Example #1
0
    def get_chiral_diff(self, edges, arc1, arc2, count=[]):
        narcs1 = normalized_vectors(arc1)
        narcs2 = normalized_vectors(arc2)
        ### DEBUG
        #atoms = ["H", "F", "He", "Cl", "N", "O"]
        R = rotation_from_vectors(narcs2, narcs1)
        #FIXME(pboyd): ensure that this is the right rotation!!! I think it's supposed to rotate narcs2
        narcs1 = (np.dot(R[:3,:3], narcs1.T)).T
        #narcs2 = (np.dot(R[:3,:3], narcs2.T)).T
        #or1 = np.zeros(3)
        #or2 = np.array([3., 3., 0.])
        #xyz_str1 = "C %9.5f %9.5f %9.5f\n"%(or1[0], or1[1], or1[2])
        #xyz_str2 = "C %9.5f %9.5f %9.5f\n"%(or2[0], or2[1], or2[2])
        #for ind, (i, j) in enumerate(zip(narcs1,narcs2)):
        #    at = atoms[ind]
        #    pos = i[:3] + or1
        #    xyz_str1 += "%s %9.5f %9.5f %9.5f\n"%(at, pos[0], pos[1], pos[2])
        #    pos = j + or2
        #    xyz_str2 += "%s %9.5f %9.5f %9.5f\n"%(at, pos[0], pos[1], pos[2]) 

        #xyz_file = open("debugging.xyz", 'a')
        #xyz_file.writelines("%i\ndebug\n"%(len(narcs1)*2+2))
        #xyz_file.writelines(xyz_str1)
        #xyz_file.writelines(xyz_str2)
        #xyz_file.close()

        ### DEBUG
        #CI_1 = self.chiral_invariant(edges, narcs1)

        #CI_2 = self.chiral_invariant(edges, narcs2)
        #count.append(1) 
        #ff = open("CI1", 'a')
        #ff.writelines('%i %e\n'%(len(count), CI_1))
        #ff.close()
        #ff = open("CI2", 'a')
        #ff.writelines('%i %e\n'%(len(count), CI_2))
        #ff.close()
        #print 'edge assignment ', ','.join([p[2] for p in edges])
        #print 'lattice arcs  CI ', CI_1
        #print 'connect point CI ', CI_2

        #if all(item >= 0 for item in (CI_1, CI_2)) or all(item < 0 for item in (CI_1, CI_2)):
        #    return np.absolute(CI_1 - CI_2)
        #else:
        #    return 150000.
        return np.sum(np.absolute((narcs1 - narcs2).flatten()))
Example #2
0
    def get_chiral_diff(self, edges, arc1, arc2, count=[]):
        narcs1 = normalized_vectors(arc1)
        narcs2 = normalized_vectors(arc2)
        ### DEBUG
        #atoms = ["H", "F", "He", "Cl", "N", "O"]
        R = rotation_from_vectors(narcs2, narcs1)
        #FIXME(pboyd): ensure that this is the right rotation!!! I think it's supposed to rotate narcs2
        narcs1 = (np.dot(R[:3,:3], narcs1.T)).T
        #narcs2 = (np.dot(R[:3,:3], narcs2.T)).T
        #or1 = np.zeros(3)
        #or2 = np.array([3., 3., 0.])
        #xyz_str1 = "C %9.5f %9.5f %9.5f\n"%(or1[0], or1[1], or1[2])
        #xyz_str2 = "C %9.5f %9.5f %9.5f\n"%(or2[0], or2[1], or2[2])
        #for ind, (i, j) in enumerate(zip(narcs1,narcs2)):
        #    at = atoms[ind]
        #    pos = i[:3] + or1
        #    xyz_str1 += "%s %9.5f %9.5f %9.5f\n"%(at, pos[0], pos[1], pos[2])
        #    pos = j + or2
        #    xyz_str2 += "%s %9.5f %9.5f %9.5f\n"%(at, pos[0], pos[1], pos[2]) 

