Example #1
0
def run_random_metropolis_with_noise(image):
    image = metropolis_sampler.reduce_channels_for_sampler(image)
    original_image = metropolis_sampler.convert_image_to_ising_model(image)
    sampled_image = original_image
    iterations = image.shape[0] * image.shape[1]  # the overall number of pixels
    initial_beta = 0.3
    beta_difference = 0.1  # delta
    # beta_range = arithmetic_progression_series(initial_beta, beta_difference, 10)
    beta = 0.9
    rows = image.shape[0]
    columns = image.shape[1]
    for t in range(iterations):
        i = random.randint(0, rows - 1)
        j = random.randint(0, columns - 1)
        site = (i, j)
        flipped_value = - sampled_image[site]
        d = beta * metropolis_sampler.potentials(sampled_image, site) + noise(NOISE_LEVEL, sampled_image[site],
                                                                              original_image[site])
        d_stroke = beta * metropolis_sampler.potentials(sampled_image, site, flipped_pixel_value=True) + noise(
            NOISE_LEVEL,
            - sampled_image[site], original_image[site])
        posterior = np.exp(min(d_stroke - d, 0))
        u = random.random()
        if u < posterior:
            sampled_image[site] = flipped_value
    sampled_image = metropolis_sampler.convert_from_ising_to_image(sampled_image)
    sampled_image = metropolis_sampler.restore_channels(sampled_image, 3)  # restored image
    # save to the current directory (testing)

    images_processing.save_image('updated_noise_model_4neighbors_beta={0}'.format(beta), 'jpg', sampled_image,
                                 '')
Example #2
0
def run_metropolis_with_noise(image):
    """
    Runs the Metropolis sampler with a strategy to choose the next pixel to update non-randomly.
    :param image: an image of size m x n
    :return: saves the result of denoising to the given folder
    """
    image = images_processing.reduce_channels_for_sampler(image)
    image = images_processing.convert_image_to_ising_model(image)
    iterations = ITERATIONS_NUMBER
    initial_beta = 0.3
    beta_difference = 0.1
    # beta_range = arithmetic_progression_series(initial_beta, beta_difference, 12)
    beta_range = [0.8]
    rows = range(image.shape[0])
    columns = range(image.shape[1])
    for beta in beta_range:
        for t in range(iterations):
            for i in rows:
                for j in columns:
                    site = (i, j)
                    flipped_value = - image[site]
                    d = beta * metropolis_sampler.potentials(image, site) + noise(NOISE_LEVEL)
                    d_stroke = beta * metropolis_sampler.potentials(image, site, flipped_pixel_value=True) + noise(
                        NOISE_LEVEL)
                    posterior = np.exp(min(d_stroke - d, 0))
                    u = random.random()
                    if u < posterior:
                        image[site] = flipped_value
        sampled_image = images_processing.convert_from_ising_to_image(image)
        sampled_image = images_processing.restore_channels(sampled_image, 3)  # restored image
        images_processing.save_image(
            'metropolis_noise_ising_beta={0}_iter={1}'.format(beta, iterations), 'jpg',
            sampled_image,
            'Denoised images/metropolis_sampler_noise_ising_model/noise={0}/brain_tissue_im/not_random'.format(
                NOISE_LEVEL))
Example #3
0
def run_metropolis_without_noise_for_beta_range(image_name, initial_beta, beta_step, iterations, neighbors_number):
    original_image = cv2.imread(image_name)
    original_image = images_processing.reduce_channels_for_sampler(original_image)
    original_image = images_processing.convert_image_to_ising_model(original_image)
    rows = range(original_image.shape[0])
    columns = range(original_image.shape[1])
    beta_range = arithmetic_progression_series(initial_beta, beta_step, 10)
    for beta in beta_range:
        sampled_image = original_image  # for different values of beta, reset the sampled image to the original one
        for t in range(iterations):
            for i in rows:
                for j in columns:
                    i = random.randint(0, rows - 1)
                    j = random.randint(0, columns - 1)
                    current_site = (i, j)
                    flipped_value = - sampled_image[current_site]
                    d = beta * metropolis_sampler.potentials(sampled_image, current_site, flipped_pixel_value=False,
                                                             neighbors_number=neighbors_number)
                    d_flipped = beta * metropolis_sampler.potentials(sampled_image, current_site,
                                                                     flipped_pixel_value=True)
                    posterior = np.exp(min(d_flipped - d, 0))
                    u = random.random()
                    if u < posterior:
                        sampled_image[current_site] = flipped_value
        sampled_image = images_processing.convert_from_ising_to_image(sampled_image)
        sampled_image = images_processing.restore_channels(sampled_image, 3)
        format = what(image_name)
        images_processing.save_image(
            'result_beta={0}_iter={1}_neighbors={2}'.format(beta, iterations, neighbors_number), format, sampled_image,
            directory='Results')
Example #4
0
def run_metropolis_without_noise(image_name, beta, iterations, neighbors_number):
    original_image = cv2.imread(image_name)
    original_image = images_processing.reduce_channels_for_sampler(original_image)
    original_image = images_processing.convert_image_to_ising_model(original_image)
    sampled_image = original_image
    rows = range(original_image.shape[0])
    columns = range(original_image.shape[1])
    for t in range(iterations):
        for i in rows:
            for j in columns:
                i = random.randint(0, rows - 1)
                j = random.randint(0, columns - 1)
                current_site = (i, j)
                flipped_value = - sampled_image[current_site]
                d = beta * metropolis_sampler.potentials(sampled_image, current_site, flipped_pixel_value=False,
                                                         neighbors_number=neighbors_number)
                # the conditional probability for the opposite to the random pixel's value
                d_flipped = beta * metropolis_sampler.potentials(sampled_image, current_site,
                                                                 flipped_pixel_value=True)
                posterior = np.exp(min(d_flipped - d, 0))
                u = random.random()
                if u < posterior:
                    sampled_image[current_site] = flipped_value
    sampled_image = images_processing.convert_from_ising_to_image(sampled_image)
    sampled_image = images_processing.restore_channels(sampled_image, 3)
    format = what(image_name)
    images_processing.save_image(
        'result_beta={0}_iter={1}_neighbors={2}'.format(beta, iterations, neighbors_number), format, sampled_image,
        directory='Results')
    print('success')
Example #5
0
def denoising_pipeline(image_name, beta, iterations, noise_probability, neighbors_number):
    """
    Performs denoising of a given image using the Metropolis sampler.
    :param image_name: a name of the image located in the current directory (from which the script is called)
    :param beta: an essential parameter of the sampler, an inverse to the temperature (1/T)
    :param iterations: the number of iterations
    :param noise_probability: the assumed probability of the flip noise in the image
    :param neighbors_number: the size of the neighborhood structure. it's used when calculating the energy of the neighborhood. the default is 8. can be switched to 4
    :return: saves a result of denoising to the folder 'Results' (it's created if doesn't exist)
    """
    # read the image
    original_image = cv2.imread(image_name)
    # reduce channels
    original_image = images_processing.reduce_channels_for_sampler(original_image)
    # convert to Ising
    original_image = images_processing.convert_image_to_ising_model(original_image)
    # create a copy of the image to which the changes will be applied
    sampled_image = original_image
    # accept beta as an argument
    # accept iterations number as an argument
    # accept noise probability as an argument
    # accept the neighbourhood structure's size
    # get image dimensions
    rows = original_image.shape[0]  # height
    columns = original_image.shape[1]  # width

