVector(emprise_file, sky_view_factor_temp, sky_view_factor_temp_temp, pixel_size_x, pixel_size_y, no_data_value, epsg, format_raster, format_vector) expression = "" for id_class in class_build_list: expression += "im1b1==%s or " % (str(id_class)) expression = expression[:-4] command = "otbcli_BandMath -il %s %s -out %s float -exp '%s ? -1 : im2b1'" % ( classif_input_temp, sky_view_factor_temp_temp, sky_view_factor_temp_temp_temp, expression) if debug >= 3: print(command) exit_code = os.system(command) if exit_code != 0: print(command) print( cyan + "skyViewFactor() : " + bold + red + "!!! Une erreur c'est produite au cours de la commande otbcli_BandMath : " + command + ". Voir message d'erreur." + endC, file=sys.stderr) raise command = "gdal_translate -a_srs EPSG:%s -a_nodata %s -of %s %s %s" % ( str(epsg), str(no_data_value), format_raster, sky_view_factor_temp_temp_temp, sky_view_factor_raster) if debug >= 3: print(command) exit_code = os.system(command) if exit_code != 0: print(command) print( cyan + "skyViewFactor() : " + bold + red + "!!! Une erreur c'est produite au cours de la commande gdal_translate : " + command + ". Voir message d'erreur." + endC, file=sys.stderr) raise # Croisement vecteur-raster pour récupérer la moyenne de SVF par polygone du fichier maillage d'entrée col_to_delete_list = [ "min", "max", "median", "sum", "std", "unique", "range" ] statisticsVectorRaster( sky_view_factor_raster, grid_input, grid_output, 1, False, False, True, col_to_delete_list, [], {}, path_time_log, True, format_vector, save_results_intermediate, overwrite ) ## Erreur NaN pour polygones entièrement bâtis (soucis pour la suite ?) renameFieldsVector(grid_output, ['mean'], [SKY_VIEW_FIELD], format_vector) ########################################## ### Nettoyage des fichiers temporaires ### ########################################## if not save_results_intermediate: deleteDir(temp_path) else: print(bold + magenta + "Le calcul du Sky View Factor a déjà eu lieu." + endC + "\n") print(bold + yellow + "Fin du calcul de l'indicateur Sky View Factor." + endC + "\n") timeLine(path_time_log, "Fin du calcul de l'indicateur Sky View Factor : ") return
def createDifference(image_ortho_input, image_mns_input, image_mnt_input, bd_vector_input_list, zone_buffer_dico, departments_list, image_difference_output, vector_difference_output, fileld_bd_raster, simplifie_param, threshold_ndvi, threshold_difference, filter_difference_0, filter_difference_1, path_time_log, format_vector='ESRI Shapefile', extension_raster=".tif", extension_vector=".shp", save_results_intermediate=False, channel_order=['Red', 'Green', 'Blue', 'NIR'], overwrite=True): # Mise à jour du Log starting_event = "createDifference() : create macro samples starting : " timeLine(path_time_log, starting_event) # constantes CODAGE = "float" FOLDER_MASK_TEMP = 'Mask_' FOLDER_CUTTING_TEMP = 'Cut_' FOLDER_BUFF_TEMP = 'Buff_' FOLDER_RESULT_TEMP = 'Tmp_' SUFFIX_MASK_CRUDE = '_mcrude' SUFFIX_MASK = '_mask' SUFFIX_FILTERED = '_filtered' SUFFIX_VECTOR_CUT = '_decoup' SUFFIX_VECTOR_BUFF = '_buff' SUFFIX_NEW_MNS = '_new_mns' SUFFIX_DIFF_MNS = '_diff_mns' SUFFIX_NDVI = '_ndvi' # print if debug >= 3: print(bold + green + "Variables dans la fonction" + endC) print(cyan + "createDifference() : " + endC + "image_ortho_input : " + str(image_ortho_input) + endC) print(cyan + "createDifference() : " + endC + "image_mns_input : " + str(image_mns_input) + endC) print(cyan + "createDifference() : " + endC + "image_mnt_input : " + str(image_mnt_input) + endC) print(cyan + "createDifference() : " + endC + "bd_vector_input_list : " + str(bd_vector_input_list) + endC) print(cyan + "createDifference() : " + endC + "zone_buffer_dico : " + str(zone_buffer_dico) + endC) print(cyan + "createDifference() : " + endC + "departments_list : " + str(departments_list) + endC) print(cyan + "createDifference() : " + endC + "image_difference_output : " + str(image_difference_output) + endC) print(cyan + "createDifference() : " + endC + "vector_difference_output : " + str(vector_difference_output) + endC) print(cyan + "createDifference() : " + endC + "fileld_bd_raster : " + str(fileld_bd_raster) + endC) print(cyan + "createDifference() : " + endC + "simplifie_param : " + str(simplifie_param) + endC) print(cyan + "createDifference() : " + endC + "threshold_ndvi : " + str(threshold_ndvi) + endC) print(cyan + "createDifference() : " + endC + "threshold_difference : " + str(threshold_difference) + endC) print(cyan + "createDifference() : " + endC + "filter_difference_0 : " + str(filter_difference_0) + endC) print(cyan + "createDifference() : " + endC + "filter_difference_1 : " + str(filter_difference_1) + endC) print(cyan + "createDifference() : " + endC + "path_time_log : " + str(path_time_log) + endC) print(cyan + "createDifference() : " + endC + "channel_order : " + str(channel_order) + endC) print(cyan + "createDifference() : " + endC + "format_vector : " + str(format_vector) + endC) print(cyan + "createDifference() : " + endC + "extension_raster : " + str(extension_raster) + endC) print(cyan + "createDifference() : " + endC + "extension_vector : " + str(extension_vector) + endC) print(cyan + "createDifference() : " + endC + "save_results_intermediate : " + str(save_results_intermediate) + endC) print(cyan + "createDifference() : " + endC + "overwrite : " + str(overwrite) + endC) # ETAPE 1 : NETTOYER LES DONNEES EXISTANTES print(cyan + "createDifference() : " + bold + green + "NETTOYAGE ESPACE DE TRAVAIL..." + endC) # Nom de base de l'image image_name = os.path.splitext(os.path.basename(image_ortho_input))[0] # Test si le fichier résultat différence existe déjà et si il doit être écrasés check = os.path.isfile(vector_difference_output) if check and not overwrite: # Si le fichier difference existe deja et que overwrite n'est pas activé print(cyan + "createDifference() : " + bold + yellow + "File difference " + vector_difference_output + " already exists and will not be created again." + endC) else: if check: try: removeFile(vector_difference_output) except Exception: pass # si le fichier n'existe pas, il ne peut pas être supprimé : cette étape est ignorée # Définition des répertoires temporaires repertory_output = os.path.dirname(vector_difference_output) repertory_output_temp = repertory_output + os.sep + FOLDER_RESULT_TEMP + image_name repertory_mask_temp = repertory_output + os.sep + FOLDER_MASK_TEMP + image_name repertory_samples_cutting_temp = repertory_output + os.sep + FOLDER_CUTTING_TEMP + image_name repertory_samples_buff_temp = repertory_output + os.sep + FOLDER_BUFF_TEMP + image_name print(repertory_output_temp) print(repertory_mask_temp) print(repertory_samples_cutting_temp) print(repertory_samples_buff_temp) # Création des répertoires temporaire qui n'existent pas if not os.path.isdir(repertory_output_temp): os.makedirs(repertory_output_temp) if not os.path.isdir(repertory_mask_temp): os.makedirs(repertory_mask_temp) if not os.path.isdir(repertory_samples_cutting_temp): os.makedirs(repertory_samples_cutting_temp) if not os.path.isdir(repertory_samples_buff_temp): os.makedirs(repertory_samples_buff_temp) # Nettoyage des répertoires temporaire qui ne sont pas vide cleanTempData(repertory_mask_temp) cleanTempData(repertory_samples_cutting_temp) cleanTempData(repertory_samples_buff_temp) cleanTempData(repertory_output_temp) BD_topo_layers_list = [] #zone = zone_buffer_dico.keys()[0] zone = list(zone_buffer_dico)[0] # Creation liste des couches des bd exogenes utilisées for layers_buffer in zone_buffer_dico[zone]: BD_topo_layers_list.append(layers_buffer[0]) print(cyan + "createDifference() : " + bold + green + "... FIN NETTOYAGE" + endC) # ETAPE 2 : DECOUPER LES VECTEURS print(cyan + "createDifference() : " + bold + green + "DECOUPAGE ECHANTILLONS..." + endC) # 2.1 : Création du masque délimitant l'emprise de la zone par image vector_mask = repertory_mask_temp + os.sep + image_name + SUFFIX_MASK_CRUDE + extension_vector createVectorMask(image_ortho_input, vector_mask) # 2.2 : Simplification du masque vector_simple_mask = repertory_mask_temp + os.sep + image_name + SUFFIX_MASK + extension_vector simplifyVector(vector_mask, vector_simple_mask, simplifie_param, format_vector) # 2.3 : Découpage des vecteurs copiés en local avec le masque vector_output_list = [] for vector_input in bd_vector_input_list: vector_name = os.path.splitext(os.path.basename(vector_input))[0] extension = os.path.splitext(os.path.basename(vector_input))[1] vector_output = repertory_samples_cutting_temp + os.sep + vector_name + SUFFIX_VECTOR_CUT + extension vector_output_list.append(vector_output) cutoutVectors(vector_simple_mask, bd_vector_input_list, vector_output_list, format_vector) print(cyan + "createDifference() : " + bold + green + "...FIN DECOUPAGE" + endC) # ETAPE 3 : BUFFERISER LES VECTEURS print(cyan + "createDifference() : " + bold + green + "MISE EN PLACE DES TAMPONS..." + endC) # Parcours du dictionnaire associant la zone aux noms de fichiers et aux tampons associés for elem_buff in zone_buffer_dico[zone]: # Parcours des départements for dpt in departments_list: input_shape = repertory_samples_cutting_temp + os.sep + elem_buff[ 0] + "_" + dpt + SUFFIX_VECTOR_CUT + extension_vector output_shape = repertory_samples_buff_temp + os.sep + elem_buff[ 0] + "_" + dpt + SUFFIX_VECTOR_BUFF + extension_vector buff = elem_buff[1] if os.path.isfile(input_shape): if debug >= 3: print(cyan + "createDifference() : " + endC + "input_shape : " + str(input_shape) + endC) print(cyan + "createDifference() : " + endC + "output_shape : " + str(output_shape) + endC) print(cyan + "createDifference() : " + endC + "buff : " + str(buff) + endC) bufferVector(input_shape, output_shape, buff, "", 1.0, 10, format_vector) else: print(cyan + "createDifference() : " + bold + yellow + "Pas de fichier du nom : " + endC + input_shape) print(cyan + "createDifference() : " + bold + green + "FIN DE L AFFECTATION DES TAMPONS" + endC) # ETAPE 4 : FUSION DES SHAPES DE LA BD TOPO print(cyan + "createDifference() : " + bold + green + "FUSION DATA BD..." + endC) shape_buff_list = [] # Parcours du dictionnaire associant la zone au nom du fichier for elem_buff in zone_buffer_dico[zone]: # Parcours des départements for dpt in departments_list: shape_file = repertory_samples_buff_temp + os.sep + elem_buff[ 0] + "_" + dpt + SUFFIX_VECTOR_BUFF + extension_vector if os.path.isfile(shape_file): shape_buff_list.append(shape_file) print("file for fusion : " + shape_file) else: print(bold + yellow + "pas de fichiers avec ce nom : " + endC + shape_file) # si une liste de fichier shape existe if not shape_buff_list: print(bold + yellow + "Pas de fusion sans donnee a fusionnee" + endC) else: # Fusion des fichiers shape image_zone_shape = repertory_output_temp + os.sep + image_name + '_' + zone + extension_vector fusionVectors(shape_buff_list, image_zone_shape) print("File BD : " + image_zone_shape) print(cyan + "createDifference() : " + bold + green + "FIN DE LA FUSION" + endC) # ETAPE 5 : RASTERISER LE FICHIER SHAPE DE ZONE BD print(cyan + "createDifference() : " + bold + green + "RASTERIZATION DE LA FUSION..." + endC) image_zone_raster = repertory_output_temp + os.sep + image_name + '_' + zone + extension_raster rasterizeVector(image_zone_shape, image_zone_raster, image_ortho_input, fileld_bd_raster, codage=CODAGE) print(cyan + "createDifference() : " + bold + green + "FIN DE LA RASTERIZATION" + endC) # ETAPE 6 : CREER UN NOUVEAU MMS ISSU DU MNT + DATA BD_TOPO print(cyan + "createDifference() : " + bold + green + "CREATION NOUVEAU MNS..." + endC) image_new_mns_output = repertory_output_temp + os.sep + image_name + SUFFIX_NEW_MNS + extension_raster createMNS(image_ortho_input, image_mnt_input, image_zone_raster, image_new_mns_output) print(cyan + "createDifference() : " + bold + green + "FIN DE LA CREATION MNS" + endC) # ETAPE 7 : CREER D'UN MASQUE SUR LES ZONES VEGETALES print(cyan + "createDifference() : " + bold + green + "CREATION DU NDVI..." + endC) image_ndvi_output = repertory_output_temp + os.sep + image_name + SUFFIX_NDVI + extension_raster createNDVI(image_ortho_input, image_ndvi_output, channel_order) print(cyan + "createDifference() : " + bold + green + "FIN DE LA CREATION DU NDVI" + endC) print(cyan + "createDifference() : " + bold + green + "CREATION DU MASQUE NDVI..." + endC) image_ndvi_mask_output = repertory_output_temp + os.sep + image_name + SUFFIX_NDVI + SUFFIX_MASK + extension_raster createBinaryMask(image_ndvi_output, image_ndvi_mask_output, threshold_ndvi, False) print(cyan + "createDifference() : " + bold + green + "FIN DE LA CREATION DU MASQUE NDVI" + endC) # ETAPE 8 : CREER UN FICHIER DE DIFFERENCE DES MNS AVEC MASQUAGE DES ZONES VEGETALES print(cyan + "createDifference() : " + bold + green + "CREATION DIFFERENCE MNS..." + endC) #image_diff_mns_output = repertory_output + os.sep + image_name + SUFFIX_DIFF_MNS + extension_raster image_diff_mns_output = image_difference_output createDifferenceFile(image_mns_input, image_new_mns_output, image_ndvi_mask_output, image_diff_mns_output) print(cyan + "createDifference() : " + bold + green + "FIN DE LA CREATION DE LA DIFFERENCE MNS" + endC) print(cyan + "createDifference() : " + bold + green + "CREATION DU MASQUE DE DIFFERENCE..." + endC) image_diff_mns_mask_output = repertory_output_temp + os.sep + image_name + SUFFIX_DIFF_MNS + SUFFIX_MASK + extension_raster createBinaryMask(image_diff_mns_output, image_diff_mns_mask_output, threshold_difference, True) print(cyan + "createDifference() : " + bold + green + "FIN DE LA CREATION DU MASQUE DE DIFFERENCE" + endC) print(cyan + "createDifference() : " + bold + green + "FILTRAGE DU MASQUE DE DIFFERENCE..." + endC) image_diff_mns_filtered_output = repertory_output_temp + os.sep + image_name + SUFFIX_DIFF_MNS + SUFFIX_FILTERED + extension_raster filterBinaryRaster(image_diff_mns_mask_output, image_diff_mns_filtered_output, filter_difference_0, filter_difference_1) print(cyan + "createDifference() : " + bold + green + "FIN DU FILTRAGE DU MASQUE DE DIFFERENCE" + endC) # ETAPE 9 : RASTERISER LE FICHIER DE DIFFERENCE DES MNS print(cyan + "createDifference() : " + bold + green + "VECTORISATION DU RASTER DE DIFFERENCE..." + endC) vector_diff_mns_filtered_output = repertory_output_temp + os.sep + image_name + SUFFIX_DIFF_MNS + SUFFIX_FILTERED + extension_vector polygonizeRaster(image_diff_mns_filtered_output, vector_diff_mns_filtered_output, image_name, field_name="DN") print(cyan + "createDifference() : " + bold + green + "FIN DE VECTORISATION DU RASTER DE DIFFERENCE" + endC) print(cyan + "createDifference() : " + bold + green + "SIMPLIFICATION VECTEUR DE DIFFERENCE..." + endC) simplifyVector(vector_diff_mns_filtered_output, vector_difference_output, simplifie_param, format_vector) print(cyan + "createDifference() : " + bold + green + "FIN DE SIMPLIFICATION DI VECTEUR DE DIFFERENCE" + endC) # ETAPE 10 : SUPPRESIONS FICHIERS INTERMEDIAIRES INUTILES if not save_results_intermediate: # Supression des .geom dans le dossier for to_delete in glob.glob(repertory_mask_temp + os.sep + "*.geom"): removeFile(to_delete) # Suppression des repertoires temporaires deleteDir(repertory_mask_temp) deleteDir(repertory_samples_cutting_temp) deleteDir(repertory_samples_buff_temp) deleteDir(repertory_output_temp) # Mise à jour du Log ending_event = "createDifference() : create macro samples ending : " timeLine(path_time_log, ending_event) return