        #xyz_file = open("debugging.xyz", 'a')
        #xyz_file.writelines("%i\ndebug\n"%(len(narcs1)*2+2))
        #xyz_file.writelines(xyz_str1)
        #xyz_file.writelines(xyz_str2)
        #xyz_file.close()

        ### DEBUG
        #CI_1 = self.chiral_invariant(edges, narcs1)

        #CI_2 = self.chiral_invariant(edges, narcs2)
        #count.append(1) 
        #ff = open("CI1", 'a')
        #ff.writelines('%i %e\n'%(len(count), CI_1))
        #ff.close()
        #ff = open("CI2", 'a')
        #ff.writelines('%i %e\n'%(len(count), CI_2))
        #ff.close()
        #print 'edge assignment ', ','.join([p[2] for p in edges])
        #print 'lattice arcs  CI ', CI_1
        #print 'connect point CI ', CI_2

        #if all(item >= 0 for item in (CI_1, CI_2)) or all(item < 0 for item in (CI_1, CI_2)):
        #    return np.absolute(CI_1 - CI_2)
        #else:
        #    return 150000.
        return np.sum(np.absolute((narcs1 - narcs2).flatten()))
Example #3
0
    def closest_match_vertices(self, sbu):
        g = self._net.graph

        if sbu.two_connected and not sbu.linear:
            cp_v = normalized_vectors([
                self.vector_from_cp_intersecting_pt(cp, sbu) for
                                   cp in sbu.connect_points])
        else:
            cp_v = normalized_vectors([self.vector_from_cp_SBU(cp, sbu) for
                                   cp in sbu.connect_points])
        ipv = self.scaled_ipmatrix(np.inner(cp_v, cp_v))

        inds = np.triu_indices(ipv.shape[0], k=1)
        max, min = np.absolute(ipv[inds]).max(), np.absolute(ipv[inds]).min()
        cmatch = []
        for v in self.sbu_vertices:
            ee = self._net.neighbours(v) 
            l_arcs = self._net.lattice_arcs[self._net.return_indices(ee)]
            lai = np.dot(np.dot(l_arcs, self._net.metric_tensor), l_arcs.T)
            ipc = self.scaled_ipmatrix(lai)
            imax, imin = np.absolute(ipc[inds]).max(), np.absolute(ipc[inds]).min()
            mm = np.sum(np.absolute([max-imax, min-imin]))
            cmatch.append((mm, v))
        return sorted(cmatch)
Example #4
0
    def closest_match_vertices(self, sbu):
        g = self._net.graph

        if sbu.two_connected and not sbu.linear:
            cp_v = normalized_vectors([
                self.vector_from_cp_intersecting_pt(cp, sbu) for
                                   cp in sbu.connect_points])
        else:
            cp_v = normalized_vectors([self.vector_from_cp_SBU(cp, sbu) for
                                   cp in sbu.connect_points])
        ipv = self.scaled_ipmatrix(np.inner(cp_v, cp_v))