    for t in range(iterations):
        # generate a random pixel position
        i = random.randint(0, rows - 1)
        j = random.randint(0, columns - 1)
        current_site = (i, j)
        # find the opposite value of the current pixel
        flipped_value = - sampled_image[current_site]
        # the conditional probability for the random pixel's value
        d = beta * metropolis_sampler.potentials(sampled_image, current_site, flipped_pixel_value=False,
                                                 neighbors_number=neighbors_number) + noise(noise_probability,
                                                                                            sampled_image[current_site],
                                                                                            original_image[
                                                                                                current_site])
        # the conditional probability for the opposite to the random pixel's value
        d_flipped = beta * metropolis_sampler.potentials(sampled_image, current_site, flipped_pixel_value=True) + noise(
            noise_probability,
            - sampled_image[current_site], original_image[current_site])
        posterior = np.exp(min(d_flipped - d, 0))
        u = random.random()
        if u < posterior:
            sampled_image[current_site] = flipped_value
    # convert back from Ising
    sampled_image = images_processing.convert_from_ising_to_image(sampled_image)
    # restore channels
    sampled_image = images_processing.restore_channels(sampled_image, 3)  # restored image
    # create a separate folder to save the result with parameters specified
    format = what(image_name)
    images_processing.save_image(
        'result_beta={0}_noise_p={1}_iter={2}_neighbors={3}'.format(beta, noise_probability, iterations,
                                                                    neighbors_number), format, sampled_image,
        directory='Results')
Example #6
0
def denoising_pipeline(image_name, beta, iterations, noise_probability, neighbors_number):
    # read the image
    original_image = cv2.imread(image_name)
    # reduce channels
    original_image = images_processing.reduce_channels_for_sampler(original_image)
    # convert to Ising
    original_image = images_processing.convert_image_to_ising_model(original_image)
    # create a copy of the image to which the changes will be applied
    sampled_image = original_image
    # accept beta as an argument
    # accept iterations number as an argument
    # accept noise probability as an argument
    # accept the neighbourhood structure's size
    # get image dimensions
    rows = original_image.shape[0]  # height
    columns = original_image.shape[1]  # width

    for t in range(iterations):
        # generate a random pixel position
        i = random.randint(0, rows - 1)
        j = random.randint(0, columns - 1)
        current_site = (i, j)
        # find the opposite value of the current pixel
        flipped_value = - sampled_image[current_site]
        # the conditional probability for the random pixel's value
        d = beta * metropolis_sampler.potentials(sampled_image, current_site, flipped_pixel_value=False,
                                                 neighbors_number=neighbors_number) + noise(noise_probability,
                                                                                            sampled_image[current_site],
                                                                                            original_image[
                                                                                                current_site])
        # the conditional probability for the opposite to the random pixel's value
        d_flipped = beta * metropolis_sampler.potentials(sampled_image, current_site, flipped_pixel_value=True) + noise(
            noise_probability,
            - sampled_image[current_site], original_image[current_site])
        posterior = np.exp(min(d_flipped - d, 0))
        u = random.random()
        if u < posterior:
            sampled_image[current_site] = flipped_value
    # convert back from Ising
    sampled_image = images_processing.convert_from_ising_to_image(sampled_image)
    # restore channels
    sampled_image = images_processing.restore_channels(sampled_image, 3)  # restored image
    # create a separate folder to save the result with parameters specified
    format = imghdr.what(image_name)
    print('successfully denoised')
    images_processing.save_image('result_beta={}_noise_p={}_iter={}_neighbors={}', format, sampled_image, directory='Results')
Example #7
0
def testing_potentials_calculation(image):
    image = images_processing.reduce_channels_for_sampler(image)
    image = images_processing.convert_image_to_ising_model(image)
    energy = metropolis_sampler.potentials(image, (5, 5))
    print("current pixel value")
    print(image[(5, 5)])
    neighbors = metropolis_sampler.get_all_neighbors((5, 5), image.shape)
    print("values of neighbors")
    for coord in neighbors:
        print(image[coord])
    print("energy")
    print(energy)