def createMacroSamples(image_input, vector_to_cut_input, vector_sample_output, raster_sample_output, bd_vector_input_list, bd_buff_list, sql_expression_list, path_time_log, macro_sample_name="", simplify_vector_param=10.0, format_vector='ESRI Shapefile', extension_vector=".shp", save_results_intermediate=False, overwrite=True) : # Mise à jour du Log starting_event = "createMacroSamples() : create macro samples starting : " timeLine(path_time_log,starting_event) if debug >= 3: print(bold + green + "createMacroSamples() : Variables dans la fonction" + endC) print(cyan + "createMacroSamples() : " + endC + "image_input : " + str(image_input) + endC) print(cyan + "createMacroSamples() : " + endC + "vector_to_cut_input : " + str(vector_to_cut_input) + endC) print(cyan + "createMacroSamples() : " + endC + "vector_sample_output : " + str(vector_sample_output) + endC) print(cyan + "createMacroSamples() : " + endC + "raster_sample_output : " + str(raster_sample_output) + endC) print(cyan + "createMacroSamples() : " + endC + "bd_vector_input_list : " + str(bd_vector_input_list) + endC) print(cyan + "createMacroSamples() : " + endC + "bd_buff_list : " + str(bd_buff_list) + endC) print(cyan + "createMacroSamples() : " + endC + "sql_expression_list : " + str(sql_expression_list) + endC) print(cyan + "createMacroSamples() : " + endC + "path_time_log : " + str(path_time_log) + endC) print(cyan + "createMacroSamples() : " + endC + "macro_sample_name : " + str(macro_sample_name) + endC) print(cyan + "createMacroSamples() : " + endC + "simplify_vector_param : " + str(simplify_vector_param) + endC) print(cyan + "createMacroSamples() : " + endC + "format_vector : " + str(format_vector)) print(cyan + "createMacroSamples() : " + endC + "extension_vector : " + str(extension_vector) + endC) print(cyan + "createMacroSamples() : " + endC + "save_results_intermediate : " + str(save_results_intermediate) + endC) print(cyan + "createMacroSamples() : " + endC + "overwrite : " + str(overwrite) + endC) # Constantes FOLDER_MASK_TEMP = "Mask_" FOLDER_CUTTING_TEMP = "Cut_" FOLDER_FILTERING_TEMP = "Filter_" FOLDER_BUFF_TEMP = "Buff_" SUFFIX_MASK_CRUDE = "_crude" SUFFIX_MASK = "_mask" SUFFIX_VECTOR_CUT = "_cut" SUFFIX_VECTOR_FILTER = "_filt" SUFFIX_VECTOR_BUFF = "_buff" CODAGE = "uint8" # ETAPE 1 : NETTOYER LES DONNEES EXISTANTES print(cyan + "createMacroSamples() : " + bold + green + "Nettoyage de l'espace de travail..." + endC) # Nom du repertoire de calcul repertory_macrosamples_output = os.path.dirname(vector_sample_output) # Test si le vecteur echantillon existe déjà et si il doit être écrasés check = os.path.isfile(vector_sample_output) or os.path.isfile(raster_sample_output) if check and not overwrite: # Si les fichiers echantillons existent deja et que overwrite n'est pas activé print(bold + yellow + "File sample : " + vector_sample_output + " already exists and will not be created again." + endC) else : if check: try: removeVectorFile(vector_sample_output) removeFile(raster_sample_output) except Exception: pass # si le fichier n'existe pas, il ne peut pas être supprimé : cette étape est ignorée # Définition des répertoires temporaires repertory_mask_temp = repertory_macrosamples_output + os.sep + FOLDER_MASK_TEMP + macro_sample_name repertory_samples_cutting_temp = repertory_macrosamples_output + os.sep + FOLDER_CUTTING_TEMP + macro_sample_name repertory_samples_filtering_temp = repertory_macrosamples_output + os.sep + FOLDER_FILTERING_TEMP + macro_sample_name repertory_samples_buff_temp = repertory_macrosamples_output + os.sep + FOLDER_BUFF_TEMP + macro_sample_name if debug >= 4: print(cyan + "createMacroSamples() : " + endC + "Création du répertoire : " + str(repertory_mask_temp)) print(cyan + "createMacroSamples() : " + endC + "Création du répertoire : " + str(repertory_samples_cutting_temp)) print(cyan + "createMacroSamples() : " + endC + "Création du répertoire : " + str(repertory_samples_buff_temp)) # Création des répertoires temporaire qui n'existent pas if not os.path.isdir(repertory_macrosamples_output): os.makedirs(repertory_macrosamples_output) if not os.path.isdir(repertory_mask_temp): os.makedirs(repertory_mask_temp) if not os.path.isdir(repertory_samples_cutting_temp): os.makedirs(repertory_samples_cutting_temp) if not os.path.isdir(repertory_samples_filtering_temp): os.makedirs(repertory_samples_filtering_temp) if not os.path.isdir(repertory_samples_buff_temp): os.makedirs(repertory_samples_buff_temp) # Nettoyage des répertoires temporaire qui ne sont pas vide cleanTempData(repertory_mask_temp) cleanTempData(repertory_samples_cutting_temp) cleanTempData(repertory_samples_filtering_temp) cleanTempData(repertory_samples_buff_temp) print(cyan + "createMacroSamples() : " + bold + green + "... fin du nettoyage" + endC) # ETAPE 2 : DECOUPAGE DES VECTEURS print(cyan + "createMacroSamples() : " + bold + green + "Decoupage des echantillons ..." + endC) if vector_to_cut_input == None : # 2.1 : Création du masque délimitant l'emprise de la zone par image image_name = os.path.splitext(os.path.basename(image_input))[0] vector_mask = repertory_mask_temp + os.sep + image_name + SUFFIX_MASK_CRUDE + extension_vector createVectorMask(image_input, vector_mask) # 2.2 : Simplification du masque vector_simple_mask = repertory_mask_temp + os.sep + image_name + SUFFIX_MASK + extension_vector simplifyVector(vector_mask, vector_simple_mask, simplify_vector_param, format_vector) else : vector_simple_mask = vector_to_cut_input # 2.3 : Découpage des vecteurs de bd exogenes avec le masque vectors_cut_list = [] for vector_input in bd_vector_input_list : vector_name = os.path.splitext(os.path.basename(vector_input))[0] vector_cut = repertory_samples_cutting_temp + os.sep + vector_name + SUFFIX_VECTOR_CUT + extension_vector vectors_cut_list.append(vector_cut) cutoutVectors(vector_simple_mask, bd_vector_input_list, vectors_cut_list, format_vector) print(cyan + "createMacroSamples() : " + bold + green + "... fin du decoupage" + endC) # ETAPE 3 : FILTRAGE DES VECTEURS print(cyan + "createMacroSamples() : " + bold + green + "Filtrage des echantillons ..." + endC) vectors_filtered_list = [] if sql_expression_list != [] : for idx_vector in range (len(bd_vector_input_list)): vector_name = os.path.splitext(os.path.basename(bd_vector_input_list[idx_vector]))[0] vector_cut = vectors_cut_list[idx_vector] if idx_vector < len(sql_expression_list) : sql_expression = sql_expression_list[idx_vector] else : sql_expression = "" vector_filtered = repertory_samples_filtering_temp + os.sep + vector_name + SUFFIX_VECTOR_FILTER + extension_vector vectors_filtered_list.append(vector_filtered) # Filtrage par ogr2ogr if sql_expression != "": names_attribut_list = getAttributeNameList(vector_cut, format_vector) column = "'" for name_attribut in names_attribut_list : column += name_attribut + ", " column = column[0:len(column)-2] column += "'" ret = filterSelectDataVector(vector_cut, vector_filtered, column, sql_expression, format_vector) if not ret : print(cyan + "createMacroSamples() : " + bold + yellow + "Attention problème lors du filtrage des BD vecteurs l'expression SQL %s est incorrecte" %(sql_expression) + endC) copyVectorFile(vector_cut, vector_filtered) else : print(cyan + "createMacroSamples() : " + bold + yellow + "Pas de filtrage sur le fichier du nom : " + endC + vector_filtered) copyVectorFile(vector_cut, vector_filtered) else : print(cyan + "createMacroSamples() : " + bold + yellow + "Pas de filtrage demandé" + endC) for idx_vector in range (len(bd_vector_input_list)): vector_cut = vectors_cut_list[idx_vector] vectors_filtered_list.append(vector_cut) print(cyan + "createMacroSamples() : " + bold + green + "... fin du filtrage" + endC) # ETAPE 4 : BUFFERISATION DES VECTEURS print(cyan + "createMacroSamples() : " + bold + green + "Mise en place des tampons..." + endC) vectors_buffered_list = [] if bd_buff_list != [] : # Parcours des vecteurs d'entrée for idx_vector in range (len(bd_vector_input_list)): vector_name = os.path.splitext(os.path.basename(bd_vector_input_list[idx_vector]))[0] buff = bd_buff_list[idx_vector] vector_filtered = vectors_filtered_list[idx_vector] vector_buffered = repertory_samples_buff_temp + os.sep + vector_name + SUFFIX_VECTOR_BUFF + extension_vector if buff != 0: if os.path.isfile(vector_filtered): if debug >= 3: print(cyan + "createMacroSamples() : " + endC + "vector_filtered : " + str(vector_filtered) + endC) print(cyan + "createMacroSamples() : " + endC + "vector_buffered : " + str(vector_buffered) + endC) print(cyan + "createMacroSamples() : " + endC + "buff : " + str(buff) + endC) bufferVector(vector_filtered, vector_buffered, buff, "", 1.0, 10, format_vector) else : print(cyan + "createMacroSamples() : " + bold + yellow + "Pas de fichier du nom : " + endC + vector_filtered) else : print(cyan + "createMacroSamples() : " + bold + yellow + "Pas de tampon sur le fichier du nom : " + endC + vector_filtered) copyVectorFile(vector_filtered, vector_buffered) vectors_buffered_list.append(vector_buffered) else : print(cyan + "createMacroSamples() : " + bold + yellow + "Pas de tampon demandé" + endC) for idx_vector in range (len(bd_vector_input_list)): vector_filtered = vectors_filtered_list[idx_vector] vectors_buffered_list.append(vector_filtered) print(cyan + "createMacroSamples() : " + bold + green + "... fin de la mise en place des tampons" + endC) # ETAPE 5 : FUSION DES SHAPES print(cyan + "createMacroSamples() : " + bold + green + "Fusion par macroclasse ..." + endC) # si une liste de fichier shape à fusionner existe if not vectors_buffered_list: print(cyan + "createMacroSamples() : " + bold + yellow + "Pas de fusion sans donnee à fusionner" + endC) # s'il n'y a qu'un fichier shape en entrée elif len(vectors_buffered_list) == 1: print(cyan + "createMacroSamples() : " + bold + yellow + "Pas de fusion pour une seule donnee à fusionner" + endC) copyVectorFile(vectors_buffered_list[0], vector_sample_output) else : # Fusion des fichiers shape vectors_buffered_controled_list = [] for vector_buffered in vectors_buffered_list : if os.path.isfile(vector_buffered) and (getGeometryType(vector_buffered, format_vector) in ('POLYGON', 'MULTIPOLYGON')) and (getNumberFeature(vector_buffered, format_vector) > 0): vectors_buffered_controled_list.append(vector_buffered) else : print(cyan + "createMacroSamples() : " + bold + red + "Attention fichier bufferisé est vide il ne sera pas fusionné : " + endC + vector_buffered, file=sys.stderr) fusionVectors(vectors_buffered_controled_list, vector_sample_output, format_vector) print(cyan + "createMacroSamples() : " + bold + green + "... fin de la fusion" + endC) # ETAPE 6 : CREATION DU FICHIER RASTER RESULTAT SI DEMANDE # Creation d'un masque binaire if raster_sample_output != "" and image_input != "" : repertory_output = os.path.dirname(raster_sample_output) if not os.path.isdir(repertory_output): os.makedirs(repertory_output) rasterizeBinaryVector(vector_sample_output, image_input, raster_sample_output, 1, CODAGE) # ETAPE 7 : SUPPRESIONS FICHIERS INTERMEDIAIRES INUTILES # Suppression des données intermédiaires if not save_results_intermediate: # Supression du fichier de decoupe si celui ci a été créer if vector_simple_mask != vector_to_cut_input : if os.path.isfile(vector_simple_mask) : removeVectorFile(vector_simple_mask) # Suppression des repertoires temporaires deleteDir(repertory_mask_temp) deleteDir(repertory_samples_cutting_temp) deleteDir(repertory_samples_filtering_temp) deleteDir(repertory_samples_buff_temp) # Mise à jour du Log ending_event = "createMacroSamples() : create macro samples ending : " timeLine(path_time_log,ending_event) return