        inds = np.triu_indices(ipv.shape[0], k=1)
        max, min = np.absolute(ipv[inds]).max(), np.absolute(ipv[inds]).min()
        cmatch = []
        for v in self.sbu_vertices:
            ee = self._net.neighbours(v) 
            l_arcs = self._net.lattice_arcs[self._net.return_indices(ee)]
            lai = np.dot(np.dot(l_arcs, self._net.metric_tensor), l_arcs.T)
            ipc = self.scaled_ipmatrix(lai)
            imax, imin = np.absolute(ipc[inds]).max(), np.absolute(ipc[inds]).min()
            mm = np.sum(np.absolute([max-imax, min-imin]))
            cmatch.append((mm, v))
        return sorted(cmatch)
Example #5
0
 def report_errors(self, sbu_vects, arcs, rot_mat):
     rotation = np.dot(rot_mat[:3,:3], sbu_vects.T)
     v = normalized_vectors(rotation.T)
     angles = np.array([calc_angle(v1, v2) for v1, v2 in zip(v, arcs)])
     mean, std = np.mean(angles), np.std(angles)
     return mean, std
Example #6
0
    def sbu_orient(self, v, cell):
        """Least squares optimization of orientation matrix.
        Obtained from:
        Soderkvist & Wedin
        'Determining the movements of the skeleton using well configured markers'
        J. Biomech. 26, 12, 1993, 1473-1477.
        DOI: 10.1016/0021-9290(93)90098-Y"""
        g = self._net.graph
        sbu = self._vertex_sbu[v]
        edges = self._net.neighbours(v) 
        debug("Orienting SBU: %i, %s on vertex %s"%(sbu.identifier, sbu.name, v))
        # re-index the edges to match the order of the connect points in the sbu list
        indexed_edges = sbu.edge_assignments
        coefficients = np.array([1. if e in self._net.out_edges(v) else -1. for e in indexed_edges])
        if len(indexed_edges) != sbu.degree:
            error("There was an error assigning edges "+
                        "to the sbu %s"%(sbu.name))
            Terminate(errcode=1)

            
        inds = self._net.return_indices(indexed_edges)
        la = self._net.lattice_arcs[inds]
        if self._net.ndim == 2:
            la = np.hstack((la, np.zeros((la.shape[0], 1))))

        arcs = np.dot(la, cell)
        arcs = normalized_vectors(arcs) * coefficients[:, None]

        sbu_vects = normalized_vectors(np.array([self.vector_from_cp_SBU(cp, sbu) 
                                for cp in sbu.connect_points]))

        #print np.dot(arcs, arcs.T)
        #sf = self._net.scale_factor
        #la = self._net.lattice_arcs
        #mt = self._net.metric_tensor/sf
        #obj = la*mt*la.T
        #print obj
        # issue for ditopic SBUs where the inner product matrices could invert the
        # angles (particularly for ZIFs)
        if sbu.degree == 2 and not sbu.linear:
            sbu_vects = normalized_vectors(np.array([
                self.vector_from_cp_intersecting_pt(cp, sbu) 
                                for cp in sbu.connect_points]))
            # define the plane generated by the edges
            #print "arc angle %9.5f"%(180.*calc_angle(*arcs)/np.pi)
            #print "sbu angle %9.5f"%(180.*calc_angle(*sbu_vects)/np.pi)
            # For some reason the least squares rotation matrix
            # does not work well with just two vectors, so a third
            # orthonormal vector is included to create the proper
            # rotation matrix
            arc3 = np.cross(arcs[0], arcs[1])
            arc3 /= np.linalg.norm(arc3)
            cp3 = np.cross(sbu_vects[0], sbu_vects[1])
            cp3 /= np.linalg.norm(cp3)
            sbu_vects = np.vstack((sbu_vects, cp3))
            arcs = np.vstack((arcs, arc3))
        R = rotation_from_vectors(sbu_vects, arcs) 
        mean, std = self.report_errors(sbu_vects, arcs, rot_mat=R)
        
        ### DEBUGGGGGG
        #or1 = np.zeros(3)
        #or2 = np.array([3., 3., 0.])
        #xyz_str1 = "C %9.5f %9.5f %9.5f\n"%(or1[0], or1[1], or1[2])
        #xyz_str2 = "C %9.5f %9.5f %9.5f\n"%(or2[0], or2[1], or2[2])
        #atms = ["H", "F", "O", "He", "N", "Cl"]
        #sbu_rot_vects = np.dot(R[:3,:3], sbu_vects.T)
        #for ind, (i, j) in enumerate(zip(arcs, sbu_rot_vects.T)):
        #    at = atms[ind]
        #    pos = i + or1
        #    xyz_str1 += "%s %9.5f %9.5f %9.5f\n"%(at, pos[0], pos[1], pos[2])
        #    pos = j + or2
        #    xyz_str2 += "%s %9.5f %9.5f %9.5f\n"%(at, pos[0], pos[1], pos[2]) 

        #xyz_file = open("debug_rotation_function.xyz", 'a')
        #xyz_file.writelines("%i\ndebug\n"%(len(sbu_rot_vects.T)*2+2))
        #xyz_file.writelines(xyz_str1)
        #xyz_file.writelines(xyz_str2)
        #xyz_file.close()
        ### DEBUGGGGGG

        mean, std = self.report_errors(sbu_vects, arcs, rot_mat=R)
        debug("Average orientation error: %12.6f +/- %9.6f degrees"%(mean/DEG2RAD, std/DEG2RAD))
        sbu.rotate(R)
Example #7
0
    def assign_edge_labels(self, vertex):
        """Edge assignment is geometry dependent. This will try to 
        find the best assignment based on inner product comparison
        with the non-placed lattice arcs."""
        sbu = self._vertex_sbu[vertex]
        local_arcs = sbu.connect_points
        edges = self._net.neighbours(vertex) 
        indices = self._net.return_indices(edges)
        lattice_arcs = self._net.lattice_arcs
        e_assign = {}
        if sbu.two_connected and not sbu.linear:
            vects = [self.vector_from_cp_intersecting_pt(cp, sbu) for cp in local_arcs]
        else:
            vects = [self.vector_from_cp_SBU(cp, sbu) for cp in local_arcs]
        norm_cp = normalized_vectors(vects)
        li = self.normalized_ipmatrix(vects)
        min, chi_diff=15000., 15000.
        cc, assign = None, None
      #  print("hi1")
        debug("%s assigned to %s"%(sbu.name, vertex))
     #   print("hi2")
        cell = Cell()
        cell.mkcell(self._net.get_3d_params())
        if self._net.ndim == 2:
            lattice_arcs = np.hstack((lattice_arcs, np.zeros((lattice_arcs.shape[0],1))))
        lattice_vects = np.dot(lattice_arcs, cell.lattice)
        count = 0
       # print("hi1")
        print('Number of edges {}'.format(len(edges)))
        print(edges)
        for i, e in enumerate(itertools.combinations(edges, len(edges))):
            print(e) 
            count += 1
            indices = self._net.return_indices(e)
            #node_arcs = lattice_arcs[indices]*\
            #        self._net.metric_tensor*lattice_arcs[indices].T
            #max = node_arcs.max()
            #la = np.empty((len(indices),len(indices)))
            #for (i,j), val in np.ndenumerate(node_arcs):
            #    if i==j:
            #        la[i,j] = val/max
            #    else:
            #        v = val/np.sqrt(node_arcs[i,i])/np.sqrt(node_arcs[j,j])
            #        la[i,j] = v
            #        la[j,i] = v
            # using tensor product of the incidences
            coeff = np.array([-1. if j in self._net.in_edges(vertex)
                               else 1. for j in e])
            #td = np.tensordot(coeff, coeff, axes=0)
            #diff = np.multiply(li, td) - la
            #inds = np.triu_indices(diff.shape[0], k=1) 
            #xmax, xmin = np.absolute(diff[inds]).max(), np.absolute(diff[inds]).min()
            #mm = np.sum(diff)
            #mm = np.sum(np.absolute(np.multiply(li,td) - la))
            # NB Chirality matters!!!
            # get the cell
            lv_arc = (np.array(lattice_vects[indices]) 
                                        * coeff[:, None])
            # get the lattice arcs

            mm = self.get_chiral_diff(e, lv_arc, vects)
            print("hi1")
            print(i,mm) 
            #norm_arc = normalized_vectors(lv_arc)
            # orient the lattice arcs to the first sbu vector...
            #print count , self.chiral_match(e, oriented_arc, norm_cp)
            #print count, np.allclose(norm_cp, oriented_arc, atol=0.01)
            #or1 = np.zeros(3)
            #or2 = np.array([3., 3., 0.])
            #xyz_str1 = "C %9.5f %9.5f %9.5f\n"%(or1[0], or1[1], or1[2])
            #xyz_str2 = "C %9.5f %9.5f %9.5f\n"%(or2[0], or2[1], or2[2])
            #for ind, (i, j) in enumerate(zip(norm_cp,oriented_arc)):
            #    at = atoms[ind]
            #    pos = i[:3] + or1
            #    xyz_str1 += "%s %9.5f %9.5f %9.5f\n"%(at, pos[0], pos[1], pos[2])
            #    pos = j + or2
            #    xyz_str2 += "%s %9.5f %9.5f %9.5f\n"%(at, pos[0], pos[1], pos[2]) 

            #xyz_file = open("debugging.xyz", 'a')
            #xyz_file.writelines("%i\ndebug\n"%(len(norm_cp)*2+2))
            #xyz_file.writelines(xyz_str1)
            #xyz_file.writelines(xyz_str2)
            #xyz_file.close()

            #print "arc CI", CI_ar, "cp  CI", CI_cp
            #if (mm < min) and (diff < chi_diff):
            #print("hi1")
            if (mm <= min):# and self.chiral_match(e, norm_arc, norm_cp):#, tol=xmax): 
                min = mm 
                print("mm smaller min") 
                assign = e
            else: 
                print('mm larger min') 

        #CI = self.chiral_invariant(assign, norm_arc)
        #axis = np.array([1., 3., 1.])
        #angle = np.pi/3.
        #R = rotation_matrix(axis, angle)
        #new_norm = np.dot(R[:3,:3], norm_arc.T)
        #nCI = self.chiral_invariant(assign, new_norm.T)
        #print "Rotation invariant?", CI, nCI
        # NB special MULT function for connect points
        #print("hi1")
        cp_vert = [i[0] if i[0] != vertex else i[1] for i in assign]
        #print 'CI diff', chi_diff
        #print 'tensor diff', mm
        #print("hi1")
        sbu.edge_assignments = assign
        for cp, v in zip(local_arcs, cp_vert):
            cp.vertex_assign = v
Example #8
0
 def normalized_ipmatrix(self, vectors):
     v = normalized_vectors(vectors)
     return np.inner(v,v)
Example #9
0
 def report_errors(self, sbu_vects, arcs, rot_mat):
     rotation = np.dot(rot_mat[:3,:3], sbu_vects.T)
     v = normalized_vectors(rotation.T)
     angles = np.array([calc_angle(v1, v2) for v1, v2 in zip(v, arcs)])
     mean, std = np.mean(angles), np.std(angles)
     return mean, std
Example #10
0
    def sbu_orient(self, v, cell):
        """Least squares optimization of orientation matrix.
        Obtained from:
        Soderkvist & Wedin
        'Determining the movements of the skeleton using well configured markers'
        J. Biomech. 26, 12, 1993, 1473-1477.
        DOI: 10.1016/0021-9290(93)90098-Y"""
        g = self._net.graph
        sbu = self._vertex_sbu[v]
        edges = self._net.neighbours(v) 
        debug("Orienting SBU: %i, %s on vertex %s"%(sbu.identifier, sbu.name, v))
        # re-index the edges to match the order of the connect points in the sbu list
        indexed_edges = sbu.edge_assignments
        coefficients = np.array([1. if e in self._net.out_edges(v) else -1. for e in indexed_edges])
        if len(indexed_edges) != sbu.degree:
            error("There was an error assigning edges "+
                        "to the sbu %s"%(sbu.name))
            Terminate(errcode=1)

            
        inds = self._net.return_indices(indexed_edges)
        la = self._net.lattice_arcs[inds]
        if self._net.ndim == 2:
            la = np.hstack((la, np.zeros((la.shape[0], 1))))

        arcs = np.dot(la, cell)
        arcs = normalized_vectors(arcs) * coefficients[:, None]

        sbu_vects = normalized_vectors(np.array([self.vector_from_cp_SBU(cp, sbu) 
                                for cp in sbu.connect_points]))

        #print np.dot(arcs, arcs.T)
        #sf = self._net.scale_factor
        #la = self._net.lattice_arcs
        #mt = self._net.metric_tensor/sf
        #obj = la*mt*la.T
        #print obj
        # issue for ditopic SBUs where the inner product matrices could invert the
        # angles (particularly for ZIFs)
        if sbu.degree == 2 and not sbu.linear:
            sbu_vects = normalized_vectors(np.array([
                self.vector_from_cp_intersecting_pt(cp, sbu) 
                                for cp in sbu.connect_points]))
            # define the plane generated by the edges
            #print "arc angle %9.5f"%(180.*calc_angle(*arcs)/np.pi)
            #print "sbu angle %9.5f"%(180.*calc_angle(*sbu_vects)/np.pi)
            # For some reason the least squares rotation matrix
            # does not work well with just two vectors, so a third
            # orthonormal vector is included to create the proper
            # rotation matrix
            arc3 = np.cross(arcs[0], arcs[1])
            arc3 /= np.linalg.norm(arc3)
            cp3 = np.cross(sbu_vects[0], sbu_vects[1])
            cp3 /= np.linalg.norm(cp3)
            sbu_vects = np.vstack((sbu_vects, cp3))
            arcs = np.vstack((arcs, arc3))
        R = rotation_from_vectors(sbu_vects, arcs) 
        mean, std = self.report_errors(sbu_vects, arcs, rot_mat=R)
        
        ### DEBUGGGGGG
        #or1 = np.zeros(3)
        #or2 = np.array([3., 3., 0.])
        #xyz_str1 = "C %9.5f %9.5f %9.5f\n"%(or1[0], or1[1], or1[2])
        #xyz_str2 = "C %9.5f %9.5f %9.5f\n"%(or2[0], or2[1], or2[2])
        #atms = ["H", "F", "O", "He", "N", "Cl"]
        #sbu_rot_vects = np.dot(R[:3,:3], sbu_vects.T)
        #for ind, (i, j) in enumerate(zip(arcs, sbu_rot_vects.T)):
        #    at = atms[ind]
        #    pos = i + or1
        #    xyz_str1 += "%s %9.5f %9.5f %9.5f\n"%(at, pos[0], pos[1], pos[2])
        #    pos = j + or2
        #    xyz_str2 += "%s %9.5f %9.5f %9.5f\n"%(at, pos[0], pos[1], pos[2]) 

        #xyz_file = open("debug_rotation_function.xyz", 'a')
        #xyz_file.writelines("%i\ndebug\n"%(len(sbu_rot_vects.T)*2+2))
        #xyz_file.writelines(xyz_str1)
        #xyz_file.writelines(xyz_str2)
        #xyz_file.close()
        ### DEBUGGGGGG

        mean, std = self.report_errors(sbu_vects, arcs, rot_mat=R)
        debug("Average orientation error: %12.6f +/- %9.6f degrees"%(mean/DEG2RAD, std/DEG2RAD))
        sbu.rotate(R)
Example #11
0
    def assign_edge_labels(self, vertex):
        """Edge assignment is geometry dependent. This will try to 
        find the best assignment based on inner product comparison
        with the non-placed lattice arcs."""
        sbu = self._vertex_sbu[vertex]
        local_arcs = sbu.connect_points
        edges = self._net.neighbours(vertex) 
        indices = self._net.return_indices(edges)
        lattice_arcs = self._net.lattice_arcs
        e_assign = {}
        if sbu.two_connected and not sbu.linear:
            vects = [self.vector_from_cp_intersecting_pt(cp, sbu) for cp in local_arcs]
        else:
            vects = [self.vector_from_cp_SBU(cp, sbu) for cp in local_arcs]
        norm_cp = normalized_vectors(vects)
        li = self.normalized_ipmatrix(vects)
        min, chi_diff=15000., 15000.
        cc, assign = None, None
        debug("%s assigned to %s"%(sbu.name, vertex))
        cell = Cell()
        cell.mkcell(self._net.get_3d_params())
        if self._net.ndim == 2:
            lattice_arcs = np.hstack((lattice_arcs, np.zeros((lattice_arcs.shape[0],1))))
        lattice_vects = np.dot(lattice_arcs, cell.lattice)
        count = 0
        for e in itertools.permutations(edges):
            count += 1
            indices = self._net.return_indices(e)
            #node_arcs = lattice_arcs[indices]*\
            #        self._net.metric_tensor*lattice_arcs[indices].T
            #max = node_arcs.max()
            #la = np.empty((len(indices),len(indices)))
            #for (i,j), val in np.ndenumerate(node_arcs):
            #    if i==j:
            #        la[i,j] = val/max
            #    else:
            #        v = val/np.sqrt(node_arcs[i,i])/np.sqrt(node_arcs[j,j])
            #        la[i,j] = v
            #        la[j,i] = v
            # using tensor product of the incidences
            coeff = np.array([-1. if j in self._net.in_edges(vertex)
                               else 1. for j in e])
            #td = np.tensordot(coeff, coeff, axes=0)
            #diff = np.multiply(li, td) - la
            #inds = np.triu_indices(diff.shape[0], k=1) 
            #xmax, xmin = np.absolute(diff[inds]).max(), np.absolute(diff[inds]).min()
            #mm = np.sum(diff)
            #mm = np.sum(np.absolute(np.multiply(li,td) - la))
            # NB Chirality matters!!!
            # get the cell
            lv_arc = (np.array(lattice_vects[indices]) 
                                        * coeff[:, None])
            # get the lattice arcs

            mm = self.get_chiral_diff(e, lv_arc, vects)

            #norm_arc = normalized_vectors(lv_arc)
            # orient the lattice arcs to the first sbu vector...
            #print count , self.chiral_match(e, oriented_arc, norm_cp)
            #print count, np.allclose(norm_cp, oriented_arc, atol=0.01)
            #or1 = np.zeros(3)
            #or2 = np.array([3., 3., 0.])
            #xyz_str1 = "C %9.5f %9.5f %9.5f\n"%(or1[0], or1[1], or1[2])
            #xyz_str2 = "C %9.5f %9.5f %9.5f\n"%(or2[0], or2[1], or2[2])
            #for ind, (i, j) in enumerate(zip(norm_cp,oriented_arc)):
            #    at = atoms[ind]
            #    pos = i[:3] + or1
            #    xyz_str1 += "%s %9.5f %9.5f %9.5f\n"%(at, pos[0], pos[1], pos[2])
            #    pos = j + or2
            #    xyz_str2 += "%s %9.5f %9.5f %9.5f\n"%(at, pos[0], pos[1], pos[2]) 

            #xyz_file = open("debugging.xyz", 'a')
            #xyz_file.writelines("%i\ndebug\n"%(len(norm_cp)*2+2))
            #xyz_file.writelines(xyz_str1)
            #xyz_file.writelines(xyz_str2)
            #xyz_file.close()

            #print "arc CI", CI_ar, "cp  CI", CI_cp
            #if (mm < min) and (diff < chi_diff):
            if (mm <= min):# and self.chiral_match(e, norm_arc, norm_cp):#, tol=xmax): 
                min = mm
                assign = e
        #CI = self.chiral_invariant(assign, norm_arc)
        #axis = np.array([1., 3., 1.])
        #angle = np.pi/3.
        #R = rotation_matrix(axis, angle)
        #new_norm = np.dot(R[:3,:3], norm_arc.T)
        #nCI = self.chiral_invariant(assign, new_norm.T)
        #print "Rotation invariant?", CI, nCI
        # NB special MULT function for connect points
        cp_vert = [i[0] if i[0] != vertex else i[1] for i in assign]
        #print 'CI diff', chi_diff
        #print 'tensor diff', mm
        sbu.edge_assignments = assign
        for cp, v in zip(local_arcs, cp_vert):
            cp.vertex_assign = v
Example #12
0
 def normalized_ipmatrix(self, vectors):
     v = normalized_vectors(vectors)
     return np.inner(v,